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Abstract. We study the problem of discretization in a Hausdorff space
followed in [WTR 98]. We recall the definitions and properties of the
Hausdorff discretization of a compact set. We also study the relationship
between the covering discretizations and the Hausdorff discretization.
For a cellular metric every covering discretization minimizes the Haus-
dorff distance, and conversely, if the supercover discretization minimizes
the Hausdorff distance then the metric is cellular. The supercover dis-
cretization is the Hausdorff discretization iff the metric is proportional
to d∞. We compare also the Hausdorff discretization and the Bresenham
discretization [Bres 65]. Actually, the Bresenham discretization of a seg-
ment of IR2 is not always a good discretization relatively to a Hausdorff
metric.
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1 Introduction

Let K be a compact subset of IRn, we investigate the following problem :
determine the set MHd

(K) of subsets of ZZn minimizing a Hausdorff distance to
K. We have shown [Wag 97] that MHd

(K) is stable by union and that the union
of all its elements is also a set minimizing the Hausdorff distance. This union is
called the Hausdorff discretization of the compact K. We also proved that the
“Digital geometry” converges in Hausdorff space to the “Euclidean geometry”
as in [DT 95].
The supercover discretization operator∆SC is defined by ∀K ⊂ IRn, ∆SC(K) =
{p ∈ ZZn | K ∩ C(p) 6= ∅} where for each p, C(p) is the cell corresponding to
p. We also study the relationship between the covering discretizations and the
Hausdorff discretization. We proved that, for a cellular metric every covering dis-
cretization minimizes the Hausdorff distance, and conversely, if the supercover
discretization minimizes the Hausdorff distance then the metric is cellular. We
proved also that the supercover discretization is the Hausdorff discretization iff
the metric is proportional to d∞.We compare also the Hausdorff discretization
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and the Bresenham discretization [Bres 65]. Actually, the Bresenham discretiza-
tion of a segment of IR2 is not always a good discretization relatively to a Haus-
dorff metric.
This paper is divided in four sections. In the second section we present some clas-
sical notions of metric space and Hausdorff space, and we introduce some new
metric notions. In the third section, we study the problem of discretization in a
Hausdorff space and we introduce a new discretization : Hausdorff discretization.
In the last section, we present some applications. Actually, we prove that the
Bresenham discretization of a segment of IR2 is not always a good discretization
relatively to a Hausdorff metric.
The proofs are not given here, they will appear in future papers in preparation
[RT 98]. Some of them can be found in [Wag 97].

2 Metric space and Hausdorff space

This section contains some classical notions of metric space and Hausdorff space,
it also contains some new metric notions. The proofs of the classical notions used
in this section can be found (for example) in [HY 88], [GK 90], [Bar 93].

Definition 1. Let (E, d) be a metric space and let p ∈ E and r ∈ IR+,

Bd
r (p) = {x ∈ E | d(x, p) ≤ r}.

Definition 2. Let (E, d) be a metric space and let E ⊆ E, the interior of E is
the set int(E) = {x ∈ E | ∃r>0, Bd

r (p) ⊂ E}.

2.1 Metric space and normed vector space

Definition 3. Let (E, d) be a metric space and let K ⊆ E; K is said to be
compact if every infinite sequence in K contains a subsequence having a limit in
K.

Definition 4. Let (E, d) be a metric space and let A ⊂ E and x0 ∈ E; d(x0,
A) = infy∈A(d(x0, y)).

Definition 5. A metric d on IRn is said to be invariant under translation if

∀(x, y, z) ∈ (IRn)3, d(x+ z, y + z) = d(x, y).

Definition 6. A norm over a vector space E is an application N : E −→ IR+

such that :

– ∀x ∈ E, N(x) = 0 ⇔ x = 0.
– ∀x ∈ E, ∀ λ∈ IR, N(λx) = |λ|N(x).
– ∀(x, y) ∈ E2, N(x+ y) ≤ N(x) +N(y).

(E, N) is called a normed vector space.



Hausdorff Discretization 401

Remarks
• If N is a norm over E , then the function dN such that : ∀x, y ∈ E , dN (x,
y) = N(x − y) is a metric over E . dN is called the metric induced by the norm
N .
• A metric induced by a norm is invariant under translation.

Examples :
E = IRn and let x = (x1, x2, · · · , xn) ∈ IRn.

∀p ≥ 1, ‖x‖p = p
√

|x1|p + · · · + |xn|p and ‖x‖∞ = max
1≤i≤n

|xi| = lim
p→∞ ‖x‖p

are a norms over IRn. The metrics induced by these norms are dp and d∞ re-
spectively.

Property 1. [Sto 70]
• Let N be a norm on IRn, and let BN = {x ∈ IRn;N(x) ≤ 1}. Then BN is a
compact convex set with a non-empty interior and symmetrical relatively to the
origin.
• Conversely, for every compact convex set K ⊂ IRn of dimension n, which is
symmetrical relatively to the origin, there is precisely one norm N such that
BN = K. Moreover ∀x ∈ IRn, N(x) = inf({r ∈ IR+; 1

rx ∈ K})

2.2 Cellular metric

In this subsection we introduce a new notion : a cellular metric. We present some
properties of a cellular metric and we compare it with the metrics d1 and d∞.

Definition 7. Let p ∈ ZZn, we define the the cell of center p as

C(p) = {x ∈ E|d∞(x, p) ≤ 1
2
}

Definition 8. A metric d over IRn is called cellular if ∀x ∈ IRn, ∀p, q ∈ ZZn,
x ∈ C(p) =⇒ d(p, x) ≤ d(q, x). In particular, if x ∈ C(p) ∩ C(q), then d(p,
x) = d(q, x).

Definition 9. In IRn, a symmetry relatively to the hyperplane xi = 0 is the
function σi : IRn → IRn which associates to the vector (x1, · · ·, xn) the vector
(x1

′, · · ·, xn
′) where xi

′ = −xi and xj
′ = xj for all j 6= i.

Proposition 1. Let N be a norm invariant under σ1, · · ·, σn, then the metric
dN induced by N is cellular.

Proposition 2. If d is a cellular metric in IR2 and d is induced by a norm N ,
then N is invariant under σ1 and σ2.

Definition 10. Let d be a metric on IRn invariant by translation.
• The cellular covering radius of the metric d is rcc(d) = inf({r>0 , C(O) ⊆
Bd

r (O)}) where O is the origin.
• The covering radius of the metric d is rc(d) = inf({r>0 | IRn =

⋃
p∈ZZn Bd

r (p)})
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Remarks
• IRn =

⋃
p∈ZZn Bd

rc(d)(p)).
• rc(d) ≤ rcc(d).

Proposition 3. Let d be a metric invariant by translation. If d is cellular then
rc(d) = rcc(d).

Proposition 4. If d is a metric induced by a norm N invariant under σ1, · · ·,
σn, then rc(d) = N( 1

2 , 1
2 , · · ·, 1

2 ) = 1
2 N(1, 1, · · ·, 1).

Examples : In IRn, ∀p ≥ 1, rc(dp) = (n
1
p

2 ), and rc(d∞) = 1
2 .

Corollary 1. If d is a metric induced by a norm N and d is invariant under
σ1, · · ·, σn, then Bd∞

1
2

(O) ⊆ Bd
rc(d)(O)

We introduce now some restrictions in order to compare the metric d to the
metric d1.
Let J be a group of isometries of IRn (for the euclidean norm) preserving the
canonical basis {e1, · · ·, en} : the elements of J are the linear applications whose
the matrix is a permutation matrix (with coefficients in {0, 1}, and exactly one
“1” by line and exactly one “1” by column).
Let G(N) be the group of isometries in J for which N is invariant :
G(N) = {ψ ∈ J | ∀x ∈ IRn, N(ψ(x)) = N(x)}
Proposition 5. Let N be a norm on IRn invariant under σ1, · · ·, σn. If G(N)
is transitive on the basis {e1, · · ·, en}, (i.e. ∀i, j ∈ {1, · · ·, n}, ∃ψ ∈ G(N),
ψ(ei) = ej ), then

Bd∞
1
2

(O) ⊆ Bd
rc(d)(O) ⊆ Bd1

n
2

(O)

Remarks : With the same hypothesis as in Proposition 5, we have :
Let p, q ∈ ZZn.
– If d1(p, q)>n, then Bd

rc(d)(p) ∩ Bd
rc(d)(q) = ∅.

– If d1(p, q) = n, then Bd
rc(d)(p)∩Bd

rc(d)(q)∩C(p) = C(p)∩C(q), which is nonempty
iff p and q are diagonally adjacents except for d =αd1.

2.3 Hausdorff metric

The definitions and results presenting in this subsection can be found in [GK
90], [Bar 93].

Definition 11. Let (E, d) be a metric space, H(E) is the set of the nonempty
compact subsets of E.

On H(E), we will define a metric Hd, such that if (E , d) is a complete metric
space then (H(E), Hd) is a complete metric space.
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Definition 12. Let (E, d) be a metric space. Let A, B ∈ H(E). We define the
oriented Hausdorff metric from a set A ∈ H(E) to a set B ∈ H(E) by :
hd(A, B) = maxa∈A(minb∈B(d(a, b))) = maxa∈A(d(a, B))

Definition 13. Let (E, d) be a metric space. The Hausdorff distance between two
compact sets A, B ∈ H(E) is defined by Hd(A, B) = max(hd(A, B), hd(B, A))

Definition 14. Let A, B be subsets of IRn; the Minkowski addition of A and B
is A⊕ B = {a+ b | a ∈ A, b ∈ B} =

⋃
a∈AB(a) =

⋃
b∈B A(b) where ∀t ∈ IRn,

A(t) = A⊕ {t} is the translation of A by t.

Property 2. Let d be a metric on IRn and let A, B ∈ H(IRn),
Hd(A, B) = min({r ≥ 0 | A ⊆ ⋃

b∈B Bd
r (b) and B ⊆ ⋃

a∈A Bd
r (a)}). So, if the

metric d is invariant under translation, then
∀A, B ∈ H(IRn), Hd(A, B) = min({r ≥ 0 | A ⊆ B ⊕ Bd

r (O) and B ⊆
A⊕ Bd

r (O)}).

Property 3. [GK 90], [Bar 93]
Let (E , d) be a metric space such that d is invariant by translation :
• ∀(A, B) ∈ H(E)2, ∀r ≥ 0, hd(A, B) ≤ r ⇐⇒ A ⊆ B ⊕ Bd

r (0).
• ∀(A, B, C, D) ∈ H(E)4, Hd(A ∪B, C ∪D) ≤ max(Hd(A, C), Hd(B, D)).
• (E , d) is a complete metric space ⇐⇒ (H(E), Hd) is a complete metric space.

3 Hausdorff Discretization

We recall here the results presented in [WTR 97].
In all the following we assume that we have as metric space (IRn, d), where d is
a metric induced by a norm on IRn, and as a discrete space ZZn.

3.1 Morphological discretization

In this subsection we introduce the morphological discretization studied in [Hei
91a], [Hei 91b] and [Hei 92].

Definition 15. Let K ⊆ IRn and S ⊆ IRn, the discretization by dilation of K by
S is the set ∆S

⊕(K) = (K ⊕ S̄) ∩ ZZn where S̄ = {−s | s ∈ S}. S is called the
structuring element.

Property 4. Let K ⊆ IRn and let S ⊆ IRn, then∆S
⊕(K) = {p ∈ ZZn | K∩S(p) 6=

∅}.

Remarks, definitions and notations:
Let K ⊆ IRn, d be a metric induced by a norm, and let S ⊆ IRn :
• Let r ∈ IR+. For S = Bd

r (O), ∆S
⊕(K) is called the discretization of K of radius

r for the metric d and it is denoted in the following by ∆d
r(K).
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• For S = {0}, ∆S
⊕(K) is the discretization, by sampling, of K.

• For r = rcc(d), ∆d
r(K) is called the discretization, by overlapping, of K.

• For d = d∞, ∆d
rcc(d)(K) = {p ∈ ZZn | C(p) ∩ K 6= ∅} is the supercover

discretization of K [CK 95] which is denoted in the following by ∆SC(K).
• Let S ⊂ ZZn, if ∀p ∈ S, K ∩ C(p) 6= ∅ and K ⊆ ⋃

p∈S C(p) then S is called a
covering discretization of K [And 98]. So, the popular supercover discretization
is the maximal covering discretization.

3.2 Characterization of Hausdorff Discretization

In this subsection we characterize the set MHd
(K) of subset of ZZn minimizing

the Hausdorff distance to a given compact K, we have proved [Wag 97] that
MHd

(K) is stable by union and that the union of all its elements is also a set
minimizing the Hausdorff distance.

Definition 16. Let K ∈ H(IRn). A set M ⊆ ZZn is a Hausdorff discretizing set
of K if Hd(K, M) = inf({Hd(K, S) | S ⊆ ZZn}).
• The value rH(K, d) = inf({Hd(K, S) | S ⊆ ZZn}) is called the Hausdorff
radius of the compact set K for the metric d,
• MHd

(K) = {M ⊆ ZZn
∣∣∣ Hd(K, M) = inf({Hd(K, S) | S ⊆ ZZn})} is the set

of subsets of ZZn minimizing the Hausdorff distance to K.
• ∆Hd

(K) = (
⋃

M∈MHd
(K)M) is called the Hausdorff discretization of K.

Property 5. Let K ∈ H(IRn); then
• MHd

(K) is non void and finite,
• ∀M1, M2 ∈ MHd

(K), M1 ∪M2 ∈ MHd
(K) and

• ∆Hd
(K) ∈ MHd

(K).

We will now characterize the Hausdorff discretization.

Theorem 1. Let K ∈ H(IRn), then
• rH(K, d) = inf({r ≥ 0 | K ⊆

⋃
p∈∆d

r(K)Bd
r (p)}),

• ∆Hd
(K) =∆d

rH(K, d)(K) = {p ∈ D | K ∩ Bd
rH(K, d)(p) 6= ∅} and

• rH(K, d) ≤ rc(d).

Property 6. LetK ∈ H(IRn), r ∈ IR+ and let S ⊆ ZZn such thatK ⊆ ⋃
p∈S Bd

r (p)
and ∀p ∈ S, Bd

r (p) ∩ K 6= ∅, then Hd(K, S) ≤ r. So, if r = rH(K, d) then
S ∈ MHd

(K).

Corollary 2. Let d be a cellular metric. Then for every compact set K, if S is
a covering discretization of K then S ∈ MHd

(K).

The results obtained for the Hausdorff discretization in the lattice ZZn can be
extended, in a natural way, to any lattice. In the following theorem, we prove
that, the “Digital geometry” converges in Hausdorff space to the “Euclidean
geometry” as in [DT 95] by using lattices with increasing resolution.



Hausdorff Discretization 405

Definition 17. Let m ∈ IN , the square lattice with step 1
2m is the set Rm =

1
2m ZZn.

Proposition 6. Let K ∈ H(IRn). If ∀m ∈ IN , ∆Hd
(K, Rm) is the Hausdorff

discretization of K in the lattice Rm, then lim
n→∞

Hd(K, ∆Hd
(K, Rm)) = 0.

3.3 Hausdorff discretization and supercover discretization

The supercover discretization operator ∆SC is defined by

∀K ∈ H(IRn), ∆SC(K) = {p ∈ ZZn | K ∩ C(p) 6= ∅}.
In this subsection, we study the relationship between the supercover discretiza-
tion and the Hausdorff discretization. We present a localization of the Hausdorff
discretization. We have shown that the supercover discretization minimizes the
Hausdoff distance iff the metric is cellular, and we prove also that the supercover
discretization is the Hausdorff discretization iff the metric is proportional to d∞.

Proposition 7. Let d be a metric induced by a norm, then ∀K ∈ H(IRn),
∆Hd

(K) ⊆∆SC(K)⊕ ∆SC(Bd
rcc(d)(O)).

Theorem 2. Let d be a metric induced by a norm on IRn.
• d is a cellular ⇐⇒ ∀K ∈ H(IRn), ∆SC(K) ∈ MHd

(K).
• ∀K ∈ H(IRn), ∆Hd

(K) =∆SC(K) ⇐⇒ ∃α∈ IR+ such that d =αd∞.

The topological proporties of the supercover discretization are studed by several
people. [Sch 98] shows that, given a Euclidean set K of IR2, under some condi-
tions on k, points can be removed from its supercover discretization ∆SC(K),
in such a way that, for the remaining subset S of points,

⋃
p∈S C(p) is homo-

topic to K. [LCG 98] gives a sufficient conditions on K under wich ∆SC(K) is
homeomorphic to K.

4 Applications

In all the following, we assume that all the metrics considered are induced by a
homogeneous norm.

Definition 18. A norm N on IRn is homogeneous if ∀(x1, · · ·, xn) ∈ IRn,
∀(ε1, · · ·, εn) ∈ {−1, 1}n, for all permutations σ, N(x1, · · ·, xn) = N(ε1x1, · · ·,
εnxn) = N(xσ(1), · · ·, xσ(n)). So, if n = 2, then N is homogeneous iff ∀(x1,
x2) ∈ IR2, N(x1, x2) = N(−x1, x2) = N(x2, x1).

Definition 19. Let d be a metric on IRn and let p ∈ IRn and r ∈ IR+,

Cd
r (p) = {x ∈ IRn | d(x, p) = r}.
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Property 7. Let d be a metric on IRn induced by a homogeneous norm, then
• 1

2{−1, 1}n ⊆ (Cd
rc(d)(p) ∩ Cd∞

1 (p)) and

• 1
2{−1, 1}n ⊂ (Cd

rc(d)(p) ∩ Cd∞
1 (p)) ⇐⇒ ∃ α∈ IR+ such that d =αd∞.

• If K ∈ H(IRn), then rH(K, d) = rc(d) ⇐⇒ K ∩ ({( 1
2 , · · ·, 1

2 )} ⊕ ZZn) 6= ∅
Notations :
Let d be a metric on IR2, and let p ∈ ZZ2.
• N (p) = IR2 \ (

⋃
q∈(ZZ2\{p}) Bd

rc(d)(q)),
• V8(p) = {q ∈ ZZ2 | d∞(p, q) = 1} and
• V4(p) = {q ∈ ZZ2 | d1(p, q) = 1}.
N (p), V4(p) and V8(p) are illustrates in the Figures 1, 2.

Fig. 1. N (O) for the metric d2.

( b )( a )

Fig. 2. (a) correspond to V4(O), (b) correspond to V8(O)
.

Property 8. Let d be a metric on IR2 induced by a homogeneous norm, and let
p 6= q ∈ ZZ2, and r ∈ IR+.
• If r<rc(d), then (Bd

r (p) ∩ Bd
r (p) 6= ∅ =⇒ q ∈ V4(p)),

• If r = rc(d), then (Bd
r (p) ∩ Bd

r (q) 6= ∅ =⇒ q ∈ V8(p)).

Property 9. Let d be a metric on IR2 induced by a homogeneous norm, and
let p ∈ ZZn, then N (O) is an open subset of IRn and (N (O) = ∅ ⇐⇒ ∃
α∈ IR+ such that d = αd1).

Definition 20. Let d be a metric on IRn and K ∈ H(IRn), the skeleton of
∆Hd

(K) is the set

Sk(K, d) = {q ∈ ZZn | ∀S ⊂ ZZn, Hd(K, S) = rH(K, d) =⇒ q ∈ S}
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Definition 21. Let K be a connected subset of IR2 and S a square of IR2, we
say that K goes throught S if ∃p, q ∈ IR2 such that p 6= q, p, q ∈ (K∩(S\int(S))
and [p, q]∩ int(S) 6= ∅, where [p, q] = {tp+(1− t)q | 0 ≤ t ≤ 1} is the segment
of IR2 of end points p, q.

Figure 3 present a curve goes throught a square and a curve not goes throught
a square.

( b )( a )

Fig. 3. in (a) the curve goes throught the square,
in (b) the curve not goes throught the square

Property 10. Let d be a metric on IR2 induced by a homogeneous norm, and let
K ∈ H(IR2). If K is connected and rH(K, d) <rc(d), then

K goes through C(p) =⇒ p ∈ Sk(K, d)

4.1 Hausdorff discretization and Bresenham discretization

In this subsection, we compare the Hausdorff and Bresenham discretizations
[Bres 65]. Actually, we prove that the Bresenham discretization of a segment of
IR2 is not always a good discretization relatively to a Hausdorff metric.
In all the following, we consider only the segments of IR2 of the form {(x, ax+
b) | x ∈ [α, β]} where |a| ≤ 1, α, β∈ IR and β−α≥ 3.

Definition 22. [Bre 65]
Let L be a segment of IR2

∆Bres(L) = {(i, bai + b + 1
2c) | bαc ≤ i ≤ dβe} where ( ∀x ∈ IR, bxc,

dxe ∈ ZZ, bxc ≤ x<x + 1 and dxe − 1<x ≤ dxe ). ∆Bres(L) is called a
Bresenham discretization of the segment L.

Definition 23. Let d be a metric on IR2 induced by a homogeneous norm, and
let E = {(x, y) ∈ Bd

rc(d)(O) | y = −x+ 1}.
• A(d) is the point of E of minimal x-coordinate (i.e. if A(d) = (x0, y0), then
x0 = min({x | (x, −x+ 1) ∈ E}) )
• R(d) is the square with the set of vertex V (R) = {(x0, y0 − 1), (−x0, y0 − 1),
(x0, 1 − y0), (−x0, 1 − y0)} (i.e. R(d) is the convex hull of V (R) )
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A(d) and R(d) are illustrates in Figure 4.

( a ) ( b )

Fig. 4. (a) The black area represents A(d), (b) The black areas represent R(d)s.

Property 11. Let d be a metric on IR2 induced by a homogeneous norm, and let
L be a segment in IR2. If rH(L, d) = rc(d), and L goes through C(p), then

p ∈ Sk(L, d) ⇐⇒ L ∩ ({p} ⊕ int(R(d))) 6= ∅

where int(R(d)) is the interior of the set R(d).

Theorem 3. Let d be a metric on IR2 induced by a homogeneous norm, and let
L = {(x, ax+ b) | x ∈ [α, β]} be a segment in IR2.
• If rH(L, d)<rc(d), then
Hd(∆Bres(L), L)>rH(L, d) ⇐⇒ ∃p, q, r ∈ IR2 q, r ∈ V4(p), r ∈ (V8(q) \
V4(q)) and L goes throught C(p), C(q), C(r).
• If rH(L, d) = rc(d), then
Hd(∆Bres(L), L)>rH(L, d) ⇐⇒ ∃p, q, r ∈ IR2 q, r ∈ V4(p), r ∈ (V8(q) \
V4(q)) and L goes throught {p} ⊕ R(d), {q} ⊕ R(d), {r} ⊕ R(d).

A different cases of Theorem 12 are illustrated in the Figures 5, 6.

( a ) ( b )

Fig. 5. (a) and (b) illustrates a different cases of theorem 12 where rH(L, d)<rc(d).
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( a ) ( b )

Fig. 6. (a) and (b) illustrates a different cases of theorem 12 where rH(L, d) = rc(d).

5 Conclusion

We have introduced a new theory of discretization, based on the Hausdorff dis-
tance. We have proved the convergence (in Hausdorff metric sens) of the dis-
cretization to the original object when resolution tends to zero. We have com-
pared the Hausdorff discretization to other discretization schemes such as the
covering, the supercover and the Bresenham discretization. We have proved that
the supercover discretization is Hausdorff discretization for all compact set k
(i.e. ∆SC(K) ∈ MHd

(K)) iff the distance is cellular; and that for a distance d
induced by a norm, ∆Hd

(K) =∆SC(K) for any compact set K iff the distance
d is proportional to d∞. We have olso proved that Bresenham discretization of
a segment of IR2 is not always a good discretization relatively to a Hausdorff
metric.
Further investigations will be needed:

• on the topological properties of Hausdorff discretization (cfr. [LCG 98], [Sch
98] );

• on its extension to grey-level images;
• on the discretization of geometrical and morphological operations.
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