
Path Exploration Tool

Elsa L. Gunter and Doron Peled

Bell Laboratories

600 Mountain Ave.

Murray Hill, NJ 07974, USA

December 30, 1998

Abstract

While veri�cation methods are becoming more frequently integrated
into software development projects, software testing is still the main method
used to search for programming errors. Software testing approaches fo-
cus on methods for covering di�erent execution paths of a program, e.g.,
covering all the statements, or covering all the possible tests. Such cover-
age criteria are usually approximated using some add-hoc heuristics. We
present a tool for testing execution paths in sequential and concurrent
programs. The tool, path exploration tool (Pet), visualizes concurrent
code as
ow graphs, and allows the user to interactively select an (inter-
leaved) execution path. It then calculates and displays the condition to
execute such a path, and allows the user to easily modify the selection
in order to cover additional related paths. We describe the design and
architecture of this tool and suggest various extensions.

1 Introduction

Software testing techniques [4] are frequently used for debugging programs. Un-
like software veri�cation techniques, software testing is usually less systematic
and exhaustive. However, it is applicable even in cases where veri�cation fails
due to memory and time limitations. Many testing techniques are based on
criteria for covering execution paths. Conditions are sought for executing the
code from some point A to some point B, and the code is walked through or
simulated. Di�erent coverage criteria are given as a heuristic measure for the
quality of testing. One criterion, for example, advocates trying to cover all the
executable statements. Other criteria suggest covering all the logical tests, or all
the
ow of control from any setting of a variable to any of its possible uses [9].
Statistics about the e�ectiveness of di�erent coverage approaches used are kept.

W.R. Cleaveland (Ed.): TACAS/ETAPS’99, LNCS 1579, pp. 405-419, 1999.
Ó Springer-Verlag Berlin Heidelberg 1999

In this paper, we present a new testing approach and a corresponding test-
ing tool. The focus of the analysis is an execution path in a sequential code,
or on interleaved execution paths consisting of sequences of transitions from
di�erent concurrent processes. The system facilitates selecting such paths and
calculating the conditions under which they can be executed. It also assists in
generating variants of this path, such as allowing di�erent interleavings of the
path transitions.

The code of the checked programs is compiled into a collection of inter-
connecting
ow graphs. The system calculates the most general condition for
executing the path and performs formula simpli�cation. We present the tool's
architecture and demonstrate its use.

The system's architecture includes:

� An SML program that takes processes, written using Pascal-like syntax,
and produces their corresponding
ow graphs.

� A DOT program that is used to help obtain an optimal display of the
ow
graphs, representing the di�erent processes.

� A TCL/TK graphical interface that allows selecting and manipulating
paths.

� An SML program that calculates path conditions and simpli�es them.

� An HOL decision procedure that is used to further simplify the path con-
ditions by applying a Presburger arithmetic decision procedure.

2 System Architecture

Research in formal methods focuses mainly on issues such as algorithms, logics,
and proof systems. Such methods are often judged according to their expres-
siveness and complexity. However, experience shows that the main obstacles
in practically applying such technology into practice are more mundane: it is
often the case that new proof techniques or decision procedures are rejected
because the potential users are reluctant to learn some new syntax, or perform
the required modeling process.

One approach to avoiding the need for modeling systems starts at the no-
tation side. It provides design tools that are based on a simple notation such
as graphs, automata theory (e.g., [8]), or message sequence charts [1]. The
system is then re�ned, starting with some simplistic basic design. Such tools
usually provide several gadgets that allow the system designer to perform vari-
ous automatic or human assisted checks. There is some support for checking or
guaranteeing the correctness of some steps in the re�nement of systems. Some
design tools even support automatic code generation. This approach prevents
the need for modeling, by starting the design with some abstract model, and

406 Elsa L. Gunter and Doron Peled

begin

y1:=x;

y2:=1;

while y1<=100 or y2=/=1 do

begin

if y1<=100 then

begin

y1:=y1+11;

y2:=y2+1

end

else

begin

y1:=y1-10;

y2:=y2-1

end

end;

z:=y1-10

end.

Figure 1: Floyd's 101 program

re�ning it into a full system. Using standard notation, such as message se-
quence charts [3], conforms with the usual start of the design. On the other
hand, automatic code generation is still add hoc, and it is not expected that the
code generated would be e�cient or elegant (although it is, by de�nition, well
documented).

Our approach for testing is quite the complement to the above. After the
software (or parts of it) is designed and coded, one checks its behavior under
various conditions, or in various environments. One of the motivations of the
Pet tool is to avoid the need for modeling, and allow the testing to be performed
using a notation that is natural for the user. The tool automatically translates
the code of the program to be checked into one of the earliest and most useful
notations for software, namely that of
ow graphs. The program is written
as one or more processes in a syntax similar to Pascal. Figure 1 includes the
code for Floyd's 101 program, as accepted by our tool. We use the combination
= = = as inequality.

The graphical interface includes a window for each process, displaying the
original text, and a compatible window displaying the corresponding
ow graph.
The
ow graph is a directed graph, with some edges carrying labels. Each node
in a graph is one of the following: begin, end, test, wait, assign. The begin

and end nodes appear as ovals, the test and wait nodes appear as diamonds,
labeled by the test condition, and the assign nodes appear as boxes labeled by

407Path Exploration Tool

the assignment. There is no out edge from an end node, two out edges from a
test node, and one out edge from all other nodes. The two out edges from a
test node are labeled, one by \yes" and one by \no". The
ow graph that is
generated for the program in Figure 1 appears in Figure 2.

The focus objects of the tool are the execution paths. Path information
is displayed using two additional windows. One window displays the recently
selected execution path, and the other displays the most general condition to
execute the selected path. In order to maintain the connection between the code
and the model (the
ow graph), the di�erent windows are context sensitive:
pointing at a node (e.g., a test or an assignment box) in a
ow graph window
would highlight the corresponding code in the process source window.1. A
selected path in the 101 program appears in Figure 3. Each transition appears
within parentheses that correspond to its shape (and color) in the
ow graph.
Inside the parentheses there is a pair corresponding to the process name, and
the number of the transition (as appears in the
ow graph). If several processes
are involved, transitions of di�erent processes appear with di�erent amount of
indentation from the left margin. If the coursor points at a transition listed in
this window, the corresponding item in the
ow graph and the corresponding
text will be highlighted.

2.1 Path Operations

Software testing is based on inspecting paths. Therefore, it is of great im-
portance to allow convenient selection of execution paths. Di�erent coverage
techniques suggest criteria for the appropriate coverage of a program. Our tool
leaves the choice of paths to the user. (A future version, where various path
selection criteria will be used to automatically suggest the tested paths, is un-
der construction.) Once the source code is compiled into a
ow graph, or a
collection of
ow graphs, the user can choose the test path by clicking on the
appropriate constructs on the
ow graphs.

The selected path appears also in a separate window, where each line lists
the selected node, the process and the shape (the lines are also indented ac-
cording to the number of the process to which they belong). In order to make
the connection between the code, the
ow graph and the selected path clear,
sensitive highlighting is used. For example, when the cursor points at some node
in the path window, the corresponding node in the
ow graph is highlighted, as
is the corresponding text of the process.

Once a path is �xed, the condition to execute it is calculated. The tool allows
altering the path by removing nodes from the end, in reverse order, or appending
to it new nodes. This allows, for example, the selection of an alternative choice
for a condition, after the nodes that were chosen past that condition are removed.

1Our choice was, in the case of a test, to highlight the entire minimal programming con-

struct that is associated with it, such as an if-then-else statement or a while loop.

408 Elsa L. Gunter and Doron Peled

Figure 2: A
ow graph for the program in Figure 1

409Path Exploration Tool

(test6 : 0)

[test6 : 1]

[test6 : 2]

<test6 : 8>

<test6 : 7>

[test6 : 5]

[test6 : 6]

<test6 : 8>

[test6 : 9]

(test6 : 10)

Figure 3: A selected path in the 101 program

Another way to alter a path is to use the same transitions but allow a di�erent
interleaving of them. When dealing with concurrent programs, the way the
execution of transitions from di�erent nodes are interleaved is perhaps the most
important source of problems. The Pet tool allows the user to
ip the order of
adjacent transitions on the path, if they belong to di�erent processes. It is easy
to check that, by repeatedly
ipping the order in this way, one can obtain any
possible execution of the selected transitions.

2.2 Path Condition

The most important information that is provided by Pet is the condition to
execute a selected path. An important point to note is that an execution path
in a set of
ow graphs is really a sequences of edges, which when restricted to
each of the processes involved, forms a contiguous sequence. However, when
specifying an execution path, it seems most natural to give a selection of nodes
to be executed. For most nodes, there is a one-to-one correspondence between
the nodes in a
ow graph and their out edges. The subtle case is when a test
node is selected. Selecting such a node does not tell us how it executed, since the
condition may be either true or false. The execution of a test is determined by
whether its \yes" or \no" out edge was selected, which we can know by knowing
the successor node to the test in the same process. Thus, if a test node is the
last transition of some process in the selected path, it would not contribute to
the path condition, as the information about how it is executed is not given.

Let � = s1s2 : : : sn be a sequence of nodes. For each node si on the path, we
de�ne:

type(si) is the type of the transition in si. This can be one of the following:
begin, end, test, wait, assign.

proc(si) is the process to which si belongs.

410 Elsa L. Gunter and Doron Peled

cond(si) is the condition on si, in case that si is either a test or a wait node.

branch(si) is the label on a node si which is a test if it has a successor in the
path that belongs to the same process, and is \unde�ned" otherwise.

expr(si) is the expression assigned to some variable, in case that si is an assign

statement.

var(si) is the variable assigned, in case si is an assign statement.

p[v=e] is the predicate p where all the (free) occurrences of the variable v are
replaced by the expression e.

The following is the algorithm used to calculate the path condition. Notice
that it is calculated from the tail of the path to the head.

current pred := `true';
for i := n to 1 step -1 do

begin case type(si) do
test)

case branch(si) do
`yes')

current pred := current pred^cond(si)
`no')

current pred := current pred ^:cond(si)
`unde�ned')

current pred := current pred
end case

wait)

current pred := current pred^cond(si)
assign)

current pred := current pred [var(si)=expr(si)]
end case
simplify(current pred)

end

It is interesting to note that the meaning of the calculated path condition
is di�erent for sequential and concurrent programs. In a sequential program,
consisting of one process, the condition expresses all the possible assignments
that would ensure executing the selected path, starting from the �rst selected
node. When concurrency is allowed, the condition expresses the assignments
that would make the execution of the selected path possible. Thus, when con-
currency is present, the path condition does not guarantee that the selected
path is executed, as there might be alternatives paths with the same variable
assignments.

411Path Exploration Tool

1:a:=5

0:start

2:end

3:end

2:a=5 !

1:a:=2

0:start

Figure 4: Two simple concurrent processes

In Figure 4, an example of two simple processes that share the variable a is
given. The pascal code for the processes is as follows:

C1: C2:

begin begin

a:=5 a:=2

end wait a=5

end

Consider the following path:

(C1 : 0)

(C2 : 0)

[C2 : 1]

[C1 : 1]

<C2 : 2>

(C2 : 3)

(C1 : 2)

In this path, the `a := 5' of the �rst assignment is executed after the `a := 2'
and hence the wait condition can be passed, and the path can be completed.
This does not depend on the value of any variable. Thus, the path condition is
`true'. If we choose now to switch the third and the fourth lines, e.g., the two
assignments to the variable a, the path cannot be passed, independent of any
initial values of the variables. Thus, in this case the path condition is `false'.

412 Elsa L. Gunter and Doron Peled

Switching the order between a pair of adjacent transitions is done by moving the
mouse to the �rst transition in the pair and clicking a mouse button. The tool
does not allow (the unreasonable choice of) permuting transitions that belong
to the same process.

2.3 Formula Simpli�cation

The primary information object that is provided by the Pet tool is that of a
quanti�er free �rst order formula, describing the condition under which a path is
executed. In the prototype developed, we assume that the mathematical model
is that of arithmetic over the integers. As shown in the previous subsection, these
conditions are calculated symbolically, and can therefore be quite complicated to
understand. In most cases, the automatically generated expression is equivalent
to a much simpler expression.

Simplifying expressions is a hard task. For one thing, it is not clear that there
is a good measure in which one expression is simpler than the other. Another
reason is that in general, deciding the satis�ability or the validity of �rst order
formulas is undecidable. However, such limitations should not discard heuristic
attempts to simplify formulas, and for some smaller classes of formulas such
decision procedures do exist.

The approach for simplifying �rst order formulas is to try �rst applying
several simple term-rewriting rules in order to perform some common-sense
and general purpose simpli�cations. In addition, it is checked whether the
formula is of the special form of Presburger arithmetic, i.e., allowing addition,
multiplication by a constant, and comparison. If this is the case, one can use
some decision procedures to simplify the formula.

The simpli�cation that is performed includes the following rewriting:

� Boolean simpli�cation, e.g., ' ^ true is converted into ', and ' ^ false is
converted into false .

� Eliminating constant comparison, e.g., replacing 1 > 2 by false.

� Constant substitution. For example, in the formula (x = 5) ^ ', every
(free) occurrence of x in ' is replaced by 5.

� Arithmetic cancellation. For example, the expression (x+2)�3 is simpli-
�ed into x� 1, and x � 0 is replaced by 0. However, notice that (x=2) � 2
is not simpli�ed, as integer division is not the inverse of integer multipli-
cation.

In case the formula is in Presburger arithmetic, we can decide [7] if the
formula ' is unsatis�able, i.e., is constantly false, or if it is valid, i.e., constantly
true. The �rst case is done by deciding on :9x19x2 : : : 9xn ', and the second
case is done by deciding on 8x18x2 : : :8xn', where x1 : : : xn are the variables
that appear in '. If the formula is not of Presburger arithmetic, one can still

413Path Exploration Tool

try to decide whether each maximal Presburger subformula of it is equivalent
to true or false.

Another way of using the decision procedure for Presburger arithmetic is
to check whether there are variables that are not needed in the formula, and
can hence be discarded. For example, consider a Presburger arithmetic formula
'(x1; x2; : : : xn). We can check whether the formula depends on the variable
xn by checking

8x18x2 : : :8xn�18xn8xn
0'(x1; x2; : : : ; xn)$ '(x1; x2; : : : ; xn

0)

Then, if this formula is true, we can replace xn by 0 everywhere.

2.4 Implementation

The Pet system consists mainly of a graphical interface, and a program that
is responsible for compilation and calculation, as described in Figure 5. The
graphical interface is responsible for selection and update of execution paths.
It was implemented in TCL/TK. Compilation and calculations are done via
an SML program. The language SML was selected since it allows simple and
e�cient symbolic manipulations such as subformula substitution.

The SML program is running as a server process. It receives requests for
processing from the graphical interface. One such request is of the form

�le processname

and results in the compilation of the process to a
ow graph. Another type of
request is of the form

path processname:node : : : processname:node

with a (reversed) selected path. The SML program calculates the weakest (most
general) condition to execute the path, and returns it to the graphical interface
for display.

The SML program informs the graphical interface when compilation is done,
and also prepares several �les, which the graphical interface uses. These �les
are:

� A DOT �le, including the description of the
ow graph that corresponds
to the compiled process according to the DOT syntax (see Unix manual,
or [6]. This allows using the DOT program in order to draw the graph.

� An adjacency list, specifying for each node of the graph its immediate
successor. This information allows the graphical interface to control path
selection.

� A list of pointers to the beginning and end of the text that corresponds to
each graph item. This �le allows connecting the
ow graph with the text
windows, so that the text corresponding to the currently selected node is
highlighted.

414 Elsa L. Gunter and Doron Peled

for interface
files prepared

results

request

dot

file system

*.array

calculation

Graph

*.text, *.dot

calculated

files

Input

allocation

request

Graph

layout

and symbolic

drawing

TCL/TK
SML

Compilation

Graph

Graphical
Interface

calculation

Figure 5: General architechture of Pet system

The graphical interface makes use of the DOT program to draw
ow graphs.
The SML code prepares a DOT �le, which describes the nodes, arrows and text
of the
ow graph. The DOT program processes this �le and produces a layout
for a visual description of the graph. It produces another DOT �le, where the
graph objects are annotated with speci�c coordinates. The TCL/TK graphical
interface reads the latter �le and uses it to draw the graph.

The SML program is compiled under the HOL environment. This allows
using the Presburger Arithmetic decision procedure that is included in HOL to
be used for simplifying arithmetic expressions by our system.

3 Examples

Consider the simple protocol in Figure 6, intended to obtain mutual exclusion.
In this protocol, a process can enter the critical section if the value of a shared
variable turn does not have the value of the other process. The code for the
�rst process is as follows:

415Path Exploration Tool

0:start

6:end

5:true ?

2:turn=1 ?

1:no-op

no

yes

yes

no

3:critical

5:true ?

1:no-op 3:critical

2:turn=0 ?

4:turn:=0

6:end

4:turn:=1

yes

yes

no

no

0:start

Figure 6: A mutual exclusion example

begin

while true do

begin

while turn=1 do begin (* no-op *) end;

(* critical section *)

turn:=1

end

end.

The second process is similar, with constant values 1 changed to 0.
When we select the following path, which admits the second process mutex1,

while the �rst process mutex0 is busy waiting as follows:

(mutex0 : 0)

(mutex1 : 0)

<mutex1 : 5>

<mutex0 : 5>

<mutex1 : 2>

<mutex0 : 2>

[mutex1 : 3]

[mutex0 : 1]

we get the path condition turn = 1, namely that the second process will get
�rst into its critical section if initially the value of the variable turn is 1. When
we check a path that gets immediately into both critical sections, namely:

(mutex0 : 0)

416 Elsa L. Gunter and Doron Peled

(mutex1 : 0)

<mutex1 : 5>

<mutex0 : 5>

<mutex0 : 2>

<mutex1 : 2>

[mutex0 : 3]

[mutex1 : 3]

we get a path condition turn 6= 1 ^ turn 6= 0. This condition suggests that
we will not get a mutual exclusion if the initial value would be, say, 3. This
indicates an error in the design of the protocol. The problem is that a process
enters its critical section if turn is not set to the value of the other process. This
can be �xed by allowing a process to enter the critical section if turn is set to
its own value.

4 Extensions and Future Work

In this section, we describe work in progress, and planned extensions of the
tool. The current implementation of the Pet tool provides a basic framework
for testing sequential and interleaved execution paths. The implementation was
designed to support adding many testing techniques and features.

Software testing suggests various coverage criteria. For example, one might
want to check paths that involve at least every executable statement, or paths
from a statement where a variable is set to all or some of the statements where
it is used [9]. Integrating such coverage techniques into our tool can be done by
assisting the selection of a path according to such criteria. For example, when
selecting an assignment node, the Pet tool can suggest all the possible nodes
where the variable that is assigned is later used. These nodes are highlighted
using a color di�erent from the other nodes, and the user can select one of them.
The Pet tool can then extend the current path with a shortest path from the
current node to the node selected. Statistics about the quality of coverage can
be collected.

Another extension deals with testing of di�erent interleavings that are formed
from a given set of transitions. Interleaving concurrent transitions in di�erent
orders is a main pitfall in concurrent programming. Currently, support is given
to interleave transitions of di�erent processes in various ways by commuting
between them. An extension is being developed in order to facilitate a more
e�cient and thorough inspection of di�erent interleaved sequences. The main
idea is that many permutations of concurrently executed transitions do not lead
to di�erent results. For example, consider two transitions that involve com-
pletely di�erent variables. Instead of only allowing the user to select particular
adjacent transitions that will be commuted, the tool will successively generate
di�erent permutations of the selected interleaved sequences.

417Path Exploration Tool

Using the compiled knowledge about the variables assigned and used by the
transitions, a dependency relation between the transitions can be calculated [2].
The tool will calculate the next permutation that is not equivalent to the current
one up to permuting adjacent independent transitions. (If it is equivalent, the
path condition is guaranteed to be the same.) The new permutation will then
be displayed and the new path condition will be calculated. Thus, the tool will
help the user to cycle between di�erent interleaved sequences that may give
rise to di�erent behaviors. (One can formalize this feature as presenting to the
user di�erent representatives for Mazurkiewicz traces [5].) This extension is
also connected to the suggested path: if one uses the system's recommendation
about how to continue a path from each given state, one does not have to worry
about how to interleave these paths, as a systematic and exhaustive search of the
interleavings can be performed. Of course, one has to be careful, as permuting
interleaved sequences can lead to exponential number of possibilities.

Another direction of future development is to expand the programming lan-
guage in which we require the programs to be written to include arrays and
other data types, and to include subroutines. For arrays, the di�culty is calcu-
lating the precondition when array subscripts are given by complex arithmetic
expressions.

We are also exploring di�erent ways of presenting information to the user.
Although the path conditions are in many cases simple to understand, there are
cases where the user may �nd them di�cult to use. Allowing the user to sup-
ply various �nite ranges for the program variables enables the system to check
whether there are values in the given range that satisfy the path conditions.

Finally, program slicing [10] can be used to extract projections of the pro-
gram statements that a�ect a variable at a particular location. Such an analysis
can also be calculated and displayed using our graphical interface.

References

[1] R. Alur, G. Holzmann, D. Peled, An Analyzer for Message Sequence Charts,
Software: Concepts and Tools, 17 (1996), 70{77.

[2] S. Katz, D. Peled, De�ning conditional independence using collapses, The-
oretical Computer Science 101 (1992), 337-359.

[3] ITU-T Recommendation Z.120, Message Sequence Chart (MSC), March
1993.

[4] G.J. Myers, The Art of Software Testing, John Wiley and Sons, 1979.

[5] A. Mazurkiewicz, Trace Theory, Advances in Petri Nets 1986, Bad Honnef,
Germany, LNCS 255, Springer, 1987, 279{324.

418 Elsa L. Gunter and Doron Peled

[6] E. Koutso�ous, S.C. North, Drawing Graphs with dot, available on re-
search.att.com in dist/drawdag/dotguide.ps.Z.

[7] D.C. Oppen, A 22
2
pn

Upper Bound on the Complexity of Presburger Arith-
metic, Journal of Computer and System Sciences 16, 1978, 323-332.

[8] B. Selic, G. Gullekson, P.T. Ward, Real-Time Object-Oriented Modeling,
Wiley, 1993.

[9] S. Rapps, E.J. Weyuker, Selecting Software Test Data Using Data Flow
Information, Transactions on Software Engineering 11(4): 367-375 (1985).

[10] M. Weiser, Program Slicing, IEEE Transactions on Software Engineering,
10(4), 1984, 352{357.

10.1007/b107031130028

419Path Exploration Tool

