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Abstract. Connectivity is a topological notion for sets, often introduced
by means of arcs. Classically, discrete geometry transposes to digital sets
this arcwise appoach. An alternative, and non topological, axiomatics has
been proposed by Serra. It lies on the idea that the union of connected
components that intersect is still connected. Such an axiomatics enlarges
the range of possible connections, and includes clusters of particles.
The main output of this approach concerns filters. Very powerful new
ones have been designed (levelings), and more classical ones have been
provided with new properties (openings, strong alternated filters)
The paper presents an overview of set connection and illustrates it by fil-
terings on gray tone images. It is emphazised that all notions introduced
here apply equally to both discrete and continuous spaces.

1 The connectivity concepts

1.1 Classical connectivity and image analysis

In mathematics, the concept of connectivity is formalized in the framework of
topological spaces and is introduced in two different ways. First, a set is said to be
connected when one cannot partition it into two non empty closed (or open) sets.
This definition makes precise the intuitive idea that [0, 1] ∪ [2, 3] consists of two
pieces, while [0, 1] consists of only one. But this first approach, extremely general,
does not derive any advantage from the possible regularity of some spaces, such
as the Euclidean ones. In such cases, the notion of arcwise connectivity turns
out to be more convenient. According to it, a set A is connected when, for
every a, b ∈ A, there exists a continuous mapping ψ from [0, 1] into A such that
ψ(0) = a and ψ(1) = b. Arcwise connectivity is more restrictive than the general
one ; however, in Rd, any open set which is connected in the general sense is also
arcwise connected.

A basic result governs the meaning of connectivity ; namely, the union of
connected sets whose intersection is not empty is still connected :

{Ai connected} and {∩Ai 6= Ø} ⇒ {∪Ai connected} (1)

In discrete geometry, the digital connectivities transpose the arcwise corre-
sponding notion of the Euclidean case, by introducing some elementary arcs
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between neighboring pixels. This results in the classical 4- and 8-square connec-
tivities, as well as the hexagonal one, or the cuboctahedric one in 3-D space.
Is such a metric approach to connectivity adapted to image analysis ? We can
argue that

a/ Certain arcwise connections seem smowhat shaky, e.g. when they do not
treat equally a set and its complement;

b/ In discrete motion analysis, the trajectories of fast moving objects of-
ten appear as dotted tubes, and arcwise connections are unable to handle such
situations;

c/ more deeply, one can wonder what is actually needed in image processing.
As a matter of fact, when we examine the requirements for connectivity, we
observe that the basic operation they involve consists, given a set A and a point
x ∈ A, in extracting the particle of A at point x. For such a goal, an arcwise
approach is obviously sufficent. But is it necessary?

1.2 The notion of a connection

These criticisms led G. Matheron and J. Serra to propose a new approach, in
1988 [ SER88] where they take not (1) as a consequence, but as a starting point.
However, their definition is rather general and stated as follows.

Definition 1. (G. Matheron and J. Serra) Let E be an arbitrary space. We call
connected class or connection C any family in P(E) such that

(i) Ø ∈ C and for all x ∈ E, {x} ∈ C
(ii) for each family {Ci} in C, ∩ Ci 6= Ø implies ∪Ci ∈ C.

As we can see, the topological background has been deliberately thrown out.
The classical notions (e.g. connectivity based on digital or Euclidean arcs) are
indeed particular cases, but the emphasis is put on another aspect, that answers
the above criticism c/ in the following manner ([ SER88], Chap. 2) :

Theorem 2. The datum of a connection C on P(E) is equivalent to the family
{γx , x ∈ E} of openings such that

(iii) for all x ∈ E, we have γx(x) = {x}
(iv) for all A ⊆ E, x, y ∈ E, γx(A) and γy(A) are equal or disjoint
(v) for all A ⊆ E, and all x ∈ E, we have x /∈ A ⇒ γx(A) = Ø.

An alternative, but equivalent, axiomatics has been proposed by Ch. Ronse
[RON98] ; it contains, as a particular case, another one by R.M. Haralick and
L.G. Shapiro [ HAR92] ; however, both approaches are still set-oriented. The ex-
tension from sets to the general framework of complete lattices and in particular
to numerical functions has been proposed by J. Serra [ SER98a]

Historically speaking, the number of applications or of theoretical develop-
ments which was suggested (and permitted) by this theorem is considerable (see,
among others[MAR94][MEY94][SAL96]). It has opened the way to an object-
oriented approach for segmentation, compression and understanding of still and
moving images.
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2 Examples of connections on P(E)

Several instructive examples of connections on P(E) can be found in [ HEI97],
in [RON98] and in [ SER98a]. Here we just recall a few of them, which are of
interest for the present study.

i/ All arcwise connectivities on digital spaces are connections in the sense of
definition 1;

ii/ In [ SER88] ch.2, J. Serra provides E with a first connection C and con-
siders an extensive dilation δ : P(E) → P(E) that preserves C (i.e. δ (C) ⊆ C).
Then the inverse image C′ = δ−1 (C) of C under δ defines a new connection on
P(E), which is richer. The C -components of δ (A) , A ∈ P(E), are exactly the
images δ (Y ′

i ) of the C′-components of A. If γx stands for the connected opening
associated with connection C and νx for that associated with C′, we have

νx (A) = γxδ (A) ∩A when x ∈ A ; νx (A) = Ø when not (2)

(similar technique applies also when stands for an opening, but wihout the
statement on the connected components, and without Eq.2 [SER98b])

In practice, the openings νx characterize the clusters of objects from a given
distance d apart. Figure 1 illustrates this point by ”reconnecting” dotted lines
trajectories. But a contrario, such an approach can also provide a means to
extract the objects which are isolated.They will be defined by the fact that for
them νx (A) = γx (A), an equality which yields easy implementation [SER98b].

iii/ In [RON98], Ch. Ronse starts also from a first connection on P(E),
and proposes, as a new connection, the class generated by the points and the
connected sets opened by a given structuring element B. If x ∈ X ◦ B, then
γx (X) is the initial connected component of X ◦B containing x, and when point
x ∈ X\X ◦ B , then γx (X) = {x}. For example, for such an ”open”connection
by a 3x3x square, the set of fig.2a has 16 particles: the two surrounded squares,
plus 14 isolated points. Also, the six points of the vertical gulf are isolated pores.

a) First image of a sequence b) Space Time display of the ball

Fig. 1. In a dilation based connection, the three clusters in grey are considered as
particles. They correspond to the slow motions.
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a) b) c)

Fig. 2. a) initial set A. For the ”open” connection by the 3x3 square, A is made of 16
grains, namely the two 3x3 squares plus 14 isolated points ; b) ϕMcγM (A) for M equal
to the six pores of the central gulf (surrounded); c) γM ϕMc(A) for the same marker.The
difference comes from that the ”open” connection is not adjacency preventing.

2.1 Connected Filters

For now on E is an arbitrary set, and P(E) is supposed to be equipped with con-
nection C. For every set A ∈ P(E), the two families of the connected components
of A (the ”grains”) and of Ac (the ”pores”) partition space E. Then, an oper-
ation ψ : P(E) → P(E) is said to be connected when the partition associated
with ψ(A) is coarser that that of A [ SER93]. Clearly, taking the complement
of a set, or removing some grains, or filling pores generate connected operators.
The major class of mappings we have in view is that of the (connected or not)
morphological filters. Let us briefly recall it

- A mapping ψ is said to be a morphological filter on P(E) when it
is increasing and idempotent:

A,B ⊆ E, A ⊆ B ⇒ ψ(A) ⊆ ψ(B) increasingness
ψ(ψ(A)) = ψ(A) idempotence

- In particular, a filter that is extensive (resp. anti-extensive) is
called a closing (resp. an opening) :

γ an opening : γ = a filter and γ(A) ⊆ A , A ⊆ E
ϕ a closing : ϕ = a filter and ϕ(A) ⊇ A , A ⊆ E

- A granulometry is a family {γd , d > 0} of decreasing openings
(i.e. d ≥ d′ ⇒ γd ⊆ γd′ ) and an anti-granulometry is a family {ϕd , d > 0} of
increasing closings, both depending on a positive parameter. Every granulometry
and every anti-granulometry satisfy the following law of a semi-group, where the
more severe operation imposes its conditions

p ≥ n ⇒ ψnψp = ψpψn = ψp. (3)

- The products ϕγ and γϕ of two arbitrary opening γ and closing
ϕ turn out to be idempotent. They are called alternated filters. Note that the
product γγ′ of two openings (or ϕϕ′ of two closings) is a priori not idempotent.
Denoting by Id the identity operator, we have the following equivalences[MAT88]

ψ = ϕγ ⇐⇒ ψ(Id ∩ ψ) and ψ = γϕ ⇐⇒ ψ(Id ∪ ψ) (4)
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- When a morphological filter ψ satisfies both conditions (4), which
provide it with robustness, i.e. when

A,B ⊆ E, ψ(A) ∩A ⊆ ψ(B) ⊆ ψ(A) ∪A ⇒ ψ(B) = ψ(A)

one says that ψ is strong. In particular, openings and closings are strong .

- The notion of Alternated Sequential Filters plays, with the alter-
nated filters, the same role as the granulometries do with γ and ϕ . Let {γi}
and {ϕi}, i ∈ Z+, be a granulometry and an antigranulometry. The composition
products

Pn = ϕnγn ... ϕiγi ... ϕ1γ1 and Σn = γn ϕn... γiϕi ... γ1ϕ1.

are idempotent and called Alternated Sequential Filters (A.S.F).They do not
satisfy implication (3) , but only the following absorption law

p ≥ n ⇒ ψpψn = ψp

2.2 Set opening by reconstruction and some derivatives

A comprehensive class of connected filters derives from the classical opening
by reconstruction. Its definition appears in [ SER88], ch.7.8. Significant studies
which use this notion may be found in literature, such as [ SER93] (connected
operators),[CRE97],(stable operators) [MEY94],(spanning trees), [ HEI97],(grain
oprators).

An opening by reconstruction is obtained by starting from an increasing
binary criterion τ (e.g. ”the area of A is ≥ 10”), to which one associates the
trivial opening

γτ (A) = A when A satisfies the criterion
γτ (A) = ∅ when not

The corresponding opening by reconstruction γ is then generated by applying
the criterion to all grains of A, independently of one another, and by taking the
union of the results :

γ(A) = ∪ {γτ γx(A), x ∈ E}
The closing by reconstruction ϕ (for the same criterion) is the dual of γ for

the complement, i.e. if – stands for the complement operator, then

ϕ = –γ– .

For example, in R2, if we take for criterion τ, ” have an area ≥ 10”, then
γ(A) is given by the union of grains of A whose areas are ≥ 10, and ϕ(A) is
the union of A and all its pores whose areas are ≤ 10. Similarly, if criterion τ is
expressed by ”hit a fixed marker M”, then γ(A) is the union of the grains that
hit A, wheras ϕ(A) is composed of A and of all pores that miss M .

The operators by reconstruction satisfy number of nice properties. The three
following ones are typical examples of them.
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Fig. 3. An example of a pyramid of connected alternated sequential filters. Each
contour is preserved or suppressed, but never deformed : the initial partition increases
under the successive filters, which are strong and form a semi-group.

Proposition 3. [ SER93]Let γ be an opening by reconstruction, and ϕ be a
closing that does not create connected components, i.e. such that

x ∈ ϕ(A) =⇒ A ∩ γxϕ(A) 6= Ø (5)

Then the associted alternated filters are ordered, and we have γϕ ≥ ϕγ

Proof. Consider ϕγ(A), for A ⊆ E. Since the (extensive) closing ϕ does not
create new connected components, it can only enlarge those of γ(A); now γ acts
grain by grain, hence γϕγ = ϕγ. According to criterion 6.6 in [ MAT88c]this
equality is equivalent to γϕ ≥ ϕγ.

The most common closings may not satisfy condition (5). It is the case for
intersections of closings by segments, for example. However, if starting from
an arbitrary closing ϕ, we restrict ϕ(A) to its grains that contain at least one
point x ∈ A, the resulting operation is still a closing. It is the reason for which
condition (5) is always assumed implicity in practice.

Corollary 4. Let {γi} be a granulometry by reconstruction, and {ϕi} be a anti-
granulometry that does not create connected components, then the A.S.F. Σn =
γn ϕn... γiϕi ... γ1ϕ1 satisfy the semi-group relation (3)

(easy proof ). This corollary explains, partly at least, why the A.S.F. by re-
construction are so often involved in pyramids, for coding, segmentation, or
indexation purposes. In such pyramids, the additional information to get finer
levels is concentrated in subdivisions the flat zones [MEY94]. An example of such
a behaviour is presented in Fig.3. Each cross section of the gray tone image has
processed by an alternating sequential filter by reconstruction. The underlying
binary criterion was here associated with the size of the disc inscribable in each
grain.

Another point of interest is the following. The infimum of openings is gen-
erally not idempotent. But consider a family {γi, i ∈ I} of openings by recon-
struction associated with criteria {τi}. Clearly, their infimum γ = ∩γi is still an
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opening, where each grain of A must fullfill all criteria τi to be retained. On the
other hand, ∪γi is the opening by reconstruction where each grain must satisfy
one criterion τi at least. However, the largest opening is here the identity map-
ping, and not the largest increasing operator (i.e. A → E,∀A ∈ P(E)). Hence
we may state:

Proposition 5. In the lattice of the increasing operators from P(E) into itself,
the openings and the closings by reconstruction constitute two complete quasi
sub-lattices.

2.3 Adjacency

The central notion of adjacency[SER98b], which governs the structure of the
levelings below, is defined as follows

Definition 6. Let C be a connection on P(E), and let X,Y ∈ C. Sets X and Y
are said to be adjacent when X ∪Y is connected, whereas X and Y are disjoint.

Definition 7. Given a connected component A ∈ C and a set M ∈ P(E), one
says that A touches M, and one writes A ‖ M when either A ∩M 6= Ø, or the
grain of A ∪M which contains A is strictly larger than A. By duality, one says
that A lies in M when A does not touch Mc; one writes A j M.

The duality under complement provides the two following equivalences

A ‖ M ⇐⇒ A ” M c and A , M ⇐⇒ A j M c (6)

Note that relation A ‖ M (A touches M) is less demanding than A∩M 6= Ø
(A hits M), since it accepts in addition that A and M be adjacent. Similarly,
A j M (A lies in M), is more severe than A ⊆ M , since none of the grains of A
and of M must be adjacent to each other.

When γx(A) 6= γy(A) for an arbitrary A ∈ P(E) one cannot have γx(A) ‖
γy(A) since γx(A) is the largest element of C included in A. But γx(A) may not
touch some pores Yi of A and, nevertheless, touch their union ∪Yi For example,
for the ”open” connection iii/ of section 2, none of the six point pores of the
central gulf, in fig.2a, is adjacent to the set, whereas their union touches it.
The most powerfull coonections are those which prevent this perverse effect, i.e.
which fullfill the following condition

Condition 8 A connection C on P(E) is adjacency preventing when for all
x ∈ E and all sets A,M ∈ P(E)y ∈ M and γx(A) , [γy(A) ∪ γy(Ac)] =⇒
γx(A) , ∪{[γy(A) ∪ γy(Ac)]y ∈ M}

In particular, adjacency prevention governs the strenght of the filters by
reconstruction, as proved in proposition 9 and in theorem 12 .
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Proposition 9. Let C be a connection on P(E) such that if for all i ∈ I we
have A , Bi, then A , ∪Bi. If γ and ϕ stand for an opening and a closing by
reconstruction based on connection C , then both alternated filters γϕ and ϕγ are
strong.

Proof. We shall prove the proposition for ϕγ. Because of Eq.(4), we have only
to show that for all A ∈ P (E), if x ∈ E is an arbitrary point, then x /∈ ϕγ(A)
implies x /∈ B = ϕγ[A ∪ ϕγ(A)] . Suppose first that x /∈ A. Opening γ can only
enlarge pore γx(Ac), and closing ϕ keep it unchanged (if not, we would not have
x /∈ ϕγ(A)). Hence γx(Ac) is equal to γx[A∪ϕγ(A)]c, and finally x /∈ B. Suppose
now that x ∈ A. The grain γx(A) touches none of the grains and the pores of
A that compose ϕγ(A) (if not, γx(A) would belong to ϕγ(A), now x /∈ ϕγ(A)).
Then, according to the assumption of the proposition, γx(A) does not touch
ϕγ(A), neither [A ∪ ϕγ(A)]\ γx(A), hence γx(A) = γx[A ∪ ϕγ(A)] and finally
x /∈ B, which achieves the proof.

According to Equivalences (4), the proposition implies that ϕγ admits a
decomposition as γ′ϕ′, but for a γ′and a ϕ′ priori different from γ and ϕ. We
will now see under which condition these primitives can be the same.

2.4 Set Levelings

Levelings have been introduced by F. Meyer, in [ MEY98b], as gray tone con-
nected operators on digital spaces, for the usual digital arcwise connections based
on neighbor pixels in square or hexagonal grids. In [ MAT97], G. Matheron pro-
poses a generalization to an arbitrary space (hence, without a priori connec-
tion). Here, connection arrives as a final result, and is generated by an extensive
dilation. Now in both cases, levelings turn out to be flat operators, i.e. that
treat each grey level independently of the others. This circumstance suggests
to try and generalize F. Meyer’s approach by focusing on set levelings, but re-
interpreted in the framework of an arbitrary connection C. J. Serra entered this
way of thinking [SER98b], which allowed him to obtain theorem 12

Independently of these approaches, H.Heijmans has introduced and studied
the class of ”grain operators” in[ HEI97]. Levelings, in the sense of definition 10
below, are particular grain operators. However, the ”good” properties of these
grain operators appear when they derive from markers based openings and clos-
ings. So we will restrict ourselves to such criteria (for example, we will not accept
or reject a particle according to its area).

From now on, we denote by γM (A) the union of all grains of set A that touch
an arbitrary set M, called marker:

γM (A) = ∪ {γx(A) , x ∈ E , γx(A) ‖ M}
Similarly, the complement of closing ϕNc(A) is the union of those pores of A
that hit marker N c,

[ϕNc(A)]c = ∪ {γx(Ac) , x ∈ E , γx(Ac) ‖ N c} ; (7)
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hence

Ac ∩ ϕNc(A) = ∪{γx(Ac) , x ∈ E , γx(Ac) j N} (8)

is the union of those pores of A lying in marker N.

Definition 10. Let E be an arbitrary set, and C be a connection on P(E). Let
γM and ϕNc an opening and a closing, both by marker reconstruction, from P(E)
into itself. The leveling λ : P(E) → P(E), of primitives γM and ϕNc is then
defined by the relation

λ = γM ∪ (– ∩ ϕNc) = ϕNc ∩ (– ∪ γM ) (9)

where – stands for the complement operation on P(E).

When applied to set A, leveling λ yields the two equalities

A ∩ λ(A) = A ∩ γM (A)
Ac ∩ λ(A) = Ac ∩ ϕNc(A) (⇐⇒ A ∪ λ(A) = A ∪ ϕNc(A)) (10)

so that λ(A) acts inside A as opening γM , and inside Ac as closing ϕNc . System
(10) also relates to the activity lattice, where a mapping ψ on P(E) is said
to be less active than another, ψ′, when ψ′(A) modifies more points of A than
ψ(A) does, ∀A ∈ P(E), (ch.8 in [ SER88]). If Id stands for the identity operator,
the activity ordering is as follows

Id ∩ ψ ⊇ Id ∩ ψ′

Id ∪ ψ ⊆ Id ∪ ψ′

and one notes ψ � ψ′. A complete lattice is associated with this ordering, where
the supremum and the infimum of a family {ψi , i ∈ I} are given by

gψi = [– ∩ (∪ψi)] ∪ [∩ψi]
fψi = [Id ∩ (∪ψi)] ∪ [∩ψi] .

When applying this system to the family {γM , ϕNc} of the two leveling prim-
itives, we draw from (9) that

γ g ϕ = λ γ f ϕ = Id .

Conversly, the relation γgϕ = λ yields equation (9), hence may be considered
as an alternative definition for leveling.

An operation whose definition involves the complement – risks not to be
increasing. But in the present case, we will now see that the condition under
which λ is increasing makes it also a strong filter, which means much more.

Lemma 11. Let A,N ∈ P(E), and let Y be a pore of A. If Y lies in N , then
all grains of A which are adjacent to Y hit N . By duality, if a grain X of A
does not touch set N , then none of the pores of A adjacent to X is included in
N .
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Proof. Consider a pore Y of A, with Y j N , and a grain X of A adjacent to Y .
Since there exists a point x ∈ X that is adjacent to Y , and since Y , N c ( Eq
(6)), x belongs necessarily to N ; hence X ∩N 6= ∅.

Take now a grain X of A that does not touch N , i.e. such that X j N c. We
draw from the first part of the proof that every pore Y of A that is adjacent to
X meets N c, hence is not included in N .

Theorem 12. Let C be an adjacency preventing connection on P(E). Given
M,N ⊆ E with N ⊆ M , the leveling λM,N : P(E) → P(E) of primitives γM

and ϕNc is a strong connected filter, and admits the double decomposition

λ = γM ϕNc = ϕNcγM .

Proof. We have to prove that the three following oprations are identical:
i/ to take the union of the pores of A lying in N and of the grains of A

touching M;
ii/ to take the union A’of the grains of A touching M, and to add it to the

pores of A’ that lie in N;
iii/ to add to A all its pores lying in N, and to extract from the result the

union of all grains touching M.
Indeed, when N ⊆ M , the lemma states that all grains of A adjacent to a

pore Y j N hit N , hence hit also M . On the other hand, a grain γx(A) of A which
is not adjacent to various grains X and pores Y of A, with Y j N , are neither
adjacent to the union of these X and Y (assumption of adjacency prevention),
so that the two processings i/ and iii/ are identical. The proof is achieved by
observing that i/ is a self-dual procedure, and that ii/ and iii/ are dual of each
other.

Remark that, when N ⊆ M , the supremum of the two logical conditions A ,
M and A j N c is the certainty. Then, according to proposition 8.5 in [ HEI97], we
find again the increasingness of λ.For extending levelings from sets to numerical
functions, we need to consider them as functions of their three arguments A, M
and N . Now, is the mapping λ(A,M,N) from [P (E)]3 into P (E) increasing ?

Corollary 13. The leveling λ : [P (E)]3 → P (E) is increasing if and only if
the two operands M and N are ordered by N ⊆ M

Proof. We draw from the theorem that, given M and N , with N ⊆ M,

A ⊆ A′ =⇒ λ(A,M,N) ⊆ λ(A′,M,N).

On the other hand, given A′, when M ⊆ M ′ and N ⊆ N ′ more grains of A′ are
touched and more pores of A′ are lying, hence

λ(A′,M,N) ⊆ λ(A′,M ′, N ′)

which achieves the proof (the only if part is given by the counter example of
fig.4a
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a) b)

Fig. 4. a)Non increasingness of λ when N * M . Take for A’ grain A plus its pore; then
A⊆ A′ whereas λ(A′) ⊆ λ(A). b) Take the internal pore of grain A as M and N, then
λ(A)equals the pore without the grain (flip-flop effect)

An interesting feature of levelings concerns their possible self-duality. Firstly,
we may consider the behaviour, under complement, of the triple mapping
(A,M,N) → λ(A,M,N). We have

[λ(Ac,M c, N c)]c = [γMc(Ac)]c ∩ [A ∩ [γN (A)]c]c = ϕMc(A) ∩ [Ac ∪ γN (A)] ,

hence [λ(Ac,M c, N c)]c = γN (A) ∪ [Ac ∩ ϕMc(A)] = λ(A,N,M)

Therefore self-duality of λ(A,M,N) is reached when and only when the two
markers N and M are identical (a result that can also be drawn from proposition
8.3 in [ HEI97]). Since, in addition, condition M ≡ N implies the inreasingness
of λ, we may state

Proposition 14. The leveling (A,M,M) → λ(A,M,M) is an increasing self-
dual mapping from P(E) × P(E) into P(E).

In this approach, we implicitely supposed that the data of A and of M are
independent. In practice, it often occurs that marker M derives from a previous
tranformation of A itself, M = µ(A), say. Then the proposition shows that the
leveling λ : P(E) → P(E) , with λ = λ (A,µ(A), µ(A)) is self-dual if and only if
mapping µ itself is already self-dual.

We conclude this section by exhibiting two examples showing how necessary
are some assumptions above. Take for A a single grain with an internal pore,
and for M ≡ N the set made by the pore of A in fig.4b. Suppose we replace, in
definition 10, the condition γx(A) ‖ M by γx(A) ∩M = Ø, and γx(Ac) j N by
γx(Ac) ⊆ N Clearly, we have

ϕMc(A) = A ∪M =⇒ γMϕMc(A) = A ∪M,
but γM (A) = Ø =⇒ ϕMcγM (A) = Ø
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whereas λ(A) = M is neither γMϕMc(A) nor ϕMcγM (A). Moreover, the
example shows that λ(A∩λ(A)) = Ø and that λ(A∪λ(A)) = A∪M ; this implies
that λ cannot be decomposed into the product of an opening by a closing or vice
versa (theorem 6-11, corollary 2 in[ MAT88c]). Notice also, finally, that in the
example of fig.4b the border between the grain and its internal pore is preserved,
but not the sense of variation. As a matter of fact, such a ”flip-flop” effect is due
to the case when M contains a pore of A, but misses the surrounding grain(s).
It cannot appear in the actual levelings of definition 10.

The second counter-example concerns adjacency prevention. Let us adopt
the ”open ” connection, and take for A the set fig.2a, and for marker M = N
the six point pores of the central gulf. Fig.2b and fig.2c show the two transforms
ϕMcγM (A) and γM ϕMc(A) which are obviously different : one cannot drop the
adjacency prevention, in theorem 12 !

2.5 Levelings as function of their markers

For the sake of simplicity, we shall take M = N through this section, although
self-duality is not really required here, and write λA(M) for λ(A,M,M).

Theorem 15. Let C be an adjacency preventing connection on P(E). Given
A ⊆ E with N ⊆ M , the mapping λA : P(E) → P(E) is a morphological filter
from P(E) into itself.

Proof. For A,M ∈ P(E), A given and M variable, λA(M) is the union of some
grains and some pores of A, in such a way that each accepted pore arrived in
λA(M) accompanied by the whole collection of its adjacent grains. So a grains
of γx(A) that does not participate to λA(M) does not touch any of the A-
connected elements (grains or pores) involved in λA(M); hence, by adjacency
prevention, γx(A) , λA(M). By duality, γx(Ac) ” M implies γx(Ac) ” λA(M), so
that λA[λA(M)] = λA(M).

The relevant formalism to go further is that of the activity ordering for sets
(and no longer for set mappings)[ MAT97]. As a matter of fact, any fixed set A
generates an ordering denoted by �A, from the two relationships

M1 ∩A ⊇ M2 ∩A
M1,M2 ⊆ E ⇔ M1 �A M2

M1 ∩Ac ⊆ M2 ∩Ac

From this ordering derives the so called A-activity lattice, where the supre-
mum and the infimum of a family {Mi, i ∈ I} of sets are given by

gAMi = [Ac ∩ (∪Mi)] ∪ [∩Mi]
fAMi = [A ∩ (∪Mi)] ∪ [∩Mi]

with A itself as the minimum element, and Ac as the maximum one (a system
very similar to that presented above about the activity lattice for operators). In
this framework, the following theorem holds[ MAT97][SER98b]
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Fig. 5. a) Manet’ Joueur de fifre b)and c) levelings of a) by extended extrema of
dynamics 30 (b) and 60 (c).

Theorem 16. Given set A, the leveling M → λA(M) from the A-activity lattice
of P(E) into itself are openings. Moreover, when the A-activity of A increases,
we have

λλA(M1)(M2) = λλA(M2)(M1) = λA(M2)
M1 �A M2 ⇒

λλA(M1)(M2) = λλA(M2)(M1) = λA(M2) .

This last granulometric type pyramid is specially usefull in practice, for it
allows to grade the activity effects of markers: it means that we can directly
implement a highly active marker, or, equivalently, reach it by intermediary
steps. An example is given in fig.5.

2.6 Function levelings

Let T be a discrete axis; denote by TE the lattice of all numerical functions
f : E −→ T . An increasing operator Ψ on TE is said to be flat if there exists an
increasing set operator ψ such that

X [Ψ(f), t] = ψ [X(f), t] (11)

where stands for the thresholding of function f at level t, i.e. :

X(f, t) = {x : x ∈ E, f(x) ≥ t} (12)

In the discrete cases of digital imagery, relation (11) is sufficient to charac-
terize the function operator Ψ associated with an increasing set operator ψ.

Definition 17. Let f, g, h, be three functions from E into T ,with g ≤ h.Then
the relation

X [Λ(f), t] = λ [X(f, t)] , X(g, t), X(h, t)]

defines one and only one leveling Λ(f) on TE .
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When connection C is obtained from the iterations of an elementary dilation
δ, of adjoint erosion ε, then a digital algorithm for Λ(f) from the data of f, g
and h derives from the decomposition theorem 12, by computing successively
the opening by reconstruction g∞(f) and then Λ(f) = h∞[g∞(f)]. The first
operation is thus given by the limit of the sequence

gn = (f ∧ δgn−1)
with g1 = (f ∧ δg)

and the second one by

hn = [g∞(f) ∨ εhn−1]
with h1 = [g∞(f) ∨ εh]

All theorems and propositions 11 to16 of the binary case extend directly to
numerical one. Concerning self-duality for example, if 0 and m stand for the two
extreme bounds of the gray axis T , we have

m− Λ(m− f,m− g,m− g) = Λ(f, g, g)

which means that the leveling f, g → Λ(f, g) is always a self-dual mapping.
In addition, when one takes for marker g a self-dual mapping (e.g. convolution,
median operator, etc..), then the leveling Λ, considered as a function of f only,
becomes in turn self-dual, and we have

m− g(m− f) = g(f) ⇒ m− Λ[m− f, g(m− f), g(m− f)] = Λ[f, g(f), g(f))]

In practice, the role of the marker is crucial. In fig.5, the marker is obtained by
replacing f by zero on the extended maxima and minima of f , and by leaving f
unchanged elsewhere (extended maxima of f : do the opening by reconstruction
γrec(f) of f from f − k, where k is a positive constant. Then the maxima of
γrec(f) define the so called extended maxima of f , and those points x where
f(x) − γrec(f)(x) = k define the (non extended) maxima of f of dynamics ¿ k
; the extended minima are obtained by duality).The corresponding levelings
are shown in fig.5a and 5b, for markers g30 and g60, of dynamics 30 and 60
respectively (over 256 gray levels).

These two markers are self-dual by construction, and satisfy the condition of
activity increasingness of theorem 16. Their progressive leveling action appears
clearly when confronting fig.5a and 5b. Notice the relatively correct preservation
of some fine details such as buttons, eyes, eyebrows, fingers, etc.. These details
are preserved because of their high dynamics.

In figure 6, the leveling is used for noise reduction, from a marker obtained
by Gaussian moving average of size 5, namely fig.6b, of the initial noisy image
fig.6a. It results in fig.6c where the noise reduction of fig.6b is preserved, but
where the initial sharpness of the edges is recovered.

A last word. There are two ways for developing a theory in discrete geometry.
One can start from some Euclidean notions and adapt them to discrete spaces,
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Fig. 6. a) noisy version, b) gaussian convolution of a, c) leveling of a) by marker b)

or elaborate the whole approach independently of the fact that it may apply to
a continous, or a discrete, or a finite, space E. It is this second that was chosen
here.

Acknowledgments : I would like to thank Dr. F. Meyer for all the dis-
cussions about levelings, and his valuable comments on the approach adopted
here.
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