
Process Algebra in PVS

Twan Basten1 and Jozef Hooman2

1 Dept. of Computing Science, Eindhoven University of Technology, The Netherlands
tbasten@win.tue.nl, http://www.win.tue.nl/∼tbasten

2 Computing Science Institute, University of Nijmegen, The Netherlands
hooman@cs.kun.nl, http://www.cs.kun.nl/∼hooman

Abstract. The aim of this work is to investigate mechanical support for process
algebra, both for concrete applications and theoretical properties. Two approaches
are presented using the verification system PVS. One approach declares process
terms as an uninterpreted type and specifies equality on terms by axioms. This is
convenient for concrete applications where the rewrite mechanisms of PVS can
be exploited. For the verification of theoretical results, often induction principles
are needed. They are provided by the second approach where process terms are
defined as an abstract datatype with a separate equivalence relation.

1 Introduction

We investigate the possibilities of obtaining mechanical support for equational reason-
ing in process algebra. In particular, we consider ACP-style process algebras [2,3],
where processes are represented by terms constructed from atoms (denoting atomic
actions) and operators such as choice (non-determinism), sequential composition, and
parallel composition. Axioms specify which process terms are considered to be equal.

The idea is to apply equational reasoning to processes, similar to normal arithmetic.
This reasoning is often very tedious and error-prone, and it is difficult to check all
details manually. Especially concurrency, which is usually unfolded into a sequential
term representing all interleavings, might generate large and complex terms. Hence, the
quest for convenient proof support for process algebra. We investigate two aspects:

– Mechanical support for the verification of concrete applications. The aim is usually
to verify that an implementation satisfies a specification. Both are expressed in pro-
cess algebra, where the implementation is more detailed with additional (internal)
actions. The goal is to show that the specification equals the implementation after
the abstraction from internal actions. The proof proceeds by rewriting the imple-
mentation using the axioms until the specification is obtained.

– Mechanical support for the proof of theoretical properties of a process algebra. A
common proof technique is based on so-called elimination theorems. Such a theo-
rem states that any closed process term in a given process algebra can be rewritten
into a basic term, i.e. a term consisting of only atoms, choices, and atom-prefixes
(restricted sequential composition). Thus a property for general process terms can
be reduced into one for basic terms, which can then be proved by induction on the
structure or the length of basic terms.

Since our goal is to reason about recursive, possibly infinite, processes and to verify
not only concrete applications, but also general theoretical results, we do not aim at

W.R. Cleaveland (Ed.): TACAS/ETAPS’99, LNCS 1579, pp. 270–284, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Process Algebra in PVS 271

completely automatic verification. In this paper, we investigate how process algebra can
be incorporated in the framework of the tool PVS (Prototype Verification System) [16].
Properties can be proved in PVS by means of an interactive proof checker. This means
that the user applies proof commands to simplify the goal that must be proven, until it
can be proved automatically by the powerful decision procedures of the tool.

We experiment with two different definitions of process algebra in the specification
language of PVS, a typed higher-order logic. One possibility is to define process terms
by means of the abstract-datatype mechanism of PVS which generates, among others, a
useful induction scheme for the datatype, allowing induction on the structure of terms.
As an alternative, we investigate how the rewriting mechanisms of PVS can be exploited
for equational reasoning. Since process algebra, as a method for specifying and verify-
ing complex systems, is still under development, many different algebras already exist
and others are still being designed. Therefore, the goal is to create a flexible framework
in PVS that allows experiments with tool support for customized process algebras.

Related Work. A lot of effort has been devoted to the development of dedicated
tools for process algebra. For PSF [13], an extension of ACP with abstract datatypes,
tools are available that mainly support specification and simulation. PAM [12] is a re-
lated tool which provides flexible language support. Another class of dedicated tools
aims at automatic verification, including bisimulation and model checkers. An example
is the Concurrency Factory [8].

More related to our work is research on the use of general purpose proof check-
ers. E.g., tool support for CCS and CSP has been obtained using HOL [6,7,15]. This
theorem prover has also been used to get mechanized support for reasoning with the
π-calculus [14]. For µCRL, an ACP-like language with data structures, both Coq [5,11]
and PVS [10] have been investigated. In [5] pure algebraic reasoning is used, whereas
the work described in [10,11] combines algebraic and assertional reasoning.

Most of the research mentioned above aims at concrete applications. The only sup-
port for the verification of theoretical issues concerns the soundness proof of algebraic
axioms, based on a specific semantic model [6,14,15]. Whereas this often concerns the-
ory about the underlying model, we are more interested in the verification of theoretical
results on the axiomatic level, without relying on any underlying model.

Also different is that we explicitly study the choices that can be made when in-
corporating process algebra in a general purpose proof checker. In that respect, our
work is probably most related to research on tool support for a CSP-like algebra by
means of HOL [9]. In fact, they investigate similar approaches as we do, although they
only consider small concrete examples. New in our paper is, besides the verification
of non-trivial examples, that we additionally show how to obtain proof support for the
development of ACP-style theory on the axiomatic level.

Overview. In Section 2, we investigate two alternatives for the modeling of process
algebra in PVS. An approach where process terms are defined as an abstract datatype,
with a separate equivalence relation on terms, is presented in Section 3. It is used to
prove a number of theoretical results, using induction schemes provided by PVS. Sec-
tion 4 describes an alternative approach where process terms are defined as an unin-
terpreted type, allowing convenient rewriting of concrete process terms. Concluding
remarks can be found in Section 5.

272 Twan Basten and Jozef Hooman

2 Modeling Process Algebra in PVS

We discuss two approaches to defining process algebra in PVS. First, in Section 2.1, we
briefly introduce the process-algebraic framework considered in this paper. A straight-
forward formulation in PVS, using uninterpreted types plus equality, is presented in
Section 2.2. An approach where terms are defined as an abstract datatype is described
in Section 2.3.

2.1 Process Algebra

To illustrate the main concepts, we consider theory PA (Process Algebra), as defined
in [2,3]. This theory is presented in Table 1, where parameter A represents the set of
atoms. The first entry of this table specifies the sorts; P is the sort of all process terms.

The second entry lists the standard algebraic operators; choice, denoted C, sequen-
tial composition, denoted · , parallel composition or merge, denoted ‖, and an auxiliary
operator called the left merge, denoted bb, which is used to axiomatize the merge. Intu-
itively, the left merge corresponds to parallel execution, with the restriction that the left
process executes the first action.

The third entry of Table 1 contains the axioms. For instance, Axiom A4 specifies
right-distributivity of sequential composition over choice. The absence of left-distribu-
tivity implies that processes with different moments of choice are distinguished. The
axioms define an equivalence relation on processes. A model of these axioms, thereby
showing their consistency, consists of equivalence classes of closed terms (i.e. terms
without variables) as processes, with bisimulation as the equivalence relation. Note,
however, that this is only one possible model. A strong point of axiomatic reasoning is
that it is model independent.

Standard for equational specifications are general substitution and context rules
which express that a process can be replaced by an equivalent term in any context,
i.e., inside any term.

PA.A/
PI A ⊆ P
C , · , ‖ , bb : P × P → P

a : AI x, y, z : PI
x C y D y C x A1 x ‖ y D x bb y C y bb x M1
.x C y/ C z D x C .y C z/ A2 a bb x D a · x M2
x C x D x A3 a · x bb y D a · .x ‖ y/ M3
.x C y/ · z D x · z C y · z A4 .x C y/ bb z D x bb z C y bb z M4
.x · y/ · z D x · .y · z/ A5

Table 1. The process algebra PA.

2.2 Using Uninterpreted Types plus Equality

In PVS theory PArew, we model process algebra PA with the intention to exploit the
rewriting mechanisms of PVS. Theory PArew is parameterized by the type Atoms. Pro-
cess terms are just defined as some non-empty uninterpreted type, assuming a function

Process Algebra in PVS 273

trm which maps atoms into terms. This function is defined as a conversion in PVS,
which means that it need not be mentioned explicitly.

PArew [Atoms: NONEMPTY_TYPE]: THEORY

BEGIN

Terms : NONEMPTY_TYPE

trm : [Atoms -> Terms]

CONVERSION trm

Next we define the operators as functions in the language of PVS and axiomatize equal-
ity on terms, using the built-in equality on uninterpreted types. Frequently, atoms are
interpreted as terms using conversion trm. E.g., a o x is interpreted as trm(a) o x.
Moreover, note that o binds stronger than // which binds stronger than +.

+, o, //, lmrg : [Terms,Terms -> Terms]

a : VAR Atoms

x, y, z : VAR Terms

A1 : AXIOM x + y = y + x

A2 : AXIOM (x + y) + z = x + (y + z)

A3 : AXIOM x + x = x

A4 : AXIOM (x + y) o z = x o z + y o z

A5 : AXIOM (x o y) o z = x o (y o z)

M1 : AXIOM x // y = lmrg(x,y) + lmrg(y,x)

M2 : AXIOM lmrg(a,x) = a o x

M3 : AXIOM lmrg(a o x,y) = a o (x // y)

M4 : AXIOM lmrg(x + y,z) = lmrg(x,z) + lmrg(y,z)

END PArew

In general, one should be careful with axioms in PVS, because they might introduce
inconsistencies. However, as mentioned in Section 2.1, there are several models satisfy-
ing the above axioms, showing that they are consistent. For the time being, we did not
formalize a model in PVS, since our main interest concerns proof support for ACP-style
axiomatic reasoning. When using PVS for a customized process algebra, its consistency
must of course be shown by providing a model.

As a simple application of this theory, we present theory PArewex which imports
PArew. The theorem called expand shows the equivalence of a parallel process and a
sequential term, representing all interleavings. This theorem can be proved automati-
cally in PVS after installing automatic rewrites on all axioms except A1.

PArewex : THEORY

BEGIN

Atoms : TYPE = {a,b,c,d}

IMPORTING PArew[Atoms]

expand : THEOREM (a+b) o (a+b) // (c+d) =

a o (a o (c + d) + b o (c + d) + (c o (a + b) + d o (a + b))) +

b o (a o (c + d) + b o (c + d) + (c o (a + b) + d o (a + b))) +

c o (a o (a + b) + b o (a + b)) +

d o (a o (a + b) + b o (a + b))

END PArewex

In Section 4, we illustrate this approach by a more complex process algebra and a non-
trivial example. However, this framework is not suitable for proving theoretical results,
based on inductive proofs.

274 Twan Basten and Jozef Hooman

2.3 Defining Process-Algebra Terms as an Abstract Datatype

Proofs about properties of process algebra often use induction on the structure of terms.
Since PVS generates such induction schemes for abstract datatypes, it seems convenient
to model process terms as an abstract datatype. Hence we present an approach in which
the terms of PA are represented as an abstract datatype with type Atoms as a parameter.
The datatype below contains five so-called constructors: atm to turn atoms into terms,
and four operators o, +, //, and lmrg for, resp., sequential composition, choice, merge
and left merge.

PA_terms [Atoms: TYPE] : DATATYPE

BEGIN atm(at: Atoms) : atom?

o(sq1, sq2: PA_terms) : seq?

+(ch1, ch2: PA_terms) : choice?

//(mrg1, mrg2: PA_terms) : merge?

lmrg(lmrg1, lmrg2: PA_terms) : lmerge?

END PA_terms

When type checking this datatype definition, the PVS system generates a new file which
contains a large number of useful definitions and properties of the datatype. E.g., a
subterm relation x << y is defined, with an axiom to express that it is well-founded.

PA_terms_well_founded: AXIOM well_founded?[PA_terms](<<);

Moreover, an induction scheme is generated, expressing that a property p on terms can
be proved by showing that it holds for all atoms and by proving that it holds for the
other operators if the subterms already satisfy p.

Defining an Equivalence Relation on Terms. Observe that for terms that are defined
as an abstract datatype, equality has a fixed meaning in PVS, namely syntactic equality.
Hence, equality cannot be used to express equivalence of process terms, as we did in
Section 2.2. Therefore, we define in PVS theory PA a separate equivalence relation, de-
noted ==, on PA terms, using a pre-defined predicate equivalence?which implies that
the relation is reflexive, symmetric, and transitive. As before, this relation is specified
by the axioms of PA.

PA[Atoms: NONEMPTY_TYPE]: THEORY

BEGIN

IMPORTING PA_terms[Atoms]

== : (equivalence?[PA_terms])

a, b, c : VAR Atoms

v, w, x, y, z : VAR PA_terms

A1: AXIOM x + y == y + x

...

M4: AXIOM lmrg(x + y, z) == lmrg(x, z) + lmrg(y, z)

Henceforth, we omit variable declarations if they have been presented in earlier theories.
Standard for equational reasoning is that equivalent terms can be substituted by one

another in contexts. Unfortunately, in the current framework, this has to be expressed
explicitly as follows.

ch_l: AXIOM x == z IMPLIES x + y == z + y

...

mrg_l: AXIOM x == z IMPLIES x // y == z // y

Process Algebra in PVS 275

Due to the possibility to do inductive proofs, the approach of the current subsection
provides a more powerful framework than the one of Section 2.2. Therefore, we first
study the applicability of the approach with abstract datatypes in the next section.

3 Abstract Data Types plus Equivalence Relation

The most interesting aspect of the use of abstract datatypes for process terms is that it
allows inductive proofs. As mentioned in the introduction, inductive proofs are often
used in a proof technique based on basic terms and an elimination theorem. Section 3.1
briefly explains this proof technique. Section 3.2 contains a formulation of basic terms
in PVS. In Section 3.3, we prove in PVS that each closed PA term can be translated
into an equivalent basic term. This translation is used in Section 3.4 to prove properties
about the alphabet of a process term and in Section 3.5 to show associativity of the
merge operator.

3.1 Basic Terms and Elimination

For a convenient treatment of realistic examples, most process algebras contain a large
number of operators and axioms. This, however, complicates the proof of general prop-
erties about the algebra. Hence, it is extremely useful if one can show that many oper-
ators can be eliminated and any term can be reduced to an equivalent term with only a
few basic operators. In the framework of [2,3], this leads to the concept of basic terms.

Definition (Basic terms). The set of basic terms is inductively defined as follows. The
atoms A are contained in the set of basic terms. Furthermore, for any a ∈ A and basic
terms s, t, also a · t and s C t are basic terms. No other terms are basic terms.

It can be shown that any closed PA term can be translated into an equivalent basic term.

Theorem (Elimination). For any closed PA term p, there exists a basic term t, such
that p D t can be derived from the axioms of PA.

A standard proof technique for a property on process terms, is to reduce it by the elim-
ination theorem to a property on basic terms which is then proved by induction on the
structure of basic terms (see Section 3.4) or the length of basic terms (see Section 3.5).
This axiomatic reasoning is model independent and hence the property holds in any
model based on closed terms as processes.

3.2 Defining Basic Terms in PVS

To define basic terms, we extend theory PA of Section 2.3 with a predicate basic? on
the abstract datatype PA terms. This predicate is defined recursively on the structure
of PA terms. In PVS, this requires a so-called measure function which should be well-
founded and should decrease with every recursive call. In general, type checking in
PVS need not be decidable; it might generate so-called Type Check Conditions (TCCs)
which are proof obligations that have to be fulfilled for type correctness. For recursive
definitions, TCCs concerning the correctness of the measure function are generated.

276 Twan Basten and Jozef Hooman

basic?(x) : RECURSIVE bool =

CASES x OF

atm(a) : TRUE,

o(y, z) : atom?(y) AND basic?(z),

+(y, z) : basic?(y) AND basic?(z),

//(y, z) : FALSE,

lmrg(y, z): FALSE

ENDCASES

MEASURE x BY <<;

basic_terms : TYPE = {x | basic?(x)}

The recursive definition above leads to several TCCs, including one requiring that the
subterm relation << is well-founded. This follows immediately from the corresponding
axiom mentioned in Section 2.3. The other TCCs, requiring that the recursive calls are
applied to subterms of argument x, are trivial and can be proved automatically.

Note that we have not defined basic terms as a separate abstract datatype; by defin-
ing it as a predicate on datatype PA terms, we obtain the desired subtype relation be-
tween basic terms and process terms. This subtype relation is crucial for proofs based on
the elimination theorem, as shown by the applications in the remainder of this section.

3.3 Translating PA Terms to Basic Terms

In theory PA2Basicwe prove the elimination theorem. Note that the datatype PA terms
does not contain variables, which means that it specifies closed terms. We define a
translation function pa2b which maps PA terms into basic terms. This definition is
recursive and uses relations < and <= on terms that are presented below.

PA2Basic[Atoms: NONEMPTY_TYPE]: THEORY

...

pa2b(x): RECURSIVE {b: basic_terms | b <= x} =

CASES x OF

atm(a) : atm(a),

o(y, z) : CASES pa2b(y) OF

atm(a) : atm(a) o pa2b(z),

o(v, w): v o pa2b(w o z),

+(v, w): pa2b(v o z) + pa2b(w o z)

ENDCASES,

+(y, z) : pa2b(y) + pa2b(z),

//(y, z) : pa2b(lmrg(y, z)) + pa2b(lmrg(z, y)),

lmrg(y, z): CASES pa2b(y) OF

atm(a) : atm(a) o pa2b(z),

o(v, w): v o pa2b(w // z),

+(v, w): pa2b(lmrg(v, z)) + pa2b(lmrg(w, z))

ENDCASES

ENDCASES

MEASURE x BY <;

This definition generates 26 TCCs to show, for instance, that recursive calls are applied
to terms that are smaller than argument x, according to the relation <, and to show that
the result of the function is a basic term not greater than the argument, according to <=.

Process Algebra in PVS 277

The main problem was to find definitions for the relations < and <= such that all
TCCs could be proved. For instance, some obvious relations based on the length of
terms (the number of symbols) are not correct, since we have to show, for example, that
pa2b(lmrg(y, z)) + pa2b(lmrg(z, y)) <= y // z.

The solution is based on a weight function on PA terms mentioned in [1]. It uses the
exponentiation function expt, which is already available in PVS.

weight(x): RECURSIVE {n: nat | n >= 2} =

CASES x OF

atm(a) : 2,

o(y, z) : weight(y) * weight(z) + weight(y),

+(y, z) : weight(y) + weight(z) + 1,

//(y, z) : expt(2, weight(y) + weight(z) + 2),

lmrg(y, z): expt(2, weight(y) + weight(z))

ENDCASES

MEASURE x BY <<;

<(x, y) : bool = weight(x) < weight(y)

<=(x, y) : bool = x < y OR x = y

The elimination theorem, pa2b eq, expresses that the result of translation pa2b is
equivalent to its argument. The proof is rather tedious and uses induction over the struc-
ture of argument x as provided by the induction mechanism generated by PA terms.

pa2b_eq: THEOREM pa2b(x) == x

END PA2Basic

Our proof of this elimination theorem is constructive in the sense that it provides a con-
crete transformation from PA terms to basic terms. This in contrast with the literature
on process algebra where the proofs usually rely on term-rewriting theory [2,3].

3.4 Using Elimination and Structural Induction on Basic Terms

As a simple application of the elimination theorem, we define the alphabet of PA terms
by means of three axioms that specify the alphabet of basic terms. Additionally, Axiom
AB4 specifies that equivalent terms have the same alphabet.

Alpha [Atoms: NONEMPTY_TYPE]: THEORY

BEGIN

IMPORTING PA2Basic [Atoms]

btx, bty, btz : VAR basic_terms

alpha : [PA_terms -> setof[Atoms]] % alphabet

AB1: AXIOM alpha(atm(a)) = singleton(a)

AB2: AXIOM alpha(atm(a) o x) = add(a,alpha(x))

AB3: AXIOM alpha(x + y) = union(alpha(x),alpha(y))

AB4: AXIOM x == y IMPLIES alpha(x) = alpha(y)

We show that this implies the expected property for the alphabet of a general sequential
composition, as stated in theorem AB2pa. Using theorem pa2b eq, it is sufficient to
prove the property for basic terms, as expressed by lemma AB2b.

AB2b : LEMMA alpha(btx o bty) = union(alpha(btx),alpha(bty))

AB2pa : THEOREM alpha(x o y) = union(alpha(x),alpha(y))

END Alpha

Lemma AB2b has been proved by induction on btx; this gives induction on the struc-
ture of PA terms, but since basic?(btx) holds, the cases for non-basic terms can be
discharged trivially. Hence, this boils down to induction on the structure of basic terms.

278 Twan Basten and Jozef Hooman

3.5 Using Elimination and Induction on the Length of Basic Terms

General properties of the merge and the left merge are often useful in verifications.
For process algebra PA these properties can be proved, in a model-independent way,
by means of the elimination theorem. For a process algebra with recursion this is not
always possible, and then they are introduced as axioms, called the axioms of standard
concurrency [2,3]. In this section, we concentrate on associativity of the merge, called
ASC6. The proof uses commutativity of the merge, called ASC2, and a property of the
left merge, ASC4. The other axioms of standard concurrency deal with communication
and are omitted here. Property ASC2 is proved easily using M1 and A1.

PAsc [Atoms: NONEMPTY_TYPE]: THEORY

BEGIN

IMPORTING PA2Basic[Atoms]

ASC2 : THEOREM x // y == y // x

To prove the other two properties, elimination theorem pa2b eq is used to reduce these
properties to basic terms, as expressed by ASC4b and ASC6b. By lemma ASC46b, these
two lemmas are proved simultaneously by strong natural induction on the sum of the
lengths of the basic terms. The proof of ASC46b also uses case analysis on the structure
of basic terms, illustrating the importance of the reduction to basic terms.

length(x) : RECURSIVE posnat =

CASES x OF

atm(a) : 1,

o(x,y) : length(x) + length(y),

... % similar for +, //, lmrg

ENDCASES

MEASURE x by <<

n : VAR nat

ASC46b : LEMMA

(FORALL btx,bty,btz: n = length(btx) + length(bty) + length(btz)

IMPLIES lmrg(lmrg(btx,bty),btz) == lmrg(btx,bty//btz))

AND

(FORALL btx,bty,btz: n = length(btx) + length(bty) + length(btz)

IMPLIES (btx//bty)//btz == btx//(bty//btz))

ASC4b : LEMMA lmrg(lmrg(btx,bty),btz) == lmrg(btx,bty//btz)

ASC6b : LEMMA (btx//bty)//btz == btx//(bty//btz)

ASC4 : THEOREM lmrg(lmrg(x,y),z) == lmrg(x,y // z)

ASC6 : THEOREM (x//y)//z == x//(y//z)

END PAsc

The proofs of theorems ASC4 and ASC6 use lemma pa2b eq to replace x, y, and z by
equivalent basic terms. The proofs are completed using symmetry, transitivity, and a
few properties of == about substitution in a context.

Observe that rewriting is cumbersome in the current approach because symmetry,
transitivity, rewriting in contexts, etc., all have to be performed explicitly. Although
this can be solved to some extent by defining a strategy in PVS that combines these
commands, it would be more convenient if the user could define its own congruence
relation, such as ==, and obtain the desired rewriting. The main conclusion of this sec-
tion is that the PVS facilities for abstract datatypes and subtyping are useful to prove
non-trivial theorems in process-algebra theory with a reasonable amount of effort.

Process Algebra in PVS 279

4 Verifying Applications Using Equational Reasoning

Since rewriting turned out to be tedious in the proofs of the previous section, we elab-
orate in this section on the approach of Section 2.2 where terms are defined as an unin-
terpreted type with axioms that specify equality on terms. In order to experiment with
this approach on some more complicated applications, we axiomatize ACPτ∗: Algebra
of Communicating Processes (ACP) with abstraction [3] and binary Kleene star [4].
The formal framework is defined in Section 4.1 and applied to the verification of an
Alternating-Bit Protocol (ABP) in Section 4.2. This protocol often serves as a bench-
mark for verifications in process algebra [3,5,11].

4.1 Defining ACP by Uninterpreted Terms and Equality

Similar to PA, process algebra ACPτ∗ contains atoms and operators for sequential com-
position, choice, merge and left merge. In addition, there are two special atoms δ, in-
dicating deadlock or unsuccessful termination, and τ , representing the silent (internal)
step. The merge in ACPτ∗ is slightly different; besides interleaving the atoms of the
two processes, represented by the left merge, it is now also possible to have a syn-
chronous communication, represented by a communication merge “|”. This communi-
cation merge is defined by means of a communication function γ which defines, for a
particular application, the result of the communication for each pair of atoms. A result
δ indicates that the atoms cannot synchronize. The axioms of ACPτ∗ axiomatize rooted
branching bisimulation, which means that processes with the same external behavior,
but possibly different internal actions, are considered to be equal. This equivalence is
particularly suitable to verify implementations versus specifications, as explained in the
next subsection.

Theory ACPtbks implements ACPτ∗ in PVS. It has a communication function as
a parameter and contains explicit assumptions about its properties. If a theory imports
ACPtbks with a particular function, TCCs are generated to show that the assumptions
are fulfilled.

ACPtbks [Atoms: NONEMPTY_TYPE, delta: Atoms, tau: Atoms,

gamma: [Atoms, Atoms -> Atoms]]: THEORY

BEGIN

ASSUMING

C1 : ASSUMPTION gamma(a,b) = gamma(b,a)

C2 : ASSUMPTION gamma(gamma(a,b),c) = gamma(a,gamma(b,c))

C3 : ASSUMPTION gamma(a,delta) = delta

C4 : ASSUMPTION gamma(a,tau) = delta

ENDASSUMING

The definition of Terms, conversion trm, operators +, o, //, lmrg, and axioms A1
through A5 are exactly the same as in theory PArew of Section 2.2.

New are axioms for delta and tau, the definition of the communication merge /,
and a changed list of axioms for concurrency. Note that B1 and B2 express that tau is
not observable and can be removed, provided all options present before executing the
silent action are present after executing it. Not shown are CM2 - CM4, which are equal
to M2 - M4, some axioms for /, and the axioms of standard concurrency [2,3].

280 Twan Basten and Jozef Hooman

A6 : AXIOM x + delta = x

A7 : AXIOM delta o x = delta

B1 : AXIOM x o tau = x

B2 : AXIOM x o (tau o (y + z) + y) = x o (y + z)

/: [Terms,Terms -> Terms]

CF : AXIOM a / b = gamma(a,b)

CM1 : AXIOM x // y = lmrg(x,y) + lmrg(y,x) + (x / y)

...

CM9 : AXIOM x / (y + z) = (x / y) + (x / z)

The encapsulation operator enc maps atoms of a set H to delta. It can be used to
enforce that certain atoms communicate; they cannot occur in isolation. Not shown
here are similar axioms that specify the abstraction operator abs which hides (internal)
atoms of a set by mapping them to the silent action tau.

enc, abs : [setof[Atoms], Terms -> Terms]

H : VAR setof[Atoms]

D1 : AXIOM NOT member(a,H) IMPLIES enc(H,a) = a

D2 : AXIOM member(a,H) IMPLIES enc(H,a) = delta

D3 : AXIOM enc(H, x + y) = enc(H,x) + enc(H,y)

D4 : AXIOM enc(H, x o y) = enc(H,x) o enc(H,y)

The binary Kleene star represents an iteration; x * y denotes the process that can re-
peatedly behave as the body x, but it can non-deterministically stop the repetition and
decide to behave as y. We only show the axioms that are needed in the next section.

* : [Terms,Terms -> Terms]

BKS1 : AXIOM x * y = (x o (x * y)) + y

BKS4 : AXIOM enc(H, x * y) = enc(H,x) * enc(H,y)

The Fair Iteration Rule, FIR, excludes an infinite sequence of tau atoms if there is an
alternative. The Recursive Specification Principle for the binary Kleene star, RSPbks,
specifies the solution of a particular form of guarded recursive equations. A term x is
guarded, denoted guard?(x), if it cannot terminate successfully without performing at
least one visible action.

FIR : AXIOM tau * x = x + (tau o x)

RSPbks : AXIOM guard?(y) AND x = (y o x) + z IMPLIES x = y * z

END ACPtbks

4.2 Verification of an Alternating-Bit Protocol

To experiment with the framework of the previous subsection, we consider a version of
the ABP with iteration and fairness. The verification of this protocol follows a standard
approach which is the basis for any ACP-style verification; after the introduction of
a few basic primitives, first the required service is specified. Next the implementation
of the protocol is specified and we show that, after encapsulation and abstraction, it is
equivalent to the specification.

For the ABP, we need message passing with bits. Therefore, atoms are structured
as an abstract datatype. Besides delta and tau, we have input, output, send, receive,
and communication atoms. Input and output atoms represent the communication with
the environment of the protocol, i.e., they represent its external interface, whereas send
and receive are internal atoms that synchronize to a communication atom.

Process Algebra in PVS 281

ABP_Atoms [Messages : TYPE, Bits : TYPE] : DATATYPE

BEGIN delta : delta?

tau : tau?

inp(im: Messages) : imsg?

outp(om: Messages) : omsg?

send(sm: Messages, sb: Bits) : send?

rec(rm: Messages, rb: Bits) : rec?

comm(cm: Messages, cb: Bits) : comm?

END ABP_Atoms

This general structure is used in theory ABP with simple messages representing data d
and acknowledgments a. Bits are represented by t (true) and f (false). Alternation of
bits is defined by function alt. The hand-shake communication mechanism is defined
by function gamma. It expresses that a send and a receive should be combined into a
communication. Observe that importing ACPtbks leads to four TCCs corresponding to
the assumptions on gamma.

ABP : THEORY

BEGIN

Messages : TYPE = {d,a}

Bits : TYPE = {t,f}

IMPORTING ABP_Atoms[Messages,Bits]

m, m0 : VAR Messages

b, b0 : VAR Bits

e, f, g : VAR ABP_Atoms

alt(b) : Bits = CASES b OF t : f, f : t ENDCASES

gamma(e,f) : ABP_Atoms =

CASES e OF

send(m,b): CASES f OF

rec(m0,b0): IF m0=m AND b0=b THEN comm(m,b) ELSE delta ENDIF

ELSE delta ENDCASES,

rec(m,b) : ... % similarly

ELSE delta

ENDCASES

IMPORTING ACPtbks[ABP_Atoms,delta,tau,gamma]

The aim is to verify an ABP according to specification ABP spec which expresses that
it should behave as a one-place buffer, copying data on its input port to its output port.
Note that x*delta denotes a non-terminating iteration, repeating body x forever (see
axioms BKS1 and A6).

ABP_spec: Terms = (inp(d) o outp(d))*delta

This specification is implemented by means of a sender and a receiver. For simplicity,
we do not model the communication channels between them, but assume they commu-
nicate directly; channel failures are modeled in the behavior of the receiver.

The sender S alternates between S(t) and S(f), where S(b) gets a data item, sends
it with bit b, and next repeatedly receives an erroneous acknowledgment (expressed by
SE(b)) until it gets a correct one (expressed by SN(b)).

SE(b) : Terms = rec(a,alt(b)) o send(d,b) % error part sender

SN(b) : Terms = rec(a,b) % normal part sender

S(b) : Terms = inp(d) o send(d,b) o (SE(b) * SN(b))

S : Terms = (S(t) o S(f))*delta

282 Twan Basten and Jozef Hooman

The receiver has a similar structure; its error part, denoted by term RE(b), models in
an abstract way the possibility that messages might be corrupted by the channel and the
receiver sends an acknowledgment with the wrong bit. Note that this error part can be
repeated indefinitely. However, assuming fairness, only a finite number of subsequent
errors can occur.

RE(b) : Terms = send(a,alt(b)) o rec(d,b) % error part receiver

RN(b) : Terms = outp(d) o send(a,b) % normal part receiver

R(b) : Terms = rec(d,b) o (RE(b) * RN(b))

R : Terms = (R(t) o R(f))*delta

Further, we define a set H which is used to encapsulate isolated send and receive atoms,
and a set I which is used to abstract from communication events.

H: setof[ABP_Atoms] = { e | send?(e) OR rec?(e) }

I: setof[ABP_Atoms] = { e | comm?(e) }

Then, the aim is to prove that the parallel composition of the sender and the receiver,
S // R, encapsulating the send and receive atoms and abstracting from the communi-
cation atoms, equals the specification of the Alternating-Bit Protocol;

abs(I,enc(H,S // R)) = ABP spec.
First, we show that enc(H,S//R) = X, where X is an auxiliary term defined by:

XE(b) : Terms = comm(a,alt(b)) o comm(d,b) % error part protocol

XN(b) : Terms = outp(d) o comm(a,b) % normal part protocol

X(b) : Terms = inp(d) o comm(d,b) o (XE(b) * XN(b))

X : Terms = (X(t) o X(f))*delta

We start with unfolding the iterations inside S // R using BKS1, which makes the
choice between the normal and error parts in the body of each component explicit.
Next, we prove that the body of the protocol equals the body of X. This is far from
trivial, but the proof in PVS is rather straightforward. First, we install a large number
of axioms and some useful lemmas as automatic rewrite rules (from left to right). This
includes A2, A5, A6, A7, CF, CM2 through CM9, D3, D4, and BKS4. Then, we repeatedly
rewrite explicitly using CM1, expand the definition of gamma and apply the automatic
rewrites. This proof shows the main advantage of using equality over a user-defined
congruence; substitution in contexts, transitivity, etc., are all implicitly incorporated in
the rewriting mechanism of PVS. Using a similar rewriting, we can then prove that one
iteration of S in parallel with R corresponds to one iteration of X.

once_rep : LEMMA enc(H,S // R) = (X(t) o X(f)) o enc(H,S // R)

Recursion axiom RSPbks (with delta instead of z) and Axiom A6 then lead to
cbhv : LEMMA enc(H,S // R) = X

Finally, using the properties of abstraction and fairness principle FIR, we obtain
ABP_eq_spec : THEOREM abs(I,enc(H,S // R)) = ABP_spec

END ABP

Comparing our proof using PVS with a manual proof, one can observe that the main
proof steps are the same. In a manual proof, however, usually not all intermediate steps
are written down, whereas a tool such as PVS requires a detailed check of all steps.
Fortunately, these tedious steps can be automated to a large extent, using the powerful
rewrite capabilities of PVS. This leads to a higher degree of automation than a related
verification in the proof checker Coq [5]. The authors of [5] explicitly mention that
rewriting is not so easy in Coq.

Process Algebra in PVS 283

5 Concluding Remarks

Two approaches have been presented to formulate ACP-like process algebras [2,3] in
the language of PVS. Each approach has been validated by applying it to non-trivial
examples.

Process terms as an uninterpreted type. Equality on terms is specified by means
of axioms that can be used as automatic rewrite rules by the PVS proof checker. In this
framework, we have formalized an algebra of communicating processes with abstrac-
tion and the binary Kleene star as a limited form of recursion. A disadvantage of this
approach is the lack of induction principles, which are essential for proofs of theoretical
results about process algebra.

Process terms as abstract datatype. In this approach, an additional equivalence
relation on terms is introduced and axiomatized. By using the abstract-datatype mecha-
nism of PVS, we obtain convenient induction principles. A disadvantage of this frame-
work is that substitution in contexts has to be formalized explicitly and rewriting by
means of the equivalence relation is inconvenient.

Conclusion. The main conclusion is that mechanical support for process algebra by
means of PVS is feasible, both for theory development and for concrete applications.
New in our paper is that we have obtained suitable tool support for the proof of theoreti-
cal properties of ACP-style algebras. We have proved an elimination theorem which can
be used to prove a property of an algebra by reducing it to a property formulated in ba-
sic terms. Besides its use for applications such as verified in this paper, the elimination
theorem also plays a role in completeness proofs for specific models [2,3].

Unfortunately, the ideal framework for theory development differs from the ideal
framework for concrete applications. It would be a major improvement if the two ap-
proaches can be combined, allowing inductive proofs and convenient term rewriting.
Ideally, this could be achieved by extending the PVS system with the facility to per-
form rewriting on user-defined congruence relations. An alternative is to define power-
ful proof strategies that incorporate general rewrite patterns for congruences.

As mentioned in the introduction, essentially the same approaches as the ones we
studied here are investigated in [9] where a CSP-like process algebra is embedded in
HOL. The conclusions of [9] about rewriting and equational reasoning are similar to
ours. As a result, the authors express a slight preference for the approach with unin-
terpreted types. However, in [9] only small concrete examples have been studied and
no theoretical results have been derived. Our work shows that when one is interested
in theory development for ACP-style process algebras, the approach based on abstract
datatypes is the only one feasible. Also note that we heavily use the subtyping mecha-
nism of PVS (to define basic terms) and dependent types, features which are not sup-
ported by the HOL system.

An advantage of the use of a general purpose verification tool such as PVS, above a
dedicated process-algebra tool, is the possibility to get insight in the desired tool support
for various fields of application and different process algebras in a short amount of time.
Using the large number of predefined theories and libraries, it is easy to study extensions
and variations of the framework. As an alternative to PVS, it would be interesting to
experiment with the generic theorem prover Isabelle [17], since it allows rewriting with

284 Twan Basten and Jozef Hooman

user-defined congruence relations and ordered rewriting (allowing, e.g., rewriting using
a commutativity axiom).

Acknowledgments. We would like to thank Jaco van de Pol and Jos Baeten for their
comments on a draft version of this paper.

References

1. G.J. Akkerman and J.C.M. Baeten. Term rewriting analysis in process algebra. CWI Quar-
terly, 4(4):257–267, 1991.

2. J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky, Dov M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, Semantic
Modelling, pages 149–268. Oxford University Press, Oxford, UK, 1995.

3. J.C.M. Baeten and W.P. Weijland. Process Algebra. Prentice-Hall, 1990.
4. J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting. The

Computer Journal, 37(4):241–258, 1994.
5. M.A. Bezem, R.N. Bol, and J.F. Groote. Formalizing process algebraic verifications in the

calculus of constructions. Formal Aspects of Computing, 9(1):1–48, 1997.
6. A. Camilleri. A Higher Order Logic mechanization of the CSP failure-divergence semantics.

In Proc. IV Higher Order Workshop, pages 123–150. Workshops in Computing, Springer-
Verlag, 1991.

7. A. Camilleri, P. Inverardi, and M. Nesi. Combining interaction and automation in process
algebra verification. In TAPSOFT’91, pages 283–296. LNCS 494, Springer-Verlag, 1991.

8. R. Cleaveland, J. Gada, P. Lewis, S. Smolka, O. Sokolsky, and S. Zhang. The Concurrency
Factory – practical tools for specification, simulation, verification, and implementation. In
Proc. DIMACS Workshop on Specification of Parallel Algorithms, 1994.

9. R. Groenboom, C. Hendriks, I. Polak, J. Terlouw, and J.T. Udding. Algebraic proof assistants
in HOL. In Mathematics of Program Construction, pages 304–321. LNCS 947, Springer-
Verlag, 1995.

10. J.F. Groote, F. Monin, and J. Springintveld. A computer checked algebraic verification of a
distributed summation algorithm. Computing Science Report 97/14, Eindhoven University
of Technology, The Netherlands, 1997.

11. H. Korver and A. Sellink. On automating process algebra proofs. In Proc. Symp. on Com-
puter and Information Sciences, ISCIS XI, volume II, pages 815–826, 1996.

12. H. Lin. PAM: A process algebra manipulator. In Proc. Third Workshop on Computer Aided
Verification, pages 136–146. LNCS 575, Springer-Verlag, 1991.

13. S. Mauw and G.J. Veltink. A proof assistant for PSF. In Proc. Third Workshop on Computer
Aided Verification, pages 158–168. LNCS 575, Springer-Verlag, 1991.

14. T.F. Melham. A mechanized theory of the π-calculus in HOL. Technical Report 244, Com-
puter Laboratory, University of Cambridge, 1992.

15. M. Nesi. Value-passing CCS in HOL. In Proc. 6th Workshop on Higher Order Logic Theo-
rem Proving and Applications, pages 352–365. LNCS 780, Springer-Verlag, 1993.

16. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-tolerant ar-
chitectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering,
21(2):107–125, 1995.

17. L.C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828, Springer-Verlag, 1994.

10.1007/b107031130019

	Introduction
	Modeling Process Algebra in PVS
	Process Algebra
	Using Uninterpreted Types plus Equality
	Defining Process-Algebra Terms as an Abstract Datatype

	Abstract Data Types plus Equivalence Relation
	Basic Terms and Elimination
	Defining Basic Terms in PVS
	Translating PA Terms to Basic Terms
	Using Elimination and Structural Induction on Basic Terms
	Using Elimination and Induction on the Length of Basic Terms

	Verifying Applications Using Equational Reasoning
	Defining ACP by Uninterpreted Terms and Equality
	Verification of an Alternating-Bit Protocol

	Concluding Remarks

