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Abstract. In this paper, we present a new method of discrete Ray-
Casting, using parallel rays, having the property that each point of the
scene belongs to one and only one ray. This study is based on the theory
of arithmetic discrete geometry. The rays are modeled by Figueiredo-
Reveillès’ discrete naive 3D lines that tile the space and that can be
incrementally generated.
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1 Introduction

Various fields of science and industry have become intensive users of advanced
volume visualization tools. Medical imaging, for example, needs more and more
precise and realistic views of anatomic volume data.

The usual 3D visualization methodology consists in the following steps: First,
raw 3D data, as a result of image acquisition, is geometrically interpolated,
and filtered for noise reduction, before being submitted to data segmentation
algorithms in order to retain only useful information. The next step consists in
selecting a visualization method amongst one of the following usual classes of
visualization algorithms: Isosurface reconstruction for surface-based rendering
(introduced by [15] and [18]) or voxel based rendering.

The algorithm described in this paper is a voxel based front to back algo-
rithm, i.e. we scan the data space from the nearest voxel to the farthest. This
class of volume rendering algorithms has been introduced by [9]. The theoretical
background to our algorithm is fundamental results from Arithmetic Discrete
Geometry, mainly due to [17]. The originality of this approach is the exclusive
and intensive use of integer arithmetic which allows to handle a large amount of
data faster than usual methods. The discrete approach has already been used in
the past [19,14], its drawbacks and advantages have been analyzed in [5,6].

The originality of our algorithm is the use of Figueiredo-Reveillès [7] discrete
lines, which are the thinnest possible 26-connected lines, that allow, through a
3D tessellating theorem (new result), to reach all the visible voxels exactly once,
without losses or doublings.
The resulting discrete ray casting algorithm, can be sketched informally as:
? Most of this development has been achieved at the LSIIT, ULP, Strasbourg.
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For each intermediate screen pixel, follow the corresponding
(if available) 3D ray inside of the data space from the front
towards the back. If the back side is reached, then give the
pixel a background color, else, if the object is touched, give
the pixel the corresponding object color.

Our algorithm, as well as all other discrete ray casting algorithms, is charac-
terized by the fact that the complexity in time does not depend on the complex-
ity of the scene, but only on the number of empty voxels to be scanned before
reaching visible object voxels. This because there is no need to use heavily time-
expensive intersection algorithms for each ray and for each object. The ray is
stopped as soon as it reaches the object, the collision test consists in testing the
voxel value.

The paper is organized as follows. In section 2 and 3 we recall fundamental
definitions of discrete geometry. Section 4 concentrates on the actual discrete
ray-casting algorithm.

2 Basic Definitions

In this section, we recall some basic definitions from discrete geometry. They
will be useful further on. Arithmetic Discrete Geometry has been introduced
and studied in [17,1,13]. Discrete planes have been studied in [8,1,2].

The Discrete coordinate plane consists of unit squares, called pixels, centered
on the integer points of the two-dimensional Cartesian coordinate system in the
plane.

The Discrete coordinate space consists of unit cubes, called voxels, centered
on the integer points of the three-dimensional Cartesian coordinate system in
the space. The pixels / voxels coordinates are the coordinates of their centers.

Definition 1 (2D adjacency). Two pixels are 4-connected if they have a com-
mon side. Two pixels are 8-connected if they share a common vertex or side.

Definition 2 (3D adjacency). Two voxels are 6-connected if they have a com-
mon face. Two voxels are 18-connected if they share a common edge or face. Two
voxels are 26-connected if they share a common vertex, edge or face.

Definition 3 (neighborhood). The set of all pixels adjacent to a given pixel
P is called the neighborhood of P .

Following definitions (4 and 1) of a 2D discrete line are equivalent.

Definition 4 ([17]). A 2D discrete line is a set of pixels L(a, b, c, ω) ={
(x, y) ∈ Z2 |0 ≤ ax + by + c < ω

}
, where a, b, c ∈ Z and ω ∈ N?. ω is called

the arithmetical thickness of the discrete line and c the translation constant.

Result 1 ([17]) A pixel (x, y) ∈ Z2 belongs to the 2D discrete lineL(a, b, c, ω) if[
ax+by+c

ω

]
= 0, where [r], with r ∈ R, denotes the greatest integer not exceeding r.



Discrete Ray-Casting 437

Definition 5 (run). Along a 2D discrete line, functionnal over the X-coordi-
nate, a set of consecutive pixels of same Y -coordinate is called a run.

Using Result 1, it is easy to define the set Lk, the discrete line parallel to
L(a, b, c, ω), by

{
(x, y) ∈ Z2

∣∣∣
[

ax+by+c
ω

]
= k

}
, where k ∈ Z.

Proposition 1 ([17]). The set of all the Lk tiles the plane.

Definition 6 (naive line, [17]). When ω = max(|a|, |b|), the 2D discrete line
L(a, b, c, ω) is called a naive line.

Proposition 2 ([17]). A naive line is 8-connected minimal (i.e. if one removes
a single pixel, the line is no more 8-connected).

A special case of a naive line which appears to be one of the best discrete
approximation to the corresponding continuous straight line among the set of
all possible naive lines is the Bresenham line [4]. The Bresenham line was first
described algorithmically, but we now have an analytical definition [17]. Let
L(a, b, c, ω) be a naive line, passing through O(0, 0), with c =

[
ω
2

]
, then this is a

Bresenham line.
As a Bresenham line L(a, b, c, ω) tiles the plane, Lk goes through any point

(x, y) of the plane, where k =
[

ax+by+c
ω

]
= KL(x, y). A discrete line is functional

over the Ox (resp. Oy) coordinate axis if there corresponds one and only one
pixel to any given coordinate x (resp. y) on this line.

Proposition 3 ([3]). A 2D naive line is functional over the coordinate axis
that makes an angle less than or equal to 45 degrees.

Proposition 4. Let Lk(a, b, c, ω) be a naive line functional over X and b > 0.
Given a coordinate x over X, there is only one pixel (x, y) belonging to Lk:
y = Y (Lk, x), where Y (Lk, x) = − [

ax+c−kb
b

]
.

Similarly to the definition of discrete lines, following definitions (7 and 2) of
a discrete plane are equivalent.

Definition 7 (discrete plane, [17]). A discrete plane is a set of voxels P (a, b,
c, d, ω) =

{
(x, y, z) ∈ Z3 |0 ≤ ax + by + cz + d < ω

}
where a, b, c, d ∈ Z and ω ∈

N?. ω is called the arithmetical thickness of the discrete plane and d is a trans-
lation constant. The vector (a, b, c) is a normal vector to the plane P .

Result 2 (discrete plane, [17]) A voxel (x, y, z) ∈ Z3 belongs to the discrete
plane P (a, b, c, d, ω) if

[
ax+by+cz+d

ω

]
= 0.

Using Result 2 it is easy to define the set Pk, the discrete plane parallel to
P (a, b, c, d, ω), by

{
(x, y, z) ∈ Z3

∣∣∣
[

ax+by+cz+d
ω

]
= k

}
, where k ∈ Z.

Following definitions and results are due to [1].
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Proposition 5. The set of all the Pk tiles the space.

Definition 8 (tunnels through a discrete plane). The plane P (a, b, c, d, ω)
has a k-tunnel (k = 6, 18, 26) if there exist two k-adjacent voxels A(xA, yA, zA)
and B(xB , yB , zB) such that axA+byA+czA+d < 0 and axB+byB+czB+d ≥ ω.

Definition 9 (naive plane, [1,2]). When ω = max(|a|, |b|, |c|), the discrete
plane is called a naive plane.

Proposition 6 ([1,2]). A naive plane is 18-connected. This is the smallest
value of ω for which there is no 6-tunnels.

Proposition 7. A naive plane is functional over at least one of the coordinate
planes Oxy, Oxz, or Oyz.

3 Discrete Naive 3D Lines

In this section we show some important new properties based on the definition
of a discrete naive 3D line given by Figueiredo-Reveillès [7].

Their discrete naive 3D line is the subset of Z3 defined by the intersection
of two planes obtained by extrusion of two discrete Bresenham 2D lines. The
properties of such a discrete naive 3D line are the following ones:

– 26-connected.
– minimal (i.e. if one removes a single voxel, the line is no more 26-connected).
– functional over (at least) 2 planes within Oxy, Oxz, or Oyz.

Using this definition, the problem of generating a discrete 3D line is reduced
to two 2D problems, since the selected discrete 3D line is characterized by two
discrete 2D Bresenham lines: D1 and D2

Theorem 1. The two 2D Bresenham lines characterizing the naive 3D line are
functional over the same axis, i.e. X. This axis is the common one to the two
planes used to define the 3D line.

Theorem 2. The set of all the lines parallel to a given naive 3D line defined by
Figueiredo-Reveillès tiles the space.

The proof can be deduced easily from the definition of a naive 3D line.

Proof. Given a discrete naive 3D line L, it is characterized by its two projections:

– (On plane P1) L1(a1, b1, c1, ω1)
– (On plane P2) L2(a2, b2, c2, ω2)

Each point P (u, v, t) of the space can be projected on P1 and P2. The Bre-
senham 2D line L1 tiles the plane P1, by definition. So there exists a unique
k1 ∈ Z such that the projection of P in the plane P1 belongs to Lk1 . The same
argument holds for L2 with respect to the plane P2.

The lines Lk1 and Lk2 define a unique Figueiredo-Reveillès’ naive 3D line
according to its definition.
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4 Discrete Ray-Casting using Figueiredo-Reveillès’ Naive
3D Lines

In this section, we will examine how to develop a discrete ray-casting algorithm
using the naive 3D lines defined previously and having the important property
that each point of the scene is reached once (i.e. no voxel is missed and no
voxel is reached more than once). This property holds only if we use a parallel
projection and the definition of Figueiredo-Reveillès to define the rays, since
Theorem 2 ensures that the set of all the lines parallel to a given discrete line
tiles the space.

4.1 Sketch of the algorithm

Let C be the center of the parallelepipedic orthothetic discrete scene bounded
by (0, 0, 0) and (umax, vmax, tmax) that we want to visualize.

As we are using parallel projection, the point of view is placed at infinity. To
define the viewing direction, we will consider a point O on the line connecting
this point of view to C, O being at finite distance of C. The algorithm is divided
in two main sections: the initializations and the main loop.

– The initialization process consists in (1) selecting the horizontal and the
vertical planes for the 2D projections of the Figueiredo-Reveillès 3D lines. (2)
The initialization process then computes the coefficients of the corresponding
2D Bresenham lines in the above selected planes. (3) The last initialization
step computes the 2D boundaries of the projection of the volume in order
to restrict the subsequent 3D lines generation to the actual data volume.

– The main loop consists in (1) computing the entry points into the data
volume for all the 3D lines, then these lines are (2) incrementally generated
until either they reach a none empty voxel or they exit from the data volume.

4.2 Initializations

1. To select the two 2D projection planes P1, and P2 corresponding to the
3D discrete line connecting O(u0, v0, t0) to C(uc, vc, tc), we compute: m =
max(|∆u|, |∆v|, |∆t|), where ∆u = u0 − uc,∆v = v0 − vc,∆t = t0 − tc. If
m = |∆u| then (horizontal plane) P1 = Ouv and (vertical plane) P2 = Out.
If m = |∆v| then (horizontal plane) P1 = Ouv and (vertical plane) P2 = Ovt.
If m = |∆t| then (horizontal plane) P1 = Ovt and (vertical plane) P2 = Out.

2. Let Dk1 (resp. D′
k2

), be the 2D projection of the discrete 3D Figueiredo-
Reveillès in plane P1 (resp. P2). We can suppose, without any loss of general-
ity, that the slope of these 2D lines is in [0, 1] (other cases are symmetric). Dk1

is defined by: a = ∆v, b = −∆u, c =
[

ω
2

]−(au0+bv0+k1ω), ω = max(|a|, |b|)
(resp. D′

k2
is defined by: a = ∆t, b = −∆u, c =

[
ω
2

] − (au0 + bt0 + k2ω),
ω = max(|a|, |b|) ).
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3. To know which rays must be sent through the data volume, we define the in-
tervals in which k1 and k2 are bounded, using the projections of the data vol-
ume vertices. These intervals are: k1 ∈ [k1 min, k1 max] and k2 ∈ [k2 min, k2 max]
with: k1 min = KD(0, umax), k1 max = KD(vmax, 0), k2 min = KD′(0, umax),
k2 max = KD′(tmax, 0).

4.3 Main Loop

Y

XZ

Fig. 1. A Discrete Naive 3D Line

(u, vmax)

U

0

umax

vmax

(umax, v)

Fig. 2. Intersection

1. For each discrete 3D ray, we compute the intersection with the data volume.
As a Figueiredo-Reveillès’ line is characterized by two Bresenham lines, and
as these two 2D lines are functional over the same axis (Theorem 1), the prob-
lem of finding the 3D intersection is reduced to two 2D intersection compu-
tations. Furthermore, as we assume that the two 2D lines are functional over
the X axis, the entry point to the data volume is (u, V (Dk1 , u), T (D′

k2
, u))

with u ∈ [0, umax], V (Dk1 , u) ∈ [0, vmax], T (D′
k2

, u) ∈ [0, tmax], V (Dk1 , u) =

−
[

a1u+c1−k1b1
b1

]
, and T (D′

k2
, u) = −

[
a2u+c2−k2b2

b2

]
.

We now consider the problem in the plane P1, (the similar problem in P2 is
not discussed here). As the current projected line in P1 lies within the first
octant (hypothesis), Dk1 can only cut the projection of the 3D data volume
across two edges: Edge 1: connecting (umax, 0) to (umax, vmax) or Edge 2:
connecting (umax, vmax) to (0, vmax).
In the first case, the target point is u = umax even if the line has a long run
as depicted on Figure 2.
In the second case, we have to find the point (u, vmax). If this point does not
exist, which may happen since u must satisfy the constraint u ∈ [0, umax[,



Discrete Ray-Casting 441

the intersection is void. This means that the corresponding 3D ray does
not hit the volume. To compute this intersection point, if any, we calculate
the discrete intersection of the line L1 and the line v = vmax [17]. This
intersection is usually composed of more than one pixel, but in our case, we
can be sure that they do belong to the same run. The intersection pixel is the
first pixel according to the way of generating the discrete line. It is the pixel
with the smallest remainder, since the remainder is growing incrementally
along a given run. Futhermore this pixel can be found directly using the
arithmetical definition of the discrete line.
Using this method we obtain u1 in the plane P1 such as (u1, V (L1, u1)) ∈
box (0, 0, umax, vmax)1 and u2 in the plane P2 such as (u2, T (L2, u2)) ∈
box (0, 0, umax, tmax). Since L1 and L2 are functional over the same axis U ,
the entry point of the ray in the scene is defined by: (u, V (L1, u), T (L2, u)),
where u = min(u1, u2).

2. The Figueiredo-Reveillès’ naive 3D line generation algorithm is a straight for-
ward consequence of the generation algorithm a 2D Bresenham Line. Given
two points A and B of the space, without any assumption about their posi-
tions, Algorithm 2 shows how to generate the Figueiredo-Reveillès’ naive 3D
discrete segment [AB]. The first part of the algorithm determines in which
octant B is, when A is considered as the center of the space. The horizontal
plane and the vertical plane are chosen. Then two Bresenham algorithms are
run: at each step, we consider the next coordinate over X, since the choice
of the next coordinate over Y or Z depends on the remainder r1 and r2.

4.4 Discrete Z-Buffer

The Ray-Casting method allows to determine the visible points in the scene,
but to produce a correct picture with these data, we need to be able to compute
the screen to object distance in order to produce an approximation to normal
vectors.

Most of well-known methods, such as Z-Buffer shading, need to know for a
given point its distance to a fixed point: i.e. the screen or the point of view. As
we are using a parallel projection, we can’t refer to such a fixed point.

Here again, we are using a discrete approach. We refer to the point O, and
we define a naive plane going through O and normal to the discrete 3D line OC.
As the set Pk of all the naive planes parallel to a given one tiles the space, we
can use k to define the depth of any voxel of the scene according to the plane
going through O.

This naive plan is defined by:
a = uc − u0, b = vc − v0, c = tc − t0, d =

[
ω
2

] − (au0 + bv0 + ct0), and
ω = max(|a|, |b|, |c|).

Normal vectors are computed using forward differences in the discrete Z-
Buffer, enhancements can be implemented here using [11,16].

1 box(a,b,c,d) denotes the rectangular 2D orthothetic discrete box of opposite vertices
(a,b) and (c,d).
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Algorithm 1 Algorithm generating Figueiredo-Reveill�es' naive 3D discrete line

Required : A;B 2 Z3

Ensures : procedure PLOT is called for each point of [AB].
�[0] B[0]�A[0]
�[1] B[1]�A[1]
�[2] B[2]�A[2]
if �[0] � �[1] et �[0] � �[2] then
X  0; Y  1; Z  2

else if �[1] � �[0] et �[1] � �[2] then
X  1; Y  0; Z  2

else if �[2] � �[0] et �[2] � �[1] then
X  2; Y  1; Z  0

end if

pt A

i 0
r1  

h
j�[X]j

2

i
; r2  

h
j�[X]j

2

i

repeat

PLOT(pt)
i i + 1
pt[X] pt[X] + sign (�[X])
r1  r1 + j�[Y ]j
if r1 � j�[X]j then
r1  r1 � j�[X]j
pt[Y ] pt[Y ] + sign (�[X])

end if

r2  r2 + j�[Z]j
if r2 � j�[X]j then
r2  r2 � j�[X]j
pt[Z] pt[Z] + sign (�[X])

end if

until i > j�[X]j

4.5 Geometric Correction

The intermediate screen resulting from the ray-casting algorithm needs to be
rescaled to fit the final rectangular screen. Although this geometric correction
can easily be performed using conventional methods [10], we have implemented
a discrete affine mapping method. This approach is based on the fact that the
Bresenham 2D lines tile the plane, so we project runs of adequate lines over
single pixels, in order to rescale the whole intermediate screen.

5 Results

Visual results are illustrated Table 3, and 4. Runtime comparisons are given
between our program and “Bob” from Graphics and Visualization Lab of the



Discrete Ray-Casting 443

Army High Performance Computing Research Center, Aberdeen, MD (USA),
a freeware conventional real number based visualization tool2, and “volume” a
home made discrete visualization tool based on the scan of the hole discrete 3D
data space volume.

1283voxels 1503voxels

bob n/a 1 min 17 sec
volume 0.49 sec 0.55 sec

Discrete Ray Casting 0.15 sec 0.21 sec

6 Concluding Remarks

We presented a method for volume viewing exclusively based on the use of integer
arithmetic. The originality of our algorithm is the use of Figueiredo-Reveillès’
3D discrete lines to model the rays, which ensures that each voxel of the scene
is reached only once, since these rays tile the data volume. The front to back
algorithm used ensures that only the voxels in front of the visible object are
scanned. All this leads to interesting overall runtimes. This program can, in
addition, be interfaced with any usual shading algorithm.

Extensions of this work can be integrated into the rendering part of a discrete
modeler. The discrete rays can be used in any other field, for example in radio
wave propagation simulations.
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Fig. 3. Twelve views of a Molecule
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Fig. 4. Twelve views of a C60-Molecule
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