An Easily Extensible Toolset for Tabular
Mathematical Expressions

David Lorge Parnas' and Dennis K. Peters!:2
! Electrical and Computer Engineering
Faculty of Engineering and Applied Science
Memorial University of Newfoundland
St. John’s, Newfoundland
Canada A1B 3X5
dpeters@engr.mun.ca
2 Department of Computing and Software
Faculty of Engineering
McMaster University
Hamilton Ontario
Canada L8S 4K1

Abstract. We describe the design of an open ended set of tools for
manipulating multi-dimensional tabular expressions. The heart of the
toolset is a set of modules that makes it possible to add new tools to the
toolset without having detailed knowledge of the other tools. This set
of modules, the Tool Integration Framework, supports new and existing
tools by providing abstract communication interfaces. The framework
that we describe has proven to be a practical approach to building an
extensible set of tools.

1 Introduction

The McMaster University Software Engineering Research Group (SERG) studies
documentation methods for computer systems engineering that use mathemati-
cal functions and relations [I8] to describe program behaviour. The mathematical
expressions that describe the behaviour of real systems are often so complex that
they are difficult to write and use. When expressions are written in a tabular
form, they are much more easily formulated and interpreted [16].

While the value of tabular notation has often been demonstrated [4, Bl 3]
6l [TT], we believe that well designed tools can reduce both the effort needed to
write tabular expressions and the number of errors in the documentation. To
demonstrate this, our research group is developing a suite of tools, collectively
known as the Table Tool System (TTS), for creating, editing, printing, analysing
and interpreting tabular documentation. This paper presents an overview of the
design of the TTS. It is intended both to draw attention to the TTS and to
provide an example of a system in which modularisation, abstraction, and other
related design principles are applied consistently.

W.R. Cleaveland (Ed.): TACAS/ETAPS’99, LNCS 1579, pp. 345 1999.
© Springer-Verlag Berlin Heidelberg 1999

346 David Lorge Parnas and Dennis K. Peters

New components of the TTS are usually produced as Masters Theses by
students who come, learn about software engineering, and then leave. It is nor-
mally extremely difficult to get such independently written components to work
together in a useful way. The Tool Integration Framework that is described in
this paper has changed that. Components can be developed independently, then
easily integrated into our system by people who do not know the details of either
the old or the new components.

1.1 Background

Much traditional engineering documentation is mathematically based and pre-
cise, rich in information content and consistently interpreted from user to user.
Parnas and Madey [18] have shown how the essential properties of computer
systems can be described by using mathematical relations. These relations can
be characterised by first-order predicate logic (e.g., [I7]]. By providing these re-
lations, computer systems designers can document their designs systematically,
and use that documentation to conduct thorough reviews and analysis.

The expressions that characterise the relations that result from applying func-
tional documentation techniques to real programs are usually complex because
they must distinguish many cases. When represented in their customary form
(i.e. as a one dimensional expression) they would be too difficult to read to be
practical. In [T6], Parnas defined a new notation, called tabular expressions, that
grew from earlier work at the Naval Research Laboratory in Washington, DC [4].
Tabular expressions in this new form have the same theoretical expressive power
as conventional notation but, by organising the expression as an array of much
simpler expressions, they are much easier for human readers to interpret. The
reader is referred to [L6], [7, 6] for descriptions of table types and interpretations.

The importance of readability in engineering documentation is clear when
the role of documentation in the design process is considered. Documentation
should capture the measurable objectives of the design effort. The actual re-
sults of the design effort can be compared with the objectives expressed in the
documentation at several points during the design process. For example, docu-
mentation will be used as the basis for design reviews [I3] and as the basis for
testing procedures.

The examples in Fig. M show three different formats for an expression repre-
senting the function f(x,y). The benefits of representing expressions in tabular
form are shown even more clearly by longer, more realistic, expressions such as
those in [T, [23].

Without support tools, a great deal of time is spent performing tasks that
could be automated. Mathematical expressions can be checked mechanically and
used for automated verification of the design specified by the documents. For ex-
ample, manually comparing two tables to see if they represent the same function
is a very important task that can be very time consuming and tedious; small
errors can be difficult to detect. We need tools to help automate those jobs that
can be automated, so that our time and energy can be devoted to the more
interesting tasks of system design.

An Easily Extensible Toolset for Tabular Mathematical Expressions 347

0 ifz>0Ay=10
x ifl'<0/\y:10

s
)y ifz>0Ay>10
f(z,y) = —y? ifz>0Ay <10
r+yifz<0Ay>10
z—yifz<0OAy <10

a) the function f(x,y)

(
((z>0Ay=10) — f(z,y) =0) A ((x <O0Ay =10) — f(z,y) = 2)A
Vwa,(((wZO/\y>10)—>f(x7y) Y)A((z=0Ay <10) — f(z,y) = —y*)A)
(2 <0Ay>10) = f(z,y) =z +y) AN((z < 0Ny <10) — f(z,y) =z —y)

(b) f(z,y) described using classical predicate logic

flx,y) =

| lly = 10]y > 10]y < 10]
x>0 0 y? —y?
z <0 T zTt+y|lx—y

(¢) f(z,y) described using tabular notation

Fig. 1. Example Representations of the Function f(x,y)

1.2 Goals

Because the syntax of tabular expressions is not compatible with existing doc-
ument production tools such as word processors, symbolic mathematics proces-
sors, spreadsheets, etc., the goal of the TTS project is to develop an integrated,
extensible system of tools—that is, a set of tools that work together; to facilitate
the use of tabular expressions, e.g., in computer systems documentation [Many
complex tasks can be accomplished relatively easily by combining tools from a
small set of carefully designed components. TTS capabilities include such things
as entering and modifying tabular expressions, long term storage of expressions
on disk, formatting of expressions for output, and transforming tables to other
forms.

Our understanding of how such systems should be implemented is growing.
The development of TTS, and its need for extensibility, reflects this process.
Each tool is first developed in a basic form and refined as experience with its
use teaches us how to better implement it. Ideas for completely new components
will certainly arise in the future. It is important to have a stable interface stan-
dard that defines how these tools should interact with one another so that tools
developed at different times by different designers can operate with each other.
It is important to establish these standards as early in the project as practical
to minimise the amount of rework.

1 “Working together” means, for example, that an input tool can pass a tabular ex-
pression to an output tool for display or to an evaluation tool to calculate a value.

348 David Lorge Parnas and Dennis K. Peters

Each new member of our group typically either develops some new component
to extend the functionality of the T'TS, or tries to apply the TTS to solve a new
problem. To accomplish this, it is essential that the TTS be easy to extend,
even if the extension had not been foreseen, and that the TTS components can
be easily combined in new ways. Since people join the group at different times,
work at different rates, have different backgrounds and usually leave as soon
as they finish their thesis, we cannot expect them to function as a cohesive
development team. Our tool integration framework seeks to overcome this by
allowing developers to work independently while taking full advantage of the
work done by others.

1.3 General Design Principles

The Table Tool System is designed for future growth by encapsulating design
decisions regarding interaction between TTS components in a common set of
modules known as the Tool Integration Framework.

The modules of the TTS all have a “hidden” implementation [14]. By using
the principle of information hiding, users of a module need not know anything
about the internal data structures and other implementation details of that
module. In other words, any module can be treated as a black box. The interface
to a module consists a set of access programs. TTS developers can only access
modules by calling those programs. The use of any TTS module actually consists
of writing a list of access program calls, for example, to create, manipulate and
destroy objects of a type implemented by the module. Modules may support any
number of objects, so in the currently popular object-oriented terminology, each
implements an object class where the access programs correspond to methods.
Although inheritance can save effort and time during the initial coding, we have
seen it used in ways that make subsequent maintenance more difficult and have
avoided it. We did not find it necessary to use an O-O language or terminology
although we applied many of the good design principles that are implicit in some
0O-0 approaches.

Since we are planning for a large family of TTS tools, we have not followed
the classical “top down” approach to system design. Instead, we have chosen to
specify and construct some basic “building-blocks” to be used in the whole tool
family. These building-blocks have been selected using the principle that E. W.
Dijkstra has called “separation of concerns”.

1.4 Documentation

Since our research focus is documentation for computer systems development, it
makes sense to use this project as a proving ground for our methods. We have
found that a combination of both formal and informal documents is required.
The complete documentation of the TTS is given in [24”3 The informal system

2 The printed form of this document is not kept up to date. For internal use an up-to-
date electronic version is maintained.

An Easily Extensible Toolset for Tabular Mathematical Expressions 349

overview and module guide sections, from which this paper is primarily drawn,
serve to introduce new group members to the structure and capabilities of the
TTS. In addition, for each module, we produce two different styles of interface
description: an informal module interface guide, and a formal module interface
specification. The informal document serves as a quick guide to the module
so that developers can gain an intuitive understanding of its capabilities. The
formal specification is used as a reference document to get specific information
about the module behaviour.

For the kernel modules, which are critical to the system, formal internal
design documents have been produced as well and these have been used for
structured review of the code. Unfortunately, since the TTS was in its early
stages of development when the kernel was built, we could not use it to help
with that documentation process, so we learned first hand how tedious it can be
to use mathematical methods without supporting tools.

2 TTS Module Structure

This section describes the modular structure of the TTS by describing the se-
cret (hidden information) of each module in the system. Figure 2 shows a design
schematic for the T'TS: nested boxes represent the sub-module relationship, and
the vertical arrangement roughly corresponds to the uses hierarchy.[12, 5] At
the first level of decomposition, the TTS is divided into three modules: kernel,
infrastructure and applications, which are described in more detail below. The
intended relationship between these modules is that programs in the kernel mod-
ule use only other kernel programs, while programs in the infrastructure module
use other infrastructure programs or kernel programs, but not applications, and
applications may use any program. Thus, these modules can be viewed as tiers,
each building on the ones below. These tiers do not, however, necessarily cor-
respond to levels in the uses hierarchy since, for example, each module may
contain programs that use no others, and hence are at the lowest level of the
hierarchy. The tiers structure gives a useful overview of the system, but it omits
information that is included in the uses relation, which is needed, for example,
for maintenance and testing.

Kernel The lowest tier contains essential modules—those that are used by all
other TTS modules. It hides the implementation of the abstract data types
that represent expressions, their semantics and representation. These data
types, known as T'TS objects, are the only objects that may be passed be-
tween tools. Kernel modules do not interpret expressions.

Infrastructure The middle tier contains tools that operate on TTS objects to
provide some service to the user (e.g., modification of an expression), and
modules that allow these tools to be combined. These are the ‘blocks and
mortar’ from which applications are constructed. The infrastructure provides
a useful set of operators for kernel objects but does not share the secret of
the kernel.

350 David Lorge Parnas and Dennis K. Peters

TOG MRET Monitor Generator
Applications
TPTool
Context Manager (CM) UI Manager
TCTool
Symbol Editor \%\ k k
Invertor
Tool Manager (TM)
SAST
Tools RCT CSMgr ErrorUI [ErrorHndl
IdList [nfoUtils | [ExpnUtils | | GTS
Utilities Tool Integration Framework (TIF)
Infrastructure
Expn Path Index Shape TH_Error Info In_Error
Table Holder Information
Kernel

Fig. 2. TTS Design Schematic

Applications The top tier contains programs that combine infrastructure mod-
ules to manipulate or interpret groups of tabular expressions as documents,
which specify or describe some aspect of a computer system. For example,
a set of expressions might be interpreted as a relational specification of the
intended behaviour of a program, and an application could be used to check
if the observed behaviour of the program is consistent with the specification.

2.1 Kernel

The kernel module hides data structures representing expressions, and algo-
rithms for manipulating them. The kernel is divided into two modules:

An Easily Extensible Toolset for Tabular Mathematical Expressions 351

table holder hides data structures representing expression structure and iden-
tifiers;

information module hides the means of associating presentation and seman-
tics information with particular symbols used in expressions.

Table Holder A mathematical expression, whether tabular or not, can be
viewed as a set of components joined by operators, where each component is
itself an expression. The tools that interpret these expressions must be able to
access any component of the expression. The table holder module provides a
mechanism that allows tools to do this without knowing how the information
about the expression is represented within the computer.

Each component of an expression has an address, which is the path that one
must follow to reach that component from a starting point that is the address
of the whole expression. Each path is a sequence of indices; each index identifies
a subexpression. Each index in the path brings us closer to the subexpression
addressed by the path.

Information stored in the table holder is restricted to the structural informa-
tion about expressions; this is the information needed by all tools that manipu-
late expressions. It contains no information about interpretation. For example,
a table is stored as an array of grids without any assumptions about which grid
will be considered the main grid and which are to be interpreted as headers.
A function is stored as a list of arguments and an identifier which will index
into an external semantic description. By carefully isolating these elements of
the expressions, which are independent of interpretation and are not likely to
change, the table holder forms the foundation upon which the table tools system
is built. The table holder contains four sub-modules: Expression, which hides the
data structure representing actual expression structure, Shape, Index and Path,
which each hide data structures representing auxiliary objects that facilitate the
expression manipulation activities that must be performed. These are explained
below.

Ezxpression The Expression module hides the implementation of the data struc-
ture and algorithms for representing and manipulating expression syntactically.
Expressions are grouped into three different categories based upon their different
structures; atoms (constants or variables), applications (functions or predicates
with 1 or more arguments), and tables. The module has access programs for cre-
ating, destroying, copying, modifying, reading, comparing, loading and saving
expressions.

Indexr The Index module hides the data structure for representing the position
of a table cell within a table. An Index consists of a grid number (int) and a
sequence of n numbers (int), where n is the dimensionality of the grid, which
indicate a position in the table (e.g. the row number and column number of
the cell). The module has access programs for creating, copying and destroying
indices, as well as assigning and retrieving grid numbers and dimension values
and incrementing or decrementing an index value with respect to a Shape.

352 David Lorge Parnas and Dennis K. Peters

Path The Path module hides the data structure for representing the position
of a sub-expression within an expression. A Path is a sequence of objects, each
of which is either an Index or an int. Integers are used to specify a particular
argument of an application and Index objects identify an element of a table.
The length of a Path can be increased by inserting an element, or decreased
by deleting an element at any position. The module has access programs for
creating, copying and destroying paths, as well as inserting, assigning, deleting
and retrieving elements at any position of the path and retrieving the length of
a path.

Shape The shape of a table is the number of grids it contains and the number of
dimensions and length in each dimension of each grid. The Shape module hides
data structure for representing the shape of a table. It exists so that a user can
separate the task of describing the shape of a table from the action of creating
the table. A Shape object can be retrieved from an existing table when needed.
The module has access programs for creating, copying and destroying shapes, as
well as assigning and retrieving the number of grids, the dimensionality of each
grid and the length of each grid in each dimension.

Information The information module associates each Id stored in a table
holder expression with information about the symbol that it represents. The
secrets of the Information module are the data structures used to associate an
Id with its data and the algorithms for manipulating these. The symbols are
grouped into symbol tables within which each symbol is identified by an Id,
the value of which is determined by the information module when the symbol is
created. The Id can be stored as part of an expression in the table holder so that
other modules can use it to gain access to the data in the information module.
For each symbol table, the information about symbols is organised into named
information classes (e.g. name, type, font family). Each symbol may or may not
have data for a given information class, so that new classes can be added when
needed—for example, to support new tools—without needing to modify existing
symbols, expressions or tools. This is key to the extensibility of the TTS.

The module provides access programs for creating and destroying symbol ta-
bles and information classes, and for creating symbols and assigning or retrieving
data for a particular class name and symbol Id, or searching to find symbols that
are associated with specific data or data patterns.

2.2 Infrastructure

The TTS infrastructure module hides data structures and algorithms that enable
users to manipulate TTS objects. This module contains three modules:

Tool Integration Framework TIF modules provide a means of interaction
between tools and between users and the TTS.

An Easily Extensible Toolset for Tabular Mathematical Expressions 353

Tools Primitive services are atomic operations on expressions or symbols that
the user can invoke from the TTS main menu (e.g., printing, combining or
editing expressions). A tool is a module that provides one or more primitive
services.

Utilities A wutility is a module that implements an algorithm that may be useful
to more than one tool and is independent of both the user interface and the
tool integration framework. Utilities cannot be invoked directly by a user
(i.e. they do not provide ‘primitive services’).

Tool Integration Framework (TIF) The TIF module hides the interface
between tools so that they need not know what other tools are in use or available
in the system. It also provides a user interface for invoking individual tools and
passing objects between them in a consistent manner. It is made up of five
modules, as described below.

Tool Manager (TM) The secrets of the tool manager are the data structures
that represent those characteristics of tools that are relevant to the TIF, and
the information needed about the run-time instances of tools. The TM also
hides the algorithms for invoking the tools. The tool manager defines a language
that can be used to define applications by describing combinations of tools.
Available components can be added or deleted at run-time. The TM defines a
standardised interface, to which all of the tool modules it manages must conform.
It is composed of three sub-modules; the Service Registry, the Instance Registry,
and Tool Interface modules.

A service is a procedure that the user invokes via a single command. It is
provided by executing a sequence of one or more operations (primitive services)
provided by the TTS tools. The Services Registry contains the following infor-
mation about each service, so that it can be invoked when needed:

— the type of user interface required (i.e., graphical, none),

what name and menu item is used to refer to the service,

— what type(s) of objects a service operates on,

how the service is provided (i.e., what access programs, of what tools, in
what order).

The Instance Registry module tracks service use, updating instances of primi-
tive services executing at a particular time. The Tool Interface module maintains
information about the invocation history of the tools so that it can determine
what needs to be done before it can handle requests for service (e.g. does a tool
need to be initialised first etc.).

User Interface Manager (UIMgr) The UIMgr provides a Ul ‘framework’ in which
tools can interact with users without their designers needing to invest effort de-
veloping Ul functionality that is not specific to their tool—it hides the char-
acteristics of Motif that would otherwise need to be known by the developer of
each tool that has a graphical user interface (e.g., it encapsulates the Motif event

354 David Lorge Parnas and Dennis K. Peters

loop). For tools that have a graphical UI, the UIMgr makes available a parent
window handle, so that the tools can create their own windows as children of the
parent window. It also provides a uniform means for tools to inform other tools
of significant events (e.g., an expression has been modified) without the sender
or receiver needing any knowledge of the other tool(s). UIMgr does not hide the
choice of Motif as a Ul platform, however, since to develop a sufficiently general
purpose abstract interface for graphical user interfaces would involve duplication
of a significant portion of systems such as Motif.

The secret of the UIMgr is the implementation of the TTS ‘top level’ User
Interface, which enables users to invoke services to operate on TTS objects and
to switch between concurrently executing services. It also hides the calls to access
programs that initialise the TTF and kernel modules and the order in which they
are called.

User Error Interface The secret of the Error User Interface module is the method
of reporting error and status messages to users. It provides access programs for
tools to report errors to users. The user can customise the Ul so that errors
of severity level below a threshold will not be reported (although not all error
messages can be disabled) and can have error messages logged to a file.

Error Handling The Error Handling module hides the data structure for repre-
senting the status of invocations of tools and TIF module access programs. It
also hides an algorithm for translating a status token into a textual description.
The module has access programs for setting the status as well as for retrieving
the status token or the textual description of a status token.

Clipboard/Selection Manager (CSMgr) The Clipboard/Selection Manager mod-
ule hides data structures and algorithms for passing TTS objects between tools.
It defines a standard interface through which TTS objects can be exchanged
between tools.

Tools Module The Tools module hides algorithms and data structures for
tools that provide primitive services enabling users to directly manipulate TTS
objects. Some example tools are described below. Tools and applications are
normally composed of several sub-modules but, since these are not the focus of
this paper the detailed structure is not described here.

Context Manager (CM) A context is an ordered set of of named expressions
together with a symbol table containing information about the symbols in the
expressions. Since the expressions use the same symbol table, Ids will have con-
sistent interpretation throughout the context, which simplifies manipulation and
interpretation of expressions.

The CM hides the implementation of a user interface and file format for
working with contexts. Several contexts may be in use at the same time within
one application. The user interface allows the user to

An Easily Extensible Toolset for Tabular Mathematical Expressions 355

load a context from disk,

— save a context to disk,

create new (empty) expressions,

— delete expressions, and

select expressions for use by other tools.

Table Printing Tool (tptool) The Table Printing Tool module hides the imple-
mentation of a tool for viewing and changing the physical appearance of an
expression without changing its meaning. The tool allows the user to adjust
such things as the print size of parts of expressions, and the width and height
of table rows or columns, but does not allow any modifications to the contents
of the expression, or changes to the symbol information that may change their
interpretation (e.g. font-face).

The tool produces a Postscript representation of the expression, suitable for
printing. It uses the TH and info modules, respectively, to retrieve the expression
and symbol information. [26]

Table Construction Tool (TCT) The TCT hides the implementation of a user
interface for entering and editing the contents of an expression, while ensuring
that it is syntactically correct. It allows the user to construct an expression
by building it up from smaller expressions. It uses the information module to
retrieve symbols and the TH to retrieve the expression. Several instantiations of
the TCT may be in use at the same time within one application.[L0]

Specialisation and Simplification Tool (SAST) The specialisation and simplifi-
cation tool provides algorithms for simplifying tabular expressions by taking into
account user-supplied constraints on the variables that appear in the expression.

Symbol editor The Symbol Editor allows a user to modify the set of symbols
available for use in expressions. It consists of two sub-modules; the Symbol Editor
UI and the Symbol Utilities modules.

The Symbol Editor UI module hides the implementation of a user interface
for loading, viewing, selecting, editing and saving the information about symbols.

The secrets of the Symbol Utilities module are the files and information
classes used to represent common (default) symbols and symbol property inher-
itance in the Information module. It has access programs that mirror some of
the access programs of the Info module but take default symbols and inheritance
into account.

Table Inverter The table inverter module hides algorithms for ‘inverting’ and
‘normalising’ tabular expressions. In some cases, tabular expressions can be eas-
ier to understand, or made more compact if displayed in a different form. Table
transformations and tools for performing these functions are described in [22].

Table Composition Tool The table composition tool hides algorithms to calcu-
late the relational composition of two tabular expressions.|[25]

356 David Lorge Parnas and Dennis K. Peters

Table Checking Tool The table checking tool hides algorithms to check, us-
ing an automated proof system, that tabular expressions satisfy two condi-
tions: disjointness and completeness, which are usually requirements for correct
specifications. [§].

Utilities The Utilities module hides algorithms that may be useful to more than
one tool but do not implement primitive services and hence cannot be invoked
directly by a user. This module is independent of the user interface system (i.e.
Motif) and the TIF module interface.

Kernel Utilities Kernel Utilities are utilities that make use of the TTS kernel.

The expression utilities module hides algorithms for traversing the sub-ex-
pressions of an expression and for manipulating the set of Ids used in an ex-
pression. It has access programs for calling a caller-supplied program for each
sub-expression of an expression, for finding all Ids used in an expression and
for substituting all occurrences in an expression of an Id from one list with the
corresponding Id in another list.

The info utilities module hides algorithms for performing common opera-
tions on symbol tables that have been created by the info module. It has access
programs for merging tables, removing lists of Ids from tables and finding the
intersection or union of the set of classes in two tables.

The generalised table semantics module hides algorithms and data structures
that represent the semantics of a table as part of an expression. This semantic
information can be accessed by other T'TS table evaluation tools and applications
like the test oracle generator. (See [23)

General Utilities General utilities are those utilities that do not make use of the
TTS kernel.

The secret of the id list module is the data structure for representing se-
quences (lists) of Ids. It also hides algorithms for searching and manipulating
these lists. Note that since this module does not manipulate Ids in any way, it
is independent of the TTS kernel.

2.3 Applications

The applications module hides the implementation of applications, which treat
TTS objects as components of relational documentation and allow the user to
edit, analyse or interpret that documentation.

Test Oracle Generator (TOG) The test oracle generator interprets a set
of expressions as a program specification and uses it to generate a ‘test ora-
cle’, which can be used to verify the actual behaviour of a program against the
specification. |19} 21]

An Easily Extensible Toolset for Tabular Mathematical Expressions 357

Module Reliability Evaluation Tool (MRET) The module reliability es-
timation tool interprets a set of expressions as a module interface specification
and, using an operational profile and a module under test, estimates the relia-
bility of the module.[9]

Monitor Generator The monitor generator interprets a set of expressions
as a system requirements specification for a real-time system and uses it to
generate a ‘monitor’, which reports if the system behaviour is consistent with
the requirements. [20]

3 Experience

In order to test the viability of the TIF and to validate our design, several tools
that were developed prior to its conception have been integrated into the TTS.
The integration process in some cases has been complicated by inconsistencies
between the various developers in the assumptions implicit in their designs.
Despite this, we have been successful in integrating these tools, and more tools
are being added as resources permit.

Group members who have started to develop new tools since the TIF has
been added have found that they have a significant advantage over their prede-
cessors. They do not have to spend time developing support software in order
to demonstrate their results.

Although the TIF is a relatively new addition to the T'TS, our experience
so far has convinced us of its value and of the suitability of the ‘framework’
architecture to development environments such as ours. We have found that
the architecture encourages new group members to develop tools that integrate
smoothly with the TTS and, at the same time, allows them to concentrate on
the research problem at hand by removing the need for them to create support
software in order to demonstrate their results. Although it is difficult to be
certain with such a small sample size, it appears that since the introduction of
the TTF to the TTS the pace of tool development and integration has increased
significantly.

4 Further Information
Space limitations prevent us from providing complete descriptions of the inter-

faces to these modules. Further information can be found in [24] or by visiting
the TTS web page at http://www.crl.mcmaster.ca/SERG/TTS/ttsHome.html.

Acknowledgements

The TTS project has had a long life and has benefited from the contributions
of many people, some of whom are named in the references. In particular we

358

David Lorge Parnas and Dennis K. Peters

acknowledge the contributions of Ramesh Bharadwaj, an early architect, and
project engineers Kalpana Bharadwaj, Carl Krasnor, Jim Hare and Ruth Abra-
ham.

The comments and suggestions from the anonymous referees have helped us

to improve this paper.

Funding for this work is provided by the Natural Sciences and Engineering

Research Council (NSERC), Bell Canada, and Communications and Informa-
tions Technology Ontario (CITO).

References

1]

2]

[4]

[5]
(6]

[7]

8]

[9]

[10]

[11]
[12]

[13]

[14]

Brian J. Bauer. Documenting complicated programs. M. Eng. thesis, McMaster
University, Dept. of Electrical and Computer Engineering, Hamilton, ON, Decem-
ber 1995. Also printed as CRL Report # 316, Telecommunications Institute of
Ontario.

Proc. Conf. Computer Assurance (COMPASS), Gaithersburg, MD, June 1995.
National Institute of Standards and Technology.

Constance L. Heitmeyer, A. Bull, C. Gasarch, and Bruce G. Labaw. SCR*: A
toolset for specifying and analyzing requirements. In COMPASS 95 [2], pages
109-122.

Katherine Heninger, David Lorge Parnas, John E. Shore, and J. Kallander. Soft-
ware requirements for the A-TE aircraft. Technical Report MR 3876, Naval Re-
search Laboratory, 1978.

S. D. Hester, D. L. Parans, and D. F. Utter. Using documentation as a software
design medium. Bell System Technical Journal, 60(8):1941-1977, October 1981.
Douglas N. Hoover and Z. Chen. Tablewise, a decision table tool. In COMPASS
95 [2], pages 97-108.

Ryszard Janicki, David Lorge Parnas, and Jeffery Zucker. Tabular representations
in relational documents. In C. Brink, W. Kahl, and G. Schmidt, editors, Relational
Methods in Computer Science—Advances in Computing Science, pages 184—196.
Springer Wien, New York, 1997.

Min Jing. Checking table tool. M. Eng. thesis, McMaster University, Dept. of
Electrical and Computer Engineering, Hamilton, ON, to appear 1998.
ChunMing Li. Software reliability estimation tool. M. Eng. thesis, McMaster
University, Dept. of Electrical and Computer Engineering, Hamilton, ON, De-
cember 1996. Also printed as CRL Report # 337, Telecommunications Institute
of Ontario.

Weimin Li. Table construction tool. M. Eng. thesis, McMaster University, Dept.
of Electrical and Computer Engineering, Hamilton, ON, July 1996. Also printed
as CRL Report # 330, Telecommunications Institute of Ontario.

D. L. Parnas, G. J. K. Asmis, and J. Madey. Assessment of safety-critical software
in nuclear power plants. Nuclear Safety, 32(2):189-198, April-June 1991.

David L. Parnas. On a ‘buzzword’: Hierarchical structure. In Proc. IFIP Congress,
pages 336-339. North Holland, 1974.

David L. Parnas and David M. Weiss. Active design reviews: Principles and
practices. In Proc. Int’l Conf. Software Eng. (ICSE), pages 132-136, August
1985.

David Lorge Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, pages 1053-1058, December 1972.

[15]
[16]
[17]
18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

An Easily Extensible Toolset for Tabular Mathematical Expressions 359

David Lorge Parnas. Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, 5(2):128-138, March 1979.

David Lorge Parnas. Tabular representation of relations. CRL Report 260, Com-
munications Research Laboratory, November 1992.

David Lorge Parnas. Predicate logic for software engineering. IEEE Transactions
on Software Engineering, 19(9):856-862, September 1993.

David Lorge Parnas and Jan Madey. Functional documentation for computer
systems. Science of Computer Programming, 25(1):41-61, October 1995.

Dennis K. Peters. Generating a test oracle from program documentation. M.
Eng. thesis, McMaster University, Dept. of Electrical and Computer Engineering,
Hamilton, ON, April 1995.

Dennis K. Peters. Deriving Real-Time Monitors from System Requirements Doc-
umentation. PhD thesis, McMaster University, Hamilton ON, to appear 1999.
Dennis K. Peters and David Lorge Parnas. Using test oracles generated from
program documentation. IEEE Transactions on Software Engineering, 24(3):161—
173, March 1998.

H. Shen, J. I. Zucker, and D. L. Parnas. Table transformation tools: Why and
how. In Proc. Conf. Computer Assurance (COMPASS), pages 3-11, Gaithersburg,
MD, June 1996. National Institute of Standards and Technology.

Hong Shen. Implementation of table inversion algorithms. M. Eng. thesis, Mc-
Master University, Dept. of Electrical and Computer Engineering, Hamilton, ON,
December 1995. Also printed as CRL Report # 315, Telecommunications Institute
of Ontario.

Software Engineering Research Group. Table tool system developer’s guide. CRL
Report 339, Communications Research Laboratory, January 1997.

Albert H. Tyson. Function composition tool. M. Eng. thesis, McMaster University,
Dept. of Electrical and Computer Engineering, Hamilton, ON, August 1998. Also
printed as CRL Report # 364, Telecommunications Institute of Ontario.

Li Zhang. A template/overlay approach to displaying and printing tables. M.
Eng. thesis, McMaster University, Dept. of Electrical and Computer Engineering,
Hamilton, ON, June 1994. Also printed as CRL Report # 289, Telecommunica-
tions Institute of Ontario.

5] I

T26-154-49

10.1007/b107031130024

	Introduction
	Background
	Goals
	General Design Principles
	Documentation

	TTS Module Structure
	Kernel
	Infrastructure
	Applications

	Experience
	Further Information

