Deterministic Expressions in C

Michael Norrish

Computer Laboratory
University of Cambridge™*
mn200@cl.cam.ac.uk

Abstract. Expressions in the programming language C have such an
under-specified semantics that one might expect them to be non-deter-
ministic. However, with the help of a mechanised formalisation, we have
shown that the semantics’ additional constraints actually result in a large
class of C expressions having only one possible behaviour.

1 Introduction

The semantics of the programming language C is specified in an ISO
standard [B]. However, this semantics is written in natural language, and
is thus unsuitable as the basis for formal work such as verification. Indeed,
there are a number of unresolved disputes about various details in this
standardl

However, our Cholera formalisation 4 is a completely formal se-
mantics for the bulk of the C language. It is formulated in a structural
operational style (see, for example, [4]) and is embedded in the HOL the-
orem prover [l]. On this basis, it is possible to prove facts about the
C language (modulo the degree of certainty with which one believes the
formalisation to be correct). For example, it is possible to derive vari-
ous “axiomatic” rules that allow one to reason about C programs with
Hoare-like triples, as described in [EJ].

The work described here considers the semantics of C expressions, and
in particular demonstrates that a significant class of these expressions are
deterministic. This is an important result in the context of verification
because it allows one to perform a verification with respect to just one
possible path of execution. Otherwise, if an expression can evaluate in n
different ways, then any verification of a program that contains it must
demonstrate that the final post-condition holds for all n possibilities, a
tedious task at best.

** Fax: +44 1223 334678
! See for example the Usenet newsgroup comp.std.c, where issues such as whether or
not function calls may interleave are debated.

S.D. Swierstra (Ed.): ESOP/ETAPS’99, LNCS 1576, pp. 147-E&l 1999.
© Springer-Verlag Berlin Heidelberg 1999

148 Michael Norrish

In addition to defining the semantics of C, our Cholera project aims
to put results like this determinism theorem to work: using them in the
verification of not entirely trivial programming examples. Such verifica-
tion examples will support the thesis that verification of programs in
complicated programming languages is possible, particularly if one has
mechanical support for the task. Moreover, the fact that proofs of this
nature are practical is an indication that even programming language
semantics can be satisfactorily mechanised.

The remainder of this paper will first describe the relevant parts of the
C semantics in section @ In sectionl we explain why what might initially
appear to be non-deterministic is in fact deterministic, and outline the
overall proof strategy. The proof is explained in more detail in sections [l
and @ and section H concludes.

2 The semantics of C expressions

Cholera models the semantics of C’s expressions with a reduction style
operational semantics using a relation —. such that (eg, 09) —e (€,0)
holds when an expression eg in state g can take a step, becoming a new
expression e, and with the state changing to state o. States o, g, o’ etc.
embody not just the usual mapping from variables to values, but also
information about the program environment, and pending side effects.
We use —7 to denote the reflexive and transitive closure of the single
step relation.

There are two principal sources of non-determinism in the semantics.
These are the rules for the evaluation of binary expressions and the way
in which side effects are applied. The following two rules illustrate the
first:

<617 UO> —e <6, U> <627 UO> —e <6, U>

(e1 ® ez, 00) — (e®e2,0) (e1 ® ez, 00) —¢ (€1 O e, 0)

Here ® stands for all of C’s arithmetic operators, but not for the
logical operators && and ||, nor the comma operator, nor the assign-
ment operators. The first rule says that if the first argument to a binary
operator can take a step in the semantics, then so too can the contain-
ing expression. The non-determinism enters because both rules apply at
all times, meaning that an expression is mot constrained to evaluate its
operands in any particular order, and may even interleave the evaluation
of its operands. In the presence of side effects and changes to the state,
this is potentially a significant source of non-determinism.

Deterministic Expressions in C 149

The second source of non-determinism in the semantics is its handling
of side effects. Side effects are generated by the evaluation of assignment
expressions and the various increment and decrement operators (++ and
--). These operators have as their side effects the writing of values into
memory, but this does not necessarily happen immediately. Instead, side
effects are applied at arbitrary times and in any order, subject only to the
constraint that all pending side effects be applied before the next sequence
point. Sequence points occur at certain well-marked stages in expression
evaluation, such as after the complete evaluation of the first argument to
the logical operators && and | |. The rule for side effect application is:

7 is pending in o
(e,0) —e (e, apply-se(o,n))

where apply_se(o,n) denotes the state resulting from the application
of side effect 7 to state o, with the appropriate changes made (memory
updated, and 1 removed from the pending side effects).

2.1 Constraints on expression evaluation

The above description of expression evaluation suggests a chaotic picture.
A naive interpretation would suggest that the evaluation of

V + v+t + vV + vt

with v initally 3, could yield any value in the range 12-17. However,
the language definition imposes severe constraints on the way in which
expressions can evaluate, and in fact, this expression is undefined.

The constraint is that “between the previous and next sequence point
an object shall have its stored value modified at most once by the eval-
uation of an expression. Furthermore, the prior value shall be accessed
only to determine the value to be stored.” [, §6.3] (For our purposes, an
object is best understood as simply a part of memory.) Violation of this
constraint results in undefinedness.

It is worth noting that this is a constraint on the dynamic behaviour
of the program. Though the expression given above involving v will nec-
essarily be undefined because it both refers to and updates the object
denoted by v, it is not clear whether or not this is true of *p + (i =
1), say, as it is impossible in general to determine whether or not *p (a
dereferencing of pointer variable p) will refer to i. Finally, note that the
second sentence quoted above allows references to take place if they occur
on the right-hand of an assignment expression and the references are to

150 Michael Norrish

the object being modified by the assignment. For example, this clause
allowsi = 1 + 1.

A formal semantics of C must model this constraint as well as the
more obvious rules given earlier. To do this, Cholera keeps track of three
state components:

— the pending side effects
— those parts of memory which have been updated (the “update map”)
— those parts of memory which have been referred to (the “ref map”)

The pending side effects component is a multi-set, or bag, as the same
side effect might occur twice in a given evaluation. The update map is a
set of addresses, as no evaluation will be allowed to update the same
location twice. The ref map is another bag, as multiple references to the
same location can legitimately occur. As we shall see, we need to know
how many references were made to a particular location, not just whether
or not something has been referred to.

There are four different ways in which these components can change
in the evaluation of an expression.

— When a non-array lvalue becomes a value, the ref map is increased to
reflect the reference of the object denoted by the Ivalue B If the part of
memory referred to is in the update map, this causes undefinedness.

— When a side effect is applied, it is removed from the pending side
effects bag, and the update map is increased, recording the fact that
part of memory has just been changed. If that part of memory has
already been updated or referred to, this causes undefinedness.

— When an assignment completes its evaluation, a side effect to update
the appropriate part of memory with a new value is added to the pend-
ing side effects bag. Assignment expressions keep track of references
made on their right hand sides, and those that were to the object to
be updated are removed from the ref map. Failure to do this would
cause the side effect created as a result of evaluating i = 1 + 1 to
clash with the reference to i on the expression’s RHS.

Because the ref map records a count of the number of times a piece
of memory has been referred to, this deletion of references may still
leave references recorded. Using only a set for ref map would allow

i+ (d=1+1)

2 Array lvalues become pointers to their first element; this transformation does not
require a reference to memory.

Deterministic Expressions in C 151

to avoid revealing its undefined nature. A possible evaluation would
have the i on the assignment’s RHS remove the record of a previous
reference to i on the LHS of the addition.

— When the pending side effects bag is empty, and a sequence point is
reached in an expression’s syntax, the ref map and update map are
“zero-ed”, thereby allowing a new sequence of reference and updates
in the next phase of execution. If a sequence point is reached, and the
bag of pending side effects is not empty, it will need to be emptied
before the next stage of the expression can be evaluated.

3 Intuition and proof outline

This may have already suggested that C’s expression semantics, though
superficially full of non-determinism, is actually so seriously constrained
that expressions can only evaluate in one way, whether this be to one
valid result, or to undefinedness. Here we suggest why this is the case,
and sketch the form of the proof that is to come.

Ignoring for the moment the fact that side effects are not necessar-
ily applied immediately nor in order, one can think of the various sub-
expressions of a greater expression as parallel processes running simulta-
neously and sharing memory. Clearly, the behaviour of these processes is
solely dependent on the parts of memory that they reference. But this
implies that the processes can’t affect each other: a change to a piece
of memory by one process that another references is forbidden by the
constraints spelled out in the previous section.

If a sub-expression can’t affect the parts of memory that another
depends on, and wice versa, then their evaluation must proceed entirely
deterministically. Conversely, if shared memory is updated illegally, then
undefinedness must result.

The fact that side effects are not applied immediately is also seen to be
irrelevant. All side effects will come to be applied eventually, as reaching
a sequence point requires this, and at the minimum, there is a sequence
point at the end of the evaluation of all expressions that appear within
statements. Though an update may come quite late, the constraints forbid
the updating of memory that has been referred to as much as they forbid
reference of updated memory.

Nonetheless, there is still a problem with the above intuition: it ignores
the effect of sequence points that appear within an expression. Consider
the following expression:

x + ((x=3), 4

152 Michael Norrish

Given what we have seen so far of the semantics, it would appear
that this expression should be genuinely non-deterministic. The comma
operator on the right is a sequence point, so if an evaluation were to
proceed by first evaluating x = 3, reaching the sequence point, clearing
the update map, and then proceeding with the rest of the expression, it
should go on to give a result of 7.

On the other hand, if the lone x on the left were to be evaluated first,
then the subsequent assignment expression (necessarily the next thing
to be evaluated) would cause undefinedness, because it would update an
object which had already been referenced.

In fact, a subtle argument about this case forces the conclusion that
the expression is necessarily undeﬁnedﬂ An official response by the Stan-
dards committee to a public query (a “Defect report”) [l, #117] makes it
clear that if it is possible for an expression to exhibit undefined behaviour
(there might be an order of evaluation that does this, for example), then
the whole expression ¢s undefined.

Cholera does model this requirement, but is forced to do so at the
level above the definition of —.. We add a rule to the effect that a given,
defined, reduction sequence is only part of the semantics if there doesn’t
exist any other sequence which makes the behaviour undefined. However,
this additional detail in the semantics is difficult to reason about, so we
choose to examine those expressions which are free of internal sequence
points. Unless otherwise stated, all results stated here will be for expres-
sions that are free of internal sequence points.

Our eventual determinism result for sequence point free expressions
then naturally holds of expressions where the only sequence points are
present at the top level (such as in x || (y && z)). This is because
such an expression has deterministic sub-expressions, and these must be
evaluated in the order dictated by the presence of the sequence points,
giving an overall behaviour which must also be deterministic.

3.1 Proof outline

We should like to demonstrate determinism by showing a diamond prop-
erty for all of the possible reductions that an expression might undergo.
Graphically, this amounts to showing that in all situations we can find
reductions to fill in the dashed lines below:

3 My thanks to Mark Brader for explaining this to me.

Deterministic Expressions in C 153

€0, 00

€1,01 €2,02

o
e,o

It follows that if this can be shown for single steps of a reduction
relation, then that reduction system must be confluent. Unfortunately,
this property does mot hold in general for C. In particular, reductions
that involve undefined behaviour tend to invalidate further reductions,
and if the reduction to (ej,01), say, caused undefined behaviour then
there is no guarantee that a reduction analogous to the one taken to get
to (ea, o9) should be possible.

Therefore, the first step in attacking the proof is to divide it into two
parts. First we demonstrate confluence for evaluations which terminate
normally, i.e., those which yield a value and which apply all of the side
effects generated in the course of the expression evaluation. Then we show
that if an evaluation sequence exists which leads to undefined behaviour,
this undefinedness can not be escaped, and that all states reachable from
the initial one must necessarily either be undefined themselves, or still
admit the possibility of becoming undefined in one or more steps.

This second result makes it clear that a normal terminating evaluation
and an undefined one can not both begin from the same initial state. We
reason as follows: assume that such a situation exists. Then our second
result states that it is possible to reach undefinedness from the final state
of the normal evaluation. But if it is a final state, then it can not take
any more steps, and it is not in an undefined state itself because it has
yielded a proper value. Thus we have a contradiction and an assurance
to the effect that all evaluations are in fact deterministic.

4 Successful evaluations

Even with the above assumption that our reduction sequences do not
become undefined, the task of proving determinism for expression evalu-
ation is quite complicated. In particular, the system as described is made
difficult to reason about by the fact that side effect applications and
other forms of reduction can intermingle. The first stage of our proof is

154 Michael Norrish

to demonstrate that side effect applications can all be postponed to the
end of an evaluation sequence without affecting the result.

This should be clear from the constraints described earlier: if a side
effect application were to make a difference, a subsequent reference to
memory would need to look at some part of memory that the side effect
had changed; but this is precisely one of those situations forbidden (a
reference to updated memory) and would lead to undefinedness, contra-
dicting our earlier assumption.

The proof proceeds by first showing that side effect applications and
other reductions can commute.

Lemma 1. For all expressions eq, e1, for all states o, ogy, o1, and for all
side effects n, if n is pending in o, with oy = apply_se(o,n) (i.e., oq is
the state that results from applying n to o), and (eg, 00) —. (€,01) then
there exists a state o' such that {eg, o) —. {(e,d’), n is pending in o’ and

o1 = apply-se(o’,n).

This is a straightforward rule induction on the inductive definition of
—. Another induction readily extends this to allow side effect applica-
tions to be pushed past any number of other expression reduction steps.
Using this, we then induct on the number of reductions to prove our
“separation theorem”:

Theorem 1 (Separation). For all expressions e, e, and for all states
00, 0, if {ey,00) —% (e,0), then there erists a state o' and a sequence
of side effects ny . ..n, where both the update maps and memory contents
of oo and o’ are the same, and {ey,00) —= (e,0’) and o is the result of
applying the side effects ny ...n, to o’.

(Note that the final value e is present after the expression reduction
steps, and before the side effect applications begin. This is because these
later applications can not change the value that an expression yields.)

We now consider the —. relation as the union of two components:
reductions where no side effect applications occur, and reductions that
are exclusively side effect applications. Let us use — g for the former and
— 4 for the latter so that —.=— g U — 4. Confluence for both — g and
— 4, together with the separation theorem imply confluence for —. as
follows:

1. Consider two reduction sequences starting at (eg, o) that both com-
plete normally. One is to (e1, o1) and the other is to (eg, o2).

Deterministic Expressions in C 155

2. By the separation theorem, both reduction sequences can be separated
into two phases, with intermediate points (e, o}) and (es, o}), such
that (eg,00) —7 (e1,01) and (e1,01) —7% (e1,01) (similarly for ey
etc.)

3. Because e; and ey represent completed evaluations, they must be val-
ues. As — 4 only applies side effects, it doesn’t change expressions.
Thus the states reached by —7 must be terminal with respect to it.
Then if —fg is confluent, these intermediate states are actually the
same.

4. Now we have two reduction sequences involving —7% from the same
starting point. As — 4 is also confluent, the final states are necessarily
identical.

Given this result, we need only prove that —g and — 4 are confluent.

4.1 Confluence for — g

We establish confluence for —g by demonstrating a diamond property
for single steps of the relation.

Before beginning a proof such as this, it is instructive to consider
parallels with the similar task that one faces in attempting to prove con-
fluence for the A-calculus. There, things are somewhat complicated by the
fact that a reduction in the RHS of a f-redex may have to be matched
by many repetitions of essentially the same reduction in an alternative
branch where the RHS has been substituted into the body of the LHS.
This doesn’t happen in the Cholera semantics, where substitution doesn’t
arise.

However, the A-calculus is at least entirely syntax-directed; if a redex
is present, then the reduction can always take place, and its result will
always be the same. Reductions in the A-calculus can be said to ignore
their context. This is not the case in Cholera where the accompanying
state, an ever-present and varying context, can affect reductions. This
is not just a matter of different values for variables affecting the value
of an expression, but more significant: a state with a large update map
may make a reduction that would otherwise turn a variable into a value
instead produce undefinedness.

With this motivation behind us, the first stage in our proof will be
to characterise the degree to which states can vary and yet still produce
the same reduction for a given piece of syntax. Furthermore, because

156 Michael Norrish

expression reductions affect the statel, we want to characterise the way
in which this happens, so that, ultimately, we will be able to state that
reduction z can reduce in the same way both before and after reduction

Y.

Theorem 2 (Reduction characterisation). If (eg, 09) — g (e, 0) then
there exists a function f characterising the reduction, such that f(og) = o,
and for all o, which are “no more restrictive” than oy, then (e, 0}) — &

(e, f(00))-

The meaning of “no more restrictive” above turns out to be rather
detailed in its expression, really suitable only for the consumption of a
theorem prover. In essence it requires that the update map be no bigger in
o than it is in og, but there are also are a number of conditions required
of both the initial states and the expressions involved. One of these is
that ey be well-typed. Another is that e not be undefined; computations
that do allow e to become undefined are discussed in section [l

We also have the following important lemma, which like the previous
is established by induction over the reduction relation.

Lemma 2 (Reduction preconditions preserved). If (ep,00) —F
(e,0), then o is no more restrictive than oq in the sense of theorem B.

Now we can prove the diamond property for — g relatively straight-
forwardly. Again an induction is required over the reduction relation. The
inductive or “sub-expression” cases, where we have two reductions within
the same sub-expression, are handled by the inductive hypotheses, so it is
just the cases where an expression form admits two reductions in different
sub-expressions which prove difficult. This includes both the normal bi-
nary operators, and also assignment, which needs to be treated separately
because unlike the other operators, it adds a side effect to those pending.

In such a situation, our reduction characterisation and reduction pre-
conditions results tell us immediately that a “diamond” of four sides can
be constructed. If the functions required to exist by the first result are f
and g, then the diagram looks like:

4 Though — & holds update maps and thus memory constant, we will still get new side
effects being added to the queue of those pending, and as objects are referred to,
ref maps also increase.

Deterministic Expressions in C 157

€0, 00

e1y f(oo) e3,9(o0)

e, (g0 f)(00) = e, (f 0 g)(o0)

The question then remains as to whether or not f and g will commute.
They do in fact, as each does little more than specify the additions to the
starting state’s ref map and pending side effects. Addition on bags being
commutative, the result follows.

4.2 Confluence for — 4

The second requirement of the proof of is to show that the — 4 relation
is confluent. We show this by demonstrating a diamond property. This is
a considerably simpler task than for —g.

Recall that we are performing reductions in a context where all of the
side effects can be applied successfully, resulting in normal termination
with a value. This implies that no pair of pending side effects affect over-
lapping parts of memory. We show this by contradiction. One of the side
effects must have been applied first. Subsequent to this application, the
other side effect can not have been applied because this would result in
undefined behaviour (two updates of the same part of memory). But if
the second side effect is not applied, then the final state must still have
side effects pending, which also contradicts our assumption, because a
normal termination is a sequence point, by which state all side effects
must have been applied.

So, all of the side effects affect different parts of memory, and can
therefore be applied independently of one another. The required diamond
property is an immediate consequence of this.

5 Undefined evaluations

We begin by defining state safety. A state is safe if none of its pending
side effects conflict neither with each other (i.e., do not affect overlapping
parts of memory), nor with the state’s ref map and update_map. It should
be clear that a state which is safe can apply all of its side effects without
becoming undefined. The converse is the basis of our first lemma in this
section.

158 Michael Norrish

Lemma 3 (Finite and unsafe states can become undefined). If a
state og is both unsafe and has a finite bag of pending side effects, then for
all ey there exists a reduction sequence such that (e, 00) —% (U), where
U represents undefinedness.

Also, for all ey, e, og and o, if og is unsafe, and {(eg, 00) — (€,0),
then o is also unsafe.

Cholera represents undefinedness arising as a result of expression eval-
uation (e.g., division by zero, or a reference to a variable already updated)
by replacing the offending expression with ¢/ in the syntax tree and then
letting this “bubble” its way to the top of the tree. This can not be
prevented.

Lemma 4 (Undefined sub-expressions can always ascend). If an
expression ey contains U as a sub-expression, then for all og there exists

a reduction sequence such that {eg, o) —= (U).

Also, for all eg, e, o9 and o, if eg has an undefined sub-expression,
and (eg, 00) —. {€,0), then e must also have an undefined sub-expression
(where e itself may be that undefined sub-expression,).

These two results (neither of which is particularly surprising) make it
clear that a large class of expression-state pairs, those which are unsafe
or which have undefined subexpressions, though not necessarily “fully
undefined”, might as well be. We shall refer to such states as effectively
undefined. Though a state’s being effectively undefined may not seem
such a strong claim initially, the condition preservation clauses of the
lemmas above should make it clear that an effectively undefined state is
one which can never yield a value. In conjunction with the fact that all se-
quence point free expressions must terminatel, we can see that effectively
undefined means “will necessarily become undefined”.

Our next theorem is more significant. We wish to show that if a re-
duction occurs which makes something effectively undefined, when it was
not effectively undefined before, then if one takes a different step from
the same initial state, the result will either be effectively undefined, or
it will retain the ability to make a reduction to an effectively undefined
state. This can be represented as a “broken” diamond:

5 Sequence point free expressions do not include function applications.

Deterministic Expressions in C 159
€0, 00

J_ 617 Ul

>

L

Another analogy is that of the cliff-edge. Over the edge lies effective
undefinedness. Once one reaches the edge, one can walk along it, but while
it may be possible to avoid falling over the edge for some indeterminate
length of time, it is not possible to move away. The proof proceeds in a
similar way to that of the proof of the confluence of —p.

While the inductive cases are straightforward, we need to cope with
the fact that the reduction from (eg, o) to (e1, o1) might involve a reduc-
tion in a sub-expression unrelated to that which produced the undefined-
ness. Inside (e1, 1) we want to have a reduction occur that is analogous to
the one that produced undefinedness from (eg, 0¢). We do this by again
establishing a reduction characterisation result, and by demonstrating
that reductions preserve this.

In this case, the characterisation is essentially that an analogous re-
duction to undefinedness can occur in any state that is at least as restric-
tive as the original. This condition is preserved both by —g and — 4.

We then do an induction of the number of steps along the cliff’s edge
to produce:

Theorem 3 (The cliff’s edge). For all ey, o9, if (ey,00) —e (€1,01)
and (e1,01) is effectively undefined, then for all es and oo such that
(eg,00) —5 (ea,02), there exists € and o' such that {es,09) —. (¢/,0'),
and (¢’, o'} is effectively undefined.

We still need to add one more diamond property. This is a surprisingly
easy proof as it does not require an induction over the meaning relation.
Instead the characterisation functions and our lemma (l) that —p and
— 4 commute combine to give:

Theorem 4 (A diamond property for —g and —4). For all e,
€1, €2 00, 01, 02 if (€0, 00) —p (e1,01) and (eg,00) —a (e2,02) and
both (e1,01) and {(es,02) are not effectively undefined, then there exist e
and o (possibly effectively undefined), such that (e1,01) —a (e,0) and
(e9,09) —p (e,0).

The final proof is now possible. We wish to show that if a reduction
sequence takes an initial state ({eg, o)) to undefinedness, then all other

160 Michael Norrish

possible destinations from the same starting point retain this possibility.
In essence, we exploit the possibility of completing a confluent diamond
on the cliff-tops.

1. We have a reduction sequence from (eg,og) to undefinedness. Let
(e1,01) be the last state in this sequence not effectively undefined.

2. We have another reduction sequence to (es, 09), and by assumption
this is not effectively undefined.

3. Therefore, using all three of our diamond properties for —g and — 4,
we have a common possible destination for both (e1,01) and (es, 09).
Call this (e, o).

4. Having come along the cliff’s edge from (e, 01), (e, o) must still be
on the edge, thereby retaining the possibility of a reduction to an
effectively undefined state, if it is not an effectively undefined state
already.

5. Effectively undefined states all allow for a reduction sequence to “full”
undefined-ness, so (e, 02) must do so as well by virtue of being able
to reduce to (e, o).

6 Conclusion

The fact that we have ended with proofs of diamond properties for — g,
— 4 and — g vs. — 4 may suggest that the rather specialised proof strat-
egy used in section = might as well have been subsumed into an all-
encompassing proof of confluence for the whole meaning relation. In par-
ticular, it is easy to see with hindsight that demonstrating a diamond
property, where neither reduction is to an effectively undefined destina-
tion, would have been reasonably straightforward. Nonetheless, the only
theorem that becomes redundant in this alternative proof is the separa-
tion result (theorem M). All the other results given are necessary parts of
either proof.

It is extremely important that this work was built on the support
provided by mechanical theorem proving (HOL, in this case). It would
have been unimaginable without that support. The proof script for prov-
ing this result is almost 6000 lines of SML code (excluding comments).
This work is thus a demonstration of both the importance and utility of
mechanised theorem-proving. The mechanisation of the semantics ensures
that one can be sure of one’s results, and that no details have been over-
looked. In this work, the diamond proofs in question involved analysis of
many (approximately 200) different cases corresponding to a pair-wise ex-
amination of all the possible ways in which all possible expressions might

Deterministic Expressions in C 161

evolve. Such a proof done by hand would be inevitably subject to question
because of the high possibility of error. With HOL’s help, the possibility
of error has been eliminated.

This work is also valuable because it demonstrates an interesting result
about the programming language C. This in turn is a demonstration that
the practical formalisation of programming language semantics is not an
impossible dream. In [§], Ritchie says “the C standard did not attempt
to specify formally the language semantics, and so there can be dispute
over fine points”. In the formal setting provided by Cholera, fine points
are no longer the subject of dispute: not only does the language gain
an unambiguous specification, it is also possible to state the definition’s
consequences with certainty.

References

1. M. J. C. Gordon and T. Melham. Introduction to HOL: a theorem proving environ-
ment. Cambridge University Press, 1993.

2. Matthew Hennessy. The semantics of programming languages. John Wiley and
Sons, 1990.

3. Programming languages — C, 1990. ISO/IEC 9899:1990.

4. ISO committee JTC1/SC22/WG14. Record of responses. Available from
ftp://ftp.dmk.com/DMK/sc22wgld/rr/.

5. Michael Norrish. Derivation of verificiation rules for C from operational definitions.
In J. von Wright, J. Grundy, and J. Harrison, editors, Supplementary proceedings of
TPHOLs ’96, number 1 in TUCS General Publications, pages 69-75. Turku Centre
for Computer Science, August 1996.

6. Michael Norrish. An abstract dynamic semantics for C. Technical Report 421,
Computer Laboratory, University of Cambridge, May 1997.

7. Michael Norrish. C formalised in HOL. PhD thesis, Computer Laboratory, Univer-
sity of Cambridge, 1998. Submitted August, 1998.

8. D. M. Ritchie. The development of the C language. ACM SIGPLAN Notices,
28(3):201-208, March 1993.

	Introduction
	The semantics of C expressions
	Constraints on expression evaluation

	Intuition and proof outline
	Proof outline

	Successful evaluations
	Confluence for $rightarrow _E$
	Confluence for $rightarrow _A$

	Undefined evaluations
	Conclusion

