
Convex Hull of Grid Points below a Line
or a Convex Curve

Hélymar Balza-Gomez1, Jean-Michel Moreau1, and Dominique Michelucci1

École Nationale Supérieure des Mines de Saint-Étienne,
158 cours Fauriel, F 42023 Saint-Étienne cedex 2

Abstract. Consider a finite non-vertical, and non-degenerate straight-
line segment s = [s0, s1] in the Euclidian plane E

2. We give a method
for constructing the boundary of the upper convex hull of all the points
with integral coordinates below (or on) s, with abscissa in [x(s0), x(s1)].
The algorithm takes O(log n) time, if n is the length of the segment. We
next show how to perform a similar construction in the case where s is
a finite, non-degenerate, convex arc on a quadric curve. The associated
method runs in O(k log n), where n is the arc’s length and k the number
of vertices on the boundary of the resulting hull. This method may also
be used for a line segment; in this case, k = O(log n), and the second
method takes O(k2) time, compared with O(k) for the first.

1 Upper Hull of Grid Points below a Line Segment

This paper will consider integral hulls, i.e. convex hulls of set of points with
integral coordinates in the Euclidean plane (grid points). A paper on 3D lattice
convex hulls is Reveillès and Yaacoub’s [RY95].

This section describes a method for computing the boundary of the upper
convex hull of all the grid points located below a given non-degenerate, non-
vertical, line segment s (including those possibly on it). Obviously, only the upper
hull boundary requires some computation. Hence, we shall use the terms “hull”
and “upper hull” indifferently in the sequel, unless where specified otherwise.

The supporting line of the segment has equation y = ax + b, and is unam-
biguously described by a and b, since s is supposed not to be vertical; typically,
these coefficients are rational numbers, although the method also applies to any
computable field, i.e. a field in which the usual exact arithmetic operations (sum,
difference, product, division, sign, floor) are available.

Convention: We assume w.l.o.g. that the slope of s is non-negative (a ≥
0): this allows a shorter presentation, and the other situation (a < 0) is deduced
by symmetry.

Since we want the convex hull of the integral points below s, we may restrict
the problem to a segment the endpoints of which have integral abscissæ, say
x0 = dx(s0)e ∈ Z and x1 = bx(s1)c ∈ Z. Such a segment is the hypothenuse of
the rectangle triangle with vertices (x0, ax0 +b), (x1, ax0 +b), and (x1, ax1 +b).
Let n = min(x1−x0, ba(x1−x0)c) be the length (in number of unit intervals) of

G. Bertrand, M. Couprie, L. Perroton (Eds.): DGCI’99, LNCS 1568, pp. 361–374, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

362 Hélymar Balza-Gomez, Jean-Michel Moreau, and Dominique Michelucci

the shortest edge in this triangle; then the brute-force method to compute the
upper hull boundary takes O(n) time. We summarize this method in sub-section
2, where it is used as a subroutine of our own algorithm, which we now detail.

1.1 Constructing the Upper Hull Boundary

The method we propose runs in O(log n) time. It proceeds in two steps:

1. The first step consists of computing the boundary of a prehull, which yields
a superset – actually a superlist – of the final upper hull boundary. It is a
superlist because it generally contains:
– points aligned with extremal vertices of the final hull, but that are not

part of it1,
– but also some points that were previously found to lie on the convex hull

boundary, but do not any more, due to concatenation (see below).
2. The second step uses the brute-force method to scan the prehull boundary,

and remove from it those points that are not part of the final list, in time
proportional to the size of the boundary of the prehull (and, incidentally,
that of the final upper hull boundary), i.e. O(log n).

The First Step.

Some notations. We define A = (x0, ax0 + b), B = (x1 > x0, ax1 + b). AB
is the segment. Set y0 = bax0 + bc, and let C = (x0, y0) be the grid point just
below A (or equal to A when A is a grid point). We also need D = (x1, y0).

ABCD is called the “reference trapezoid” of segment AB. The trapezoid is
said to be vertical when the angle between CD and AB is superior or equal to
45 degrees (a ≥ 1) (see Fig. 2) and horizontal otherwise (see Fig. 3 and 4).

Fig. 1. When bax0 + bc = bax1 + bc, the upper hull boundary is obviously the
segment from vertex (x0, bax0 + bc) to vertex (x1, bax1 + bc).

If the segment is almost horizontal (see Fig. 1), i.e. if bax0 + bc = bax1 + bc,
then the upper hull (and prehull) boundary is segment CD.
1 If H1, H2, . . . Hn is a maximal chain of aligned points of the boundary of a convex

hull, only H1 and Hn are extremal vertices: a vertex on the boundary of the convex
hull is either an extremity, or it is common to two adjacent segments with different
slopes. Thus, for instance, the hull of the segment between point O = (0, 0) and
M = (1000, 1000) only has two extremal vertices (O and M), among all the 1001
integral points that the full segment comprises.

Convex Hull of Grid Points below a Line or a Convex Curve 363

Otherwise, we distinguish two cases, depending on whether the reference
trapezoid is vertical or horizontal, making use of the following lemma, that we
give without proof:

Lemma 1. Let A be a closed set in E
2, and U an unimodular transformation

of E
2. Let H() denote the convex hull of a subset in the plane. Then

U−1(H(U(A))) ≡ H(A).

We recall that the restriction to Z2 of an unimodular transformation of E
2

is an affine bijection of Z
2; as a consequence, the associated matrix has integer

entries and determinant ±1. Geometrically, such transformations preserve areas,
grid points, alignments, and convexity. Lemma 1 will be applied to reference
trapezoids.

Constructing the convex hull of A may be done by applying the reciprocal
(U−1) to the convex hull of the image by U of A. The principle of the algorithm
will be to reduce the original problem to one with smaller size, by means of a
well-chosen unimodular transformation, constructing the upper hull boundary
of the image, and then deducing the original upper convex hull by inverse image.
Let us now see how we can change a vertical trapezoid into an horizontal one,
and vice versa.

Fig. 2. A vertical reference trapezoid.

Vertical trapezoid. Since we have assumed, w.l.o.g., that a ≥ 0, we necessarily
have a ≥ 1 (see Fig. 2). We reduce this case to the next (0 ≤ a < 1) by means
of a unimodular transformation.

Let T = (xT = x1, yT = y0 + (x1 − x0)bac), i.e. T is the grid point below B
such that CT has slope σ = bac.

364 Hélymar Balza-Gomez, Jean-Michel Moreau, and Dominique Michelucci

Consider that C is the origin of our coordinate system, and consider the
following transformation U : (x, y) ; (x′, y′), defined by

{
x′ = x
y′ = y − σx

(1)

Transformation U is obviously unimodular, leaves C invariant, and maps T to
T ′ ≡ D (see Fig. 2), and more generally vertically shifts vertical lines propor-
tionally to their distance to the vertical line passing through C, so as to make
line CT horizontal.

Since A′B′ has slope (a−bac) less than 1, its reference trapezoid A′B′C ′T ′ is
horizontal, has smaller size than ABCD (the original trapezoid for segment AB),
and an upper hull boundary with similar characteristics (number of vertices) to
the ones of ABCD, due to Lemma 1.

Hence, we only need to construct the upper prehull boundary for segment
A′B′, and then deduce that for segment AB by applying U−1. This takes us to
the second case.

Horizontal trapezoid. Here, we necessarily have a < 1 (see Figure 3 and 4).
The initial trapezoid ABCD contains a smaller vertical one, A2B2C2D2, with
inverted axis2, which we obtain as follows:

– B2 is the intersection point between AB and the horizontal line with equation
y = yC + 1;

– A2 is the intersection point between AB and the horizontal line with equation
y = byBc.

– C2 is the grid point just to the right of A2 (or A2 if A2 is a grid point).
– D2 follows in a straightforward fashion.

Fig. 3. An horizontal reference trapezoid.

Note that the left convex prehull boundary, h2, of the grid points located to
the right of segment A2B2 may be computed, after some rotation and symmetry,
with our method, by a recursive call. Now, the prehull boundary of AB is the
2 By this, we mean that C2D2 is vertical, while CD was horizontal.

Convex Hull of Grid Points below a Line or a Convex Curve 365

Fig. 4. An horizontal reference trapezoid. Note that some vertices on the upper
hull boundary of A2B2C2D2 do not belong to that of ABCD.

concatenation of: grid point C, h2, and grid point K = (x1, bax1 + bc), unless
C2 = K. This should be obvious from Fig. 3 and 4. As mentioned earlier, note
that some points originally on h2 may become non-extremal after concatenation
with C, as in Fig. 4. This justifies the existence of a second step, to remove
possibly invalid vertices.

In some cases (see Fig. 5), we can reduce an horizontal trapezoid to a vertical
one not completely contained in the horizontal one. The condition is that the tri-
angle IAC does not contain grid points other than C, where I is the intersection
point between line AB and line CD. In all such cases, B2 ≡ I.

Fig. 5. Refining the method.

Running time of the first step. A vertical trapezoid with (integral) basis
w and height h is reduced to an horizontal one with basis w and height h′ =
h mod w. An horizontal trapezoid with basis w and height h is reduced to a
vertical trapezoid with basis w′ < h and height h′ < w. Thus, there are at most
O(log(max(w, h))) such reductions.

366 Hélymar Balza-Gomez, Jean-Michel Moreau, and Dominique Michelucci

Similarly, the upper prehull boundary of a vertical trapezoid has as many
points as that of the horizontal trapezoid it is reduced to. The upper prehull
boundary of an horizontal trapezoid has at most 2 (thus O(1)) vertices more
than that of the vertical trapezoid it is reduced to.

In the basic case which stops recursion, the upper prehull boundary has 2
vertices. Thus the upper prehull boundary of a trapezoid with size n = max(w, h)
has O(log n) vertices. Since the prehull is a superset of the hull, the latter also
has O(log n) vertices.

The hull may have Θ(log n) vertices in the worst case: as is well known,
for a segment from (0, 0) excluded to (q, p) ∈ Z2, the vertices (x, y) of the
upper hull of integral points (0 < x ≤ q, y ≤ px/q) below the segment, and
the lower hull of integral points (0 < x ≤ q, y ≥ px/q) above the segment,
are given by the successive convergents y

x of the continued fraction expansion
(CFE) of the rational slope p/q (Klein’s theorem). The smallest inputs (q, p)
for which there are k convergents (thus k vertices in both hulls) are the two
successive Fibonacci numbers q = Fk and p = Fk−1. We remind the reader
that Fibonacci numbers are defined by : F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2,
that Fk = (Φk − Φ′k)/

√
5 = bΦk/

√
5e where Φ = (1 +

√
5)/2 ≈ 1.618 . . . is the

golden number, and Φ′ = (1 − √5)/2 ≈ −0.618 . . . is its conjugate, and that
k = blogΦ Fk

√
5e. The notation bne stands for n rounded to the nearest integer.

See [GKP89] for a more detailed account.
Of course, we want the running time of the first step to be O(log n), which

takes a little effort: we can reach this complexity O(log n) if the function prehull(),
after each of its O(log n) recursive calls, only performs O(1) operations. Thus
the function prehull() is typically allowed to append or prepend two new ver-
tices to the list resulting from the current recursive call (i.e. the upper prehull
boundary h′), but not to apply any kind of linear transformation to the O(log n)
vertices of h′.

A solution is to let function prehull() receive h′ in the correct coordinate
system, as a result of its recursive call. Thus the coordinate system should be
passed to it as an argument (via some transformation matrix, say). Function
prehull() then uses this matrix to transform the O(1) vertices it adds to the
current upper prehull boundary, thus only performing O(1) operations in addi-
tion to its recursive call.

This method has some similarity with Euclid’s algorithm ([GKP89]), and
may be interestingly compared to the algorithm proposed by N. Kanamaru, T.
Nishizeki and T. Asano ([KNA94]), for counting the number (or giving the list)
of all the grid points inside a given triangle.

The Second Step. Here, the upper prehull boundary is a list of grid points,
ordered by increasing abscissæ. This step removes those grid points it contains
that are not vertices of the upper hull, using a technique akin to the well-known
Graham scan ([PS85]) for constructing the convex hull of a set of points in the
plane, arranged in some compatible order:

Convex Hull of Grid Points below a Line or a Convex Curve 367

Scan the list:
Let q be the current point, p its predecessor,
and r its successor in the list.
If pqr forms a strictly convex angle:

Step forward:
Set q ← r (and update p and r).

Otherwise:
Remove q from the list, and
Step back:

Set q ← p (and update p and r).

This simplified presentation ignores special cases occurring at the head or at
the tail of the list, but it is enough to assume pqr to be declared convex when
either p or r does not exist.

The method runs in time linear in the size of the list, k: there are at most
O(k) back steps, since each one of them removes an item from the original list;
and the number of forward steps cannot exceed k plus the number of back steps.

2 Upper Convex Hull of Grid Points below a Convex
Curve

2.1 The Problem

This section describes a method for computing the upper convex hull boundary of
all the grid points below a given finite, convex and bi-monotonic arc of a quadric
(parabola, hyperbola, ellipse), including those possibly on it. Bi-monotonic arcs
have at most one intersection point with any line parallel to either of the two
prescribed perpendicular directions (say Ox and Oy). From now on, we shall
only consider arcs which are monotonic with respect to Ox and Oy: all quadrics
may be partitionned in such arcs in constant time.

Arcs are defined by the integral-coefficient equation of the quadric, F (x, y) =
ax2 + by2 + cxy + dx + ey + f = 0, and by the linear inequalities which their
points must satisfy. For instance, the maximal arc of quadric where points have
normal oriented towards the north-east quadrant carries inequalities: F ′

x ≤ 0,
and F ′

y ≥ 0 where F ′
x(x, y) = 2ax + cy + d and F ′

y(x, y) = 2by + cx + e are the
derivatives of F in x and y, respectively.

Note that, in this formulation, the (possibly non rational) coordinates of arcs
endpoints need neither be explicitly (i.e. with numbers), nor exactly represented.

2.2 Constructing the Upper Hull Boundary

We suppose that a method to compute intersection points between the arc at
hand and any ray is available. A ray is a half straight line, defined by an origin
(x0, y0), and a direction vector (u, v); in our setting, x0, y0, u and v are integers

368 Hélymar Balza-Gomez, Jean-Michel Moreau, and Dominique Michelucci

(incidentally, the last two are supposed to be coprimes). Points (x, y) on the ray
can be parameterized by t: x = x0 + ut, y = y0 + vt. Substituting x and y in
the quadric’s equation F (x, y) = 0, we get a quadratic equation E(t) = 0 with
integral coefficients, which is (almost always, see Section 2.4) trivially solved.
Only intersection points which satisfy the arc’s inequalities are kept.

To compute the upper hull, we walk along the arc, starting from a known
point S of the hull, say its leftmost point. The principle is to maintain a basis
(I, J) of two vectors (see Fig. 6) such that:

– I = (Ix, Iy) and J = (Jx, Jy) have integral coordinates,
– their determinant is equal to +1:

∣∣∣∣ Ix Iy

Jx Jy

∣∣∣∣ = +1

This unimodularity condition guarantees that all grid points have integer
coordinates relatively to the coordinates system (S, I, J), and conversely,
all points with integral coordinates relatively to (S, I, J) are grid points.
Moreover, the segment [S, S + J [is cut by the curve, and will always be as
we follow the curve.

– The last constraint on (S, I, J) is that the next vertex (T , to be computed)
after S on the convex hull boundary has non-negative integral coordinates
relatively to (S, I, J).

Fig. 6. On the left handside, basis (I, J) is the initial one (I0, J0). We are in the
second case (as defined below), and the new basis (right handside diagram) is
I ′ = I + J, J ′ = I + 2J . In both diagrams, we have drawn the lattice generated
by translating the elementary unit “cell” (shadowed). The set of all vertices in
each lattice coincides with Z

2, thanks to unimodularity.

Convex Hull of Grid Points below a Line or a Convex Curve 369

For instance, if the arc to be followed has normal oriented towards North-
East, then the initial values for I and J are I0 = (1, 0) and J0 = (0, 1); other
cases are found by symmetry.

The method computes the next point T after S on the convex hull; then it
jumps to T , i.e. T becomes the new origin S, and the basis (I, J) is reset to
(I0, J0) – a constant for a given arc.

It remains to explain how the basic step, NextPoint(arc, S, I, J) computes
T . We shall use the following notations: if P is a point and V a vector, P + V is
the point Q such that −−→PQ = V ; Ray(P , U) is the ray with origin P and direction
U .

There are several possible configurations for the arc S, I, and J , as discussed
below. First note that, for the sake of clarity, figures use an orthonormal basis (I,
J), though actually only the initial basis (I0, J0) is orthonormal, (with the excep-
tion of Fig. 6 where we have represented the process “as is”, for a comparison).
This convention is justified by the fact that the transformation applied to (I,J)
to get “orthonormal figures” is unimodular, i.e. it preserves area, alignments and
grid points.

Case 1. In case 1 (see Fig. 7, 8, and 9), the arc does not cross ray Ray(S + J ,
I), or crosses it twice (possibly tangentially) inside the interval]S +J, S +J +I[.

Then, if the arc crosses Ray(S+I, I) at point P , we are in case 1.1 (Fig. 7); T is
known and it is the grid point just before P , i.e. if P has coordinates (Px, Py = 0)
in coordinate system (S, I, J), then T has coordinates (Tx = bPxc, Ty = 0); this
should be obvious on Fig. 7.

Otherwise, the arc does not cross Ray(S + I, I). We are either in case 1.2 or
1.3.

We are in case 1.2 (see Fig. 8) if we have reached the arc’s end: we clip Ray(S,
I) by all linear inequalities which are part of the arc’s definition. Let P be the
right endpoint of the clipped ray. Then T has coordinates (Tx = bPxc, Ty = 0);
this should be obvious on Fig. 8.

We are in case 1.3 (see Fig. 9) if the arc is tangent to an asymptote parallel
to I, and if we accept as input arcs with infinite length; here T is the point
at infinity (+∞, 0). This kind of case occurs for instance with the hyperbola:
0 < x, 0 < y, xy− 1 ≥ 0. Of course, there is the risk that the upper convex hull
boundary of infinite arcs has an infinite number of vertices, and in such a case,
the method never stops! Thus, we mention case 1.3 only for completeness: it is
a priori impossible.

Thus, in case 1, the method terminates and returns T .

Fig. 7. Case 1.1.

370 Hélymar Balza-Gomez, Jean-Michel Moreau, and Dominique Michelucci

Fig. 8. Case 1.2. Fig. 9. Case 1.2.

Case 2. In case 2 (see Fig. 10), the arc crosses Ray(S + J ,I) once, and the
intersection point belongs to [S + J, S + J + I[. Due to monotonicity, either the
arc cuts Ray(S + I, J) in one point P and we are in case 2.1, or it terminates
before and we are in case 2.2. A case similar to case 1.3, with an asymptote
parallel to J , is impossible.

In case 2.1, P exists and has coordinates (Px = 1, Py) in (S, I, J). Let
b = bPyc, I ′ = I + bJ , J ′ = I ′ + J . Note that (S, I ′, J ′) fulfills the pre-
scribed requirements (unimodularity, etc). Then we recursively compute T =
NextPoint(arc, S, I ′, J ′).

Fig. 10. Case 2. Left: case 2.1. Right: case 2.2.

In case 2.2, Ray(S + I,J) is clipped by all linear inequalities of the arc’s defi-
nition. Let P be the highest endpoint of the clipped ray. Then T has coordinates
(Tx = 1, Ty = bPyc).

Case 3. In case 3 (see Fig. 11), the arc crosses Ray(S + J ,I) at least once,
but the intersection point closest to S + J (call it P = (Px, Py = 1)) does not
belong to [S + J, S + J + I[. Then let a = dPxe, I ′ = aI + J , J ′ = I ′ − I;
again (S, I ′, J ′) fulfills the prescribed requirements (unimodularity, etc), and we
compute recursively T = NextPoint(arc,S, I ′, J ′).

Convex Hull of Grid Points below a Line or a Convex Curve 371

Fig. 11. Case 3.

2.3 Justification and Running Time

That we obtain the upper convex hull in the fashion described above is inherently
justified by the fact that the curve arc is convex and we always select the next
local integral maximum under the arc.

Indeed, method NextPoint(arc, S, I, J) basically mimics the Continued Frac-
tion Expansion of the rational slope p

q of segment ST , and hence selects the best
possible approximations in increasing order. More precisely, method NextPoint
starts with basis I0, J0, and, in the worst case, either transforms In, Jn into

{
In+1 = In + Jn

Jn+1 = In + 2Jn
(2)

in case 2, or into {
In+1 = 2In + Jn

Jn+1 = In + Jn
(3)

in case 3 (in all other cases, it terminates). At step k, Ik = (xk yk) and Jk =
(xk yk) have coordinates xk, yk, x′

k, y′
k superior or equal to 2k−1 (proof by

recurrence). After a logarithmic number of steps, Ik length becomes greater
than the arc length, and method NextPoint terminates.

This implies that method NextPoint performs O(log(max(p, q))) operations;
here the most expensive operation is the resolution of a quadratic equation with
integral coefficients. It is usually assumed (although debatable) that such an
operation takes constant time. p and q are bounded by the length (say n) of the
minimal rectangle enclosing the arc. Thus NextPoint runs in O(log n), and is
called O(k) times if there are k vertices on the hull boundary.

Hence, the method runs in O(k log n) time. It may be used on a straight line
segment: in this case, k = O(log n), and it runs in O(k2) time, compared to O(k)
for the method of the previous section, designed for straight lines only.

The running time O(k log n) may perhaps be improved:

– First, the previous running time analysis was a bit pessimistic to remain
simple. More optimistically, if (bi

ai
) is the sequence of slopes along the hull,

then the number of operations is

k−1∑
i=1

log(max(ai, bi)).

372 Hélymar Balza-Gomez, Jean-Michel Moreau, and Dominique Michelucci

– Then the method itself may perhaps be improved: at each vertex, it starts
with basis I, J equal to I0, J0, the same initial basis for all arcs; we do not
use the fact that the slope of SkSk+1 is likely to be close to that of Sk−1Sk,
i.e. the first reduced fractions of these two slopes are equal. For the time
being, we have not investigated such tracks.

2.4 Accuracy Problems

A straightforward implementation using floating-point arithmetic faces difficul-
ties due to inaccuracy. Typically, the program will loop at some hull vertices:
solving a second degree equation is not so trivial!. . .

Basically, we need to solve quadratic equations E(t) = 0, with integral coef-
ficients, in such a way that if a root is an integer, we must compute it exactly,
but otherwise, it is enough to know that it belongs to some interval]z, z + 1[
with z ∈ Z. This is easily done.

Integers on 32 bits may be not sufficient: a BigInteger library should be used
to prevent overflows (provoked, among other things, by the repeated application
of unimodular transformations). The bad news is that basic operations no longer
take constant time. The good news is that an integer arithmetic is sufficient: no
(very time consuming) quadratic arithmetic (providing the exact square root to-
gether with the usual exact operations +, −, ×, /, and comparisons) is required.

2.5 Number of Vertices

Our method is O(k log n), the brute force one O(n) : clearly our method is of
interest only if k log n < n ⇔ k < n

log n . Thus the question arises to bound k in
function of n.

We are still working on this subject. This section only gives measures of k for
quarter circles with variable radius r. Figure 12 shows a log-log diagram with k
in ordinate and r in abscissa. Circles have equation: x2 + y2 ≤ r2. Tested radii
are: r = 2, 4, 8 . . . 214. The arc is limited by: x ≥ 0, y ≥ 0. For r large enough, say
r ≥ 128, points (r, k(r)) are roughly aligned, so that k ≈ 0.86r0.669. Of course,
it is an empirical statement, not a theorem.

Asymptotically, O(n0.669) is smaller than O(n
log n), so for large enough radius

values, our walking method will perform faster than the brute force one.

2.6 Extension to other Curves

As a matter of fact, our solution applies to any convex curve arc, provided
a method to compute the intersection points between the arc and any ray
(x(t), y(t)) is available. In the case of an algebraic curve of degree d with in-
tegral coefficients, computing such an intersection reduces to finding the roots
of a polynomial in t with degree d. As is already the case for quadrics, it suffices
to know when roots are integral, and otherwise to detect an isolating interval
not containing integers.

Convex Hull of Grid Points below a Line or a Convex Curve 373

Fig. 12. This diagram shows the number k of vertices in upper hulls of grid
points below quarter circles with various radii r = 2, 4, 8, 16 . . . 16384. Scales are
logarithmic.

The difficulty is rather in characterizing arcs. A possibility is to partition
the curve into arcs with Collins’s cylindric algebraic decomposition algorithm.
However, the preprocessing step is no longer constant, as it depends on the
algebraic degree of the curve.

We have not investigated quadrics with algebraic but not integral coefficients;
however, such quadrics are subsets of algebraic curves with integral coefficients
and higher degrees, that elimination methods (e.g.resultants or Gröbner bases)
enable to compute; for instance, the line with equation x−√2y = 0 is a subset of
x2−2y2 = 0, a quadric with only integral coefficients; thus its upper convex hull
boundaries may be computed with our method for quadrics, using only integer
arithmetic; they can also be computed with the method for line segments, but
some arithmetic in the quadratic field Q[

√
2] is required. We won’t go into such

subtleties, due to lack of space.

3 Conclusion

This paper has presented methods for computing upper convex hulls of grid
points below a segment or an arc. We are currently investigating the possibility
of improving these methods, by exploiting geometric properties of such hulls, like
the presence of periodic patterns (i.e. automorphisms). This question is related
to Number Theory, especially to quadratic number fields, their units and the
Pell-Fermat equation.

Acknowledgements

The authors wish to thank Jean-Michel Muller and Vincent Lefèvre, from LIP,
ENS Lyon, for having mentioned such problems to them. They also wish to thank
an anonymous referee for suggestions that helped improve the original version.

374 Hélymar Balza-Gomez, Jean-Michel Moreau, and Dominique Michelucci

References

GKP89. R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: a Fon-
dation for Computer Science. Addison-Wesley Publishing Company, 1989.

KNA94. N. Kanamaru, T. Nishizeki, and T. Asano. Efficient Enumeration of Grid
Points in a Convex Polygon and its Application to Integer Programming.
International Journal of Computational Geometry and Applications, 4(1):69–
85, 1994.

PS85. F.P. Preparata and M.I. Shamos. Computational Geometry – An Introduction.
Springer-Verlag, New York, N.Y., 1985.

RY95. J-P Reveillès and G. Yaacoub. A Sublinear 3d Convex Hull Algorithm for
Lattices. In Actes du 5 ième colloque DGCI, Clermont-Ferrand, France, pages
219–230, 1995.

	Upper Hull of Grid Points below a Line Segment
	Constructing the Upper Hull Boundary

	Upper Convex Hull of Grid Points below a Convex Curve
	The Problem
	Constructing the Upper Hull Boundary
	Justification and Running Time
	Accuracy Problems
	Number of Vertices
	Extension to other Curves

	Conclusion

