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Abstract. We study a variant of the no read-up/no write-down security property of

Bell and LaPadula for processes in the �-calculus. Once processes are given levels of

security clearance, we statically check that a process at a high level never sends names

to processes at a lower level. The static check is based on a Control Flow Analysis for

the �-calculus that establishes a super-set of the set of names to which a given name

may be bound and of the set of names that may be sent and received along a given

channel, taking into account its directionality. The static check is shown to imply the

natural dynamic condition.

1 Introduction

System security is receiving more and more attention but obtaining precise an-
swers is often undecidable [10]. However, static analysis provides a repertoire
of automatic and decidable methods for analysing properties of programs, and
these can often be used as the basis for establishing security properties. We use
here Control Flow Analysis that is a static technique for predicting safe and
computable approximations to the set of values that the objects of a program
may assume during its execution. To circumvent the undecidability issues the
analysis \errs on the safe side" by never omitting values that arise, but perhaps
including values that never arise in the semantics. The approach is related to
Data Flow Analysis and Abstract Interpretation and naturally leads to a gen-
eral treatment of semantic correctness and the existence of best solutions. A
more widely used alternative for calculi of computation is to use Type Systems;
they also allow a clear statement of semantic correctness (sometimes called type
soundness) and allow to study whether or not best solutions exist (in the form of
principal types). The interplay between Type Systems and Control Flow Anal-
ysis is not yet fully understood, but simple Type Systems and simple Control
Flow Analyses seem to be equally expressive; however, a main di�erence is that
the Control Flow Analysis guarantees that best solutions always exist whereas
many Type Systems do not admit principal types (and occasionally the issue is
left open when presenting the type system).
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c Springer-Verlag Berlin Heidelberg 1999



Here we elaborate on our proposal made in [5], that presents a Control Flow
Analysis for the �-calculus, which is a model of concurrent communicating pro-
cesses based on naming, and where we applied it to statically check that a
process has no leaks, i.e. that a process con�nes a set of values, devised to be
secret, within itself. Our new analysis is more accurate than the one in [5], be-
cause a more careful check is made on the input and the output pre�xes, so as to
identify unreachable code. The result of our Control Flow Analysis establishes
a super-set of the set of names to which a given name may be bound and of
the sets of names that may be sent and received along a given channel, when
used by a process with clearance l. These super-sets give rise to solutions of
the form (�; �) and we formulate the Control Flow Analysis as a speci�cation
of the correctness of a candidate solution. This takes the form of judgements of
the form (�; �) j=l

me P (where me will be explained later and l is the level of
security clearance), and a set of clauses that operate on them. We show that best
solutions always exist and we establish the semantic correctness of solutions in
the form of a subject-reduction result.

We apply our analysis for statically checking a dynamic version of the no
read-up/no write-down property of Bell and LaPadula [4, 11, 12]: a process clas-
si�ed at a high level cannot write any value to a process of low level, while
communications in any other direction is permitted. This requirement is part
of a security model, based on a multi-level access control, see [4, 10]. We �rst
de�ne a static check on solutions (�; �), called discreetness, for when a process
respects the classi�cation hierarchy. Then we show that a discreet process enjoys
the dynamic version of the no read-up/no write-down property.

Overview. Section 2 gives the syntax and the operational semantics of our version
of the �-calculus with clearance levels. Our Control Flow Analysis is in Section
3, together with the semantic correctness of solutions. The no read-up/no write-
down property is then studied in Section 4. Some proofs are omitted or only
sketched because of lack of space.

2 The �-calculus

Syntax. In this section we brie
y recall the �-calculus [21], a model of concurrent
communicating processes based on the notion of naming. The formulation of our
analysis requires a minor extension to the standard syntax of the �-calculus,
namely assigning \channels" to the binding occurrences of names within restric-
tions and \binders" to the binding occurrences of names within input pre�xes;
as will emerge later, this is because of the �-conversion allowed by the structural
congruence, and the syntactic extension will allow to compute a super-set of the
actual links that a name can denote. Also, we need a further extension to assign
a security level to �-calculus processes.

More precisely, we introduce a �nite set L = f#g[ f0; � � � ; kg of level labels,
with metavariable l, consisting both of natural numbers and of the distinguished
label #, intended as the label of the environment, which is intuitively assumed

121Static Analysis of Processes for No Read-Up and No Write-Down     



to have \no level". The set L is ordered (see Fig. 1) with the usual � relation
on natural numbers and assuming that 8l 2 L n f#g; l 6� # and # 6� l.

De�nition 1. Let N be a in�nite set of names ranged over by a; b; � � � ; x; y and
let � be a distinguished element such that N \ f�g = ;. Also let B be a non-
empty set of binders ranged over by �; �0; � � �; and let C be a non-empty set of
channels ranged over by �; �0; � � �; moreover let B[C be the set of markers. Then
processes, denoted by P; P1; P2; Q;R; � � � 2 P are built from names according to
the syntax

P ::= 0 j �:P j P + P j P jP j (�x�)P j [x = y]P j !P j hP il

where � may either be x(y�) for input, or xy for output or � for silent moves,
and where l 2 L n f#g. Hereafter, the trailing 0 will be omitted (i.e. we write �
instead of �:0).

#

k
:
:
:

1

0

Fig. 1. Levels of processes (i �
i+ 1) and of the environment.

In this paper we consider the early oper-
ational semantics de�ned in SOS style. The
intuition of process constructors is the stan-
dard one. Indeed, hP il behaves just as P but
expresses that P has level l, where l 2 L n
f#g. The labels of transitions are � for silent
actions, xy for free input, xy for free output,
and x(y) for bound output. We will use � as a
metavariable for the labels of transitions. We
recall the notion of free names fn(�), bound
names bn(�), and names n(�) = fn(�)[bn(�)
of a label �. Also two partial functions, sbj
and obj, are de�ned that give, respectively,
the subject x and the object y of input and
output actions, i.e. the channel x on which y
is transmitted.

Kind � fn(�) bn(�) sbj(�) obj(�)
Silent move � ; ;

Free input and output xy; xy fx; yg ; x y
Bound output x(y) fxg fyg x y

Functions fn, bn and n are extended in the obvious way to processes.

Congruence. Below we shall need the structural congruence � on processes,
de�ned as in [22], apart from the last rule, where restrictions can be exchanged
only if the restricted names are di�erent, because otherwise (�x�)P � (�x�

0

)P .
Then � is the least congruence satisfying:

{ if P and Q are �-equivalent (P =� Q) then P � Q;

122 Chiara Bodei  et al.



Act : `l�:P
��!
�;� P; � 6= x(y�) Ein : `lx(y�):P

xw�!
�;� Pfw=yg

Par :

`lP1
��!
�;L Q1

`lP1jP2
��!
�;L Q1jP2

; bn(�) \ fn(P2) = ; Sum :

`lP1
��!
�;L Q1

`lP1 + P2
��!
�;L Q1

Res :

`lP
��!
�;L Q

`l(�x�)P
��!
�;L (�x�)Q

; x 62 n(�) Open :

`lP
xy�!
�;L Q

`l(�y�)P
x(y)�!
�;L Q

; y 6= x

Close :

`lP1
x(y)�!
�;L1

Q1;`
lP2

xy�!
�;L2

Q2

`lP1jP2
��!
�;� (�y�)(Q1jQ2)

; y 62 fn(P2) Com :

`lP1
xy�!
�;L1

Q1;`
lP2

xy�!
�;L2

Q2

`lP1jP2
��!
�;� Q1jQ2

Match :

`lP
��!
�;L Q

`l[x = x]P
��!
�;L Q

V ar :

P 0 � P;`lP
��!
�;L Q � Q0

`lP 0
��!
�;L Q0

Lev :

`lP
��!
�;L Q

`l
0

hP il
��!

�;Ll hQi
l

Table 1. Early transition system for the �-calculus with security levels.

{ (P=�;+;0) and (P=�; j;0) are commutative monoids;

{ !P � P j!P .

{ (�x�)(�y�
0

)P � (�y�
0

)(�x�)P if x 6= y, (�x�)(P1jP2) � (�x�)P1jP2 if
x 62 fn(P2), and (�x�)P � P if x 62 fn(P );

Semantics. Table 1 shows the annotated early transition system of the �-calculus.

The transitions have the form `lP
��!
�;L

Q, with � 2 C [ f�g; l 2 L; L 2 L�. The

string of level labels L records the clearances passed through while deducing the
transition, while the index l on ` represents the current level. Note that the
sequence of security levels of the sender and of the receiver are discarded when a

communication is derived, leading to a transition of the form `lP
��!
�;�

Q (see the

rules Com and Close in Tab. 1). As far as the label � 2 C [f�g is concerned, we
have that � is used in all cases, apart from extrusions or when input transitions
have to be used as a premise of a Close rule. In that case the label is � and
records the actual channel to be associated with the object of the input. Rule
Match takes care of matching; we have formulated it as a transition rather than
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as a structural law in order to simplify the technical development (compare [5]).
Rule V ar ensures that all the rules and axioms can also be used upon all its
variants.

3 Control Flow Analysis

The result of our analysis for a process P (with respect to an additional marker
environment me for associating names with markers and a label l recording a
clearance) is a pair (�; �): the abstract environment � gives information about
which channels names can be bound to, while the abstract communication envi-
ronment � = h�in; �outi gives information about the channels sent and received
by the sub-processes of P with clearance l. Besides the usage of security levels,
our present solutions re�ne those in [5]. In fact, the � component controls the
values that pass along a channel, more accurately than there. We now make the
above more precise.

3.1 Validation

To validate the correctness of a proposed solution (�; �) we state a set of clauses
operating upon judgments of the form:

(�; �) j=l
me P

The purpose of me, l, �, � is clari�ed by:

{ me : N ! (B [ C) is the marker environment that associates names (in
particular the free names of a process) with the appropriate channel or binder
where the name was introduced; so me(x) will be the marker (in B or C)
where the current name x is bound.

{ l 2 L keeps track of the current security level that the process under valida-
tion has.

{ � : B ! }(C) is the abstract environment that associates binders with the
set of channels that they can be bound to; more precisely, �(�) must include
the set of channels that � could evaluate to.
By setting 8� : �(�) = f�g we shall allow to regard the abstract environment
as a function � : (B [ C)! }(C).

{ �in; �out : L ! (C ! }(C)) constitute the abstract communication environ-
ment. They give the set of the channels that can be bound to the possible
objects of an input and an output action1 respectively, performed by the
sub-processes labelled by l, on a given channel �.

1 The relation between the abstract communication environment � and the abstract
channel environment � in [5] is 8� 2 C : �(�) =

S
l2L

(�in(l)(�)[ �out(l)(�)) in case
of least solutions.
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(�; �) j=l
me 0 i� true

(�; �) j=l
me �:P i� (�; �) j=l

me P

(�; �) j=l
me xy:P i� (�(me(y)) 6= ; ^ �(me(x)) 6= ;)) (�; �) j=l

me P^
8� 2 �(me(x)) : �(me(y)) � �out(l)(�)

(�; �) j=l
me x(y

�):P i�
S

l02L;�2�(me(x))
�out(l

0)(�) 6= ; ) (�; �) j=l
me[y 7!�] P^

8� 2 �(me(x)) :
S

l02L
�out(l

0)(�) � �in(l)(�)^
8� 2 �(me(x)) : �in(l)(�) � �(�)

(�; �) j=l
me P1 + P2 i� (�; �) j=l

me P1 ^ (�; �) j=l
me P2

(�; �) j=l
me P1jP2 i� (�; �) j=l

me P1 ^ (�; �) j=l
me P2

(�; �) j=l
me (�x

�)P i� (�; �) j=l
me[x7!�] P

(�; �) j=l
me [x = y]P i� (�(me(x))\ �(me(y)) 6= ; _me(x) = me(y))

) (�; �) j=l
me P

(�; �) j=l
me !P i� (�; �) j=l

me P

(�; �) j=l
me hP i

l0
i� (�; �) j=l0

me P ^ �in(l
0) v �in(l) ^ �out(l

0) v �out(l)

Table 2. Control 
ow analysis for the �-calculus.

Note that we use a marker environment because the identity of names is not
preserved under �-conversions (see rules Ein and V ar). In particular, it would
not su�ce to \�-rename the program apart" because as in [5] this property is
not preserved under reduction.

The analysis is in Tab. 2. As we are analysing a process P from scratch,
we assume that the initial clearance label is #. All the rules for validating a
compound process require that the components are validated, apart from the
rules for output, input and matching. The rules for output and input require a
preliminary check to decide whether the continuation P needs to be validated
and this makes the analysis more accurate than the one in [5]. In case of output,
one has to make sure that the (set of channels associated with the) object is
bound to some channels and similarly for the subject. In the case of input we
control that the (set of channels associated with the) subject has some channels
to read; actually, we ensure that some value can be sent along the subject. The
last conjunct of the rule for output takes care of the clearance l of the process
under analysis. The channels that can be bound to the object of an output
action along channel � must be included in �out(l)(�). Analogously for the case
of input, where we ensure that �in(l)(�) and �(�) contain all the outputs on
� 2 �(me(x)), regardless of the clearance level l of the sending process. The
condition for matching says that P needs to be validated if there is at least one
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channel to which both x and y can evaluate; note that both can evaluate to ;
and thus we need to check whether they actually denote the same channel by
allowing me(x) = me(y). The rule for the process hP il

0

simply says that the
channels that can be read and written by it must be included in those read
or written by its surrounding process, labelled l. It makes use of the following
de�nition.

De�nition 2. The set of proposed solutions can be partially ordered by setting
(�; �) v (�0; �0) i� 8� 2 B : �(�) � �0(�), 8� 2 C;8l 2 L : �in(l)(�) � �0in(l)(�)
and 8� 2 C;8l 2 L : �out(l)(�) � �0out(l)(�).

It is immediate that this su�ces for making the set of proposed solutions into a
complete lattice; using standard notation we write (�; �)t (�0 ; �0) for the binary
least upper bound (de�ned pointwise), uI for the greatest lower bound of a set
I of proposed solutions (also de�ned pointwise), and (?;?) for the least element
(where ? maps everything2 to ;).

Example 1. Consider the following process

S =!(R j Q j P ) =

!(hab:ab:bcilR j ha(x�x):xxilQ j ha(y�y ):y(z�z):([y = z]ya + y(w�w)ilP );

where the marker environment me is such that me(fv ) = �fv for all the free

names fv 2 fa; b; cg. The pair (�; �) is de�ned as follows, where the bound
names are bv 2 fx; y; z; wg and the level labels are l 2 f#; lR; lQ; lP g:

�(�bv) =

�
f�bg if bv = x; y
f�a; �b; �cg if bv = z; w

(Recall that �(�) = f�g)

�in(l)(�a) =

(
f�bg if l = #
; if l = lR
f�bg if l = lQ; lP

�out(l)(�a) =

�
f�bg if l = #; lR
; if l = lQ; lP

�in(l)(�b) =

(
f�a; �b; �cg if l = #
; if l = lR; lQ
f�a; �b; �cg if l = lP

�out(l)(�b) =

8><
>:
f�a; �b; �cg if l = #
f�cg if l = lR
f�bg if l = lQ
f�ag if l = lP

�in(l)(�c) = ;; if l = #; lR; lQ; lP �out(l)(�c) = ;; if l = #; lR; lQ; lP

A simple check shows that (�; �) j=#
me S.

3.2 Existence of solution

So far we have only considered a procedure for validating whether or not a
proposed solution (�; �) is in fact acceptable. We now show that there always
exists a least choice of (�; �) that is acceptable in the manner of Tab. 2.

2 However, note that ?� : B ! }(C) viewed as ?� : (B [ C)! }(C) has ?�(�) = ; for
� 2 B but ?�(�) = f�g for � 2 C (rather than ?�(�) = ;).
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De�nition 3. A set I of proposed solutions is a Moore family if and only if it
contains uJ for all J � I (in particular J = ; and J = I).

This is sometimes called the model intersection property and is fundamental for
many approaches to program analysis [7]. When I is a Moore family it contains
a greatest element (u;) as well as a least element (uI). The following theorem
then guarantees that there always is a least solution to the speci�cation in Tab. 2.

Theorem 1. The set f(�; �) j (�; �) j=l
me Pg is a Moore family for all me; l; P .

Proof. By induction on P .

There is also a constructive procedure for obtaining the least solution; it has a
low polynomial complexity. Essentially, establishing (�; �) j=l

me P amounts to
checking a number of individual constraints. In the full paper we de�ne a function
GC [[P ]]me for explicitly extracting these constraints, proceeding by induction on
the structure of processes. This is not entirely straightforward because of the
conditional analysis of the continuation process in the case of output, input and
matching. The resulting constraints can be solved in low polynomial time.

3.3 Correctness

We state now some auxiliary results that will allow us to establish semantic
correctness of our analysis. They are all independent of the semantics and only
rely on Tab. 2; their proofs are all by induction.

Lemma 1. Assume that 8x 2 fn(P ) : me1(x) = me2(x); then (�; �) j=l
me1

P if
and only if (�; �) j=l

me2
P .

Lemma 2. Assume that me(y) = me(z); then (�; �) j=l
me P if and only if

(�; �) j=l
me Pfz=yg.

Corollary 1. Assume that z 62 fn(P ) and � 2 B [ C; then (�; �) j=l
me[y 7!�] P if

and only if (�; �) j=l
me[z 7!�] Pfz=yg.

Lemma 3. Assume that P � Q; then (�; �) j=l
me P i� (�; �) j=l

me Q.

Lemma 4. Assume that (�; �) j=l
me P and me(w) 2 �(me(z)) � C; then

(�; �) j=l
me Pfw=zg.

Subject reduction. To establish the semantic correctness of our analysis we rely
on the de�nition of the early semantics in Tab. 1 as well as on the analysis in
Tab. 2. The subject reduction result below applies to all the solutions of the
analysis, and hence in particular to the least. The operational semantics only
rewrites processes at \top level" where it is natural to demand that all free names
are bound to channels (rather than binders); this is formalised by the condition
me[fn(�)] � C that occurs several times. Note that item (3b) corresponds to
\bound" input, mainly intended to be used to match a corresponding bound
output in the rule Close of the semantics; therefore the name y read along link
x must be fresh in P , i.e. y 62 fn(P ).
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Theorem 2. If me[fn(P )] � C, (�; �) j=l
me P and `lP

��!
�;L

Q we have:

(1) If � = � then
� = �; (�; �) j=l

me Q; and me[fn(Q)] � C

(2a) If � = xy then
� = �; (�; �) j=l

me Q; me[fn(Q)] � C and 8l0 2 Ll: me(y) 2 �out(l
0)(me(x))

(2b) If � = x(y) then
� = � for some � 2 C; (�; �) j=l

me[y 7!�] Q; (me[y 7! �])[fn(Q)] � C; and

8l0 2 Ll: � 2 �out(l
0)(me(x))

(3a) If � = xy, � = �, me(y) 2 C and
me(y) 2

S
l02L(�in(l

0)(me(x)) [ �out(l
0)(me(x))) then

(�; �) j=l
me Q; me[fn(Q)] � C; and 8l0 2 Ll: me(y) 2 �in(l

0)(me(x))

(3b) If � = xy, � = �, � 2
S
l02L(�in(l

0)(me(x))[�out(l0)(me(x))) and y =2 fn(P )
then
(�; �) j=l

me[y 7!�] Q; (me[y 7! �])[fn(Q)] � C; and

8l0 2 Ll: � 2 �in(l
0)(me(x))

Proof. A lengthy proof by induction on the construction of

`lP
��!
�;L

Q

and with subcases depending on whether case (1), (2a), (2b), (3a) or (3b) applies.
The proof makes use of Lemmata 1, 2, 3 and 4.

4 Multi-level Security

System security is typically based on putting objects and subjects into security
classes and preventing information from 
owing from higher levels to lower ones.
Besides the no-leaks property studied in [5], here we o�er another evidence that
Control Flow Analysis helps in statically detecting useful information on security.

The literature reports a security property called no read-up/no write-down
[11, 12]. The security requirement is that a process classi�ed at a high level cannot
write any value to a process of low level, while the converse is allowed. These
requirements are part of a security model, based on a multi-level access control,
see [4, 10]. The no read-up/no write-down property is commonly studied for a
set of processes put in parallel (see, e.g. [29]). We follow this view and consider
in the following only processes of the form hP0i

l0 jhP1i
l1 j : : : jhPni

ln , where each
process Pi has no labelling construct inside.

A dynamic notion. Now we are ready to introduce the dynamic version of the
no read-up/no write-down property.

We assume that the environment is always willing to listen to P , i.e. its
sub-processes at any level can perform free outputs to the environment. On the
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contrary, some parts of P are reachable only if the environment supplies some
information to a sub-process R with a particular clearance. To formalize the
intentions of the environment, we use a function

& : L ! (C ! }(C))

that associates a label l and a channel � with the set of channels that the
environment considers secure to communicate to R.

De�nition 4. Given P;meP ; &, a granted step is (P;meP )
�=)
�;L

(Q;meQ),

and is de�ned whenever

1. `#P
��!
�;L

Q, and

2. if � = xy, then

(
(a) meP (y) 2 &(#)(meP (x)) if � = �

(b) � 2 &(#)(meP (x)) and y 62 fn(P ) if � = �

where meQ =

�
meP if � = �
meP [obj(�) 7! �] if � = �

A granted computation (P;meP ) =)� (Q;meQ) is made of granted steps.

The de�nition of our version of the no read-up/no write-down property fol-
lows. Essentially, it requires that in all the communications performed by a
process, the sender Ro has a clearance level lower than the clearance level of the
receiver Ri.

De�nition 5. A process P is no read-up/no write-down (nru/nwd for short)
with respect to &;meP if and only if the following holds:

whenever (P;meP ) =)� (P 0;meP 0)
�=)
�;L

(Q;meQ) where the last granted step is

a communication (between Ro and Ri) that has been deduced with either

(a) the rule Com, using the premises `lRo
xy�!
�;Lo

R0o and `lRi
xy�!
�;Li

R0i, or

(b) the rule Close, using the premises `lRo
x(y)�!
�;Lo

R0o and `lRi
xy�!
�;Li

R0i,

then no element of Lo is strictly greater than any element of Li.

A static notion. We de�ne now a static property that guarantees that a process
is nru/nwd. Besides �nding a solution (�; �) for a process P , we require that the
channels read along � should include those that the environment is willing to
supply, expressed by & . The last condition below requires that the same channel
cannot be used for sending an object from a process with high level l00 to a
process with low level l0.
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De�nition 6. Let P;me be such that me[fn(P )] � C. Then P is discreet (w.r.t.
&;me) if and only if there exists (�; �) such that

1. (�; �) j=#
me P

2. 8l 2 L; � 2 C : �in(l)(�) � &(l)(�)

3. 8l0; l00 2 L; l0 < l00 and 8� 2 C : �out(l
00)(�) \ �in(l

0)(�) = ;.

The property of discreetness can be checked in low polynomial time by build-
ing on the techniques mentioned in Section 3.2. Below, we show that the property
of being discreet is preserved under granted steps.

Lemma 5 (Subject reduction for discreetness).

If P is discreet with respect to &;meP , and (P;meP )
�=)
�;L

(Q;meQ), then Q is

discreet with respect to &;meQ.

Proof. Theorem 2 su�ces for proving that meQ[fn(Q)] � C and (�; �) j=#
me Q.

The proof of the second and third items is immediate, because the solution
does not change. The only delicate point for the application of Theorem 2 is
when the granted step is an input. Consider �rst, the case in which � = �.
It su�ces to make sure that me(y) 2 C and that me(y) 2 �in(#)(me(x)).
Condition 2 of Def. 6 guarantees that �in(#)(me(x)) � &(#)(me(x)). In turn
me(y) 2 &(#)(me(x)) � C because the step is granted. The case when � = � is
just the same, while in the other cases the proof is trivial.

The following lemma further illustrates the links between the transitions of
processes and the results of our static analysis. It will be used in proving that
discreetness is su�cient to guarantee that P enjoys the nru/nwd property.

Lemma 6. If `lP
��!
�;L

Q has been deduced with premise `l
0

R
��!

�0;L0 R0, and

(�; �) j=l
me P , then there exists me0 such that (�; �) j=l0

me0 R.

Proof. The proof is by induction on the derivation of the transition.

Theorem 3.
If P is discreet (w.r.t. &;me), then P is nru/nwd (w.r.t. &;me).

Proof. By Lemma 5 it is enough to check that, if (P;meP )
�=)
�;L

(Q;meQ), then

Q is nru/nwd, with � being a communication between Ro and Ri, de�ned as in
Def. 5. Assume, per absurdum, that an element lo 2 Lo is strictly greater than
an element element li 2 Li. By Lemma 6, (�; �) j=l

me Ro and (�; �) j=l
me Ri.

Consider �rst the case (a) of Def. 5. The analysis and Theorem 2 tell us that
8l0 2 Lo: me(y) 2 �out(l

0)(me(x)) and 8l0 2 Li: me(y) 2 �in(l
0)(me(x)). But

this contradicts item 3 of Def. 6, because, in particular,me(y) 2 �out(lo)(me(x))
as well as me(y) 2 �in(li)(me(x)):
As for case (b) of Def. 5, just replace � for me(y) and proceed as in case (a).

130 Chiara Bodei  et al.



Example 2. Consider again the process S validated in Example 1:

!(hab:ab:bcilR j ha(x�x):xxilQ j ha(y�y ):y(z�z):([y = z]ya + y(w�w))ilP );

and suppose that lR < lQ < lP . Then it is easy to prove that the process is
discreet. In particular the following �ve conditions hold.

{ �out(lQ)(�fv ) \ �in(lR)(�fv ) = �out(lQ)(�fv ) \ ; = ;;

{ �out(lP )(�fv ) \ �in(lR)(�fv ) = �out(lP )(�fv ) \ ; = ;;

{ �out(lP )(�a) \ �in(lQ)(�a) = ; \ f�bg = ;:

{ �out(lP )(�b) \ �in(lQ)(�b) = f�ag \ ; = ;:

{ �out(lP )(�c) \ �in(lQ)(�c) = ; \ ; = ;:

Note that the clearance levels of processes introduced here are orthogonal to
the security levels of channels as de�ned in [5]. There channels are partitioned
into secret and public and a static check is made that secret channels never
pass along a public one. Therefore channels have always the same level. On the
contrary, here it is possible that a channel a can be sent along b by one process but
not by another. Discreetness cannot be checked with the analysis of [5], because
in that analysis a can be either sent on b always or never. The combination of
the two analyses may permit a static check of even more demanding properties.

5 Conclusions

There is a vast literature on the topics of our paper. Here we only mention very
brie
y some papers related to security issues.

The �rst studies in system security reach back to the 1970's and were mainly
carried out in the area of operating systems; see the detailed survey by Landwehr
[17] and Denning's book [10] reporting on the static detection of secure 
ow
violation while analysing the code.

Recently, security classes have been formalized as types and the control of

ow is based on type checking. Heintze and Riecke [15] study a non-interference
property on the SLam Calculus (Secure �-calculus). Volpano, Smith and Irvine
develop a type system to ensure secure information 
ow in a sequential imper-
ative language in [30], later extended by the �rst two authors in a concurrent,
shared memory based setting [29]. Abadi studies in [1] the secrecy of channels
and of encrypted messages, using the spi-calculus, an extension of the �-calculus
devised for writing secure protocols. Venet [27, 28] uses Abstract Interpretation
techniques to analyse processes in a fragment of the �-calculus, with particular
attention to the usage of channels.

Other papers interesting for this area are [24, 26, 13, 8, 3, 9, 25, 16]. Particu-
larly relevant are Hennessy and Riely's papers [25, 16] who give a type system for
D�, a variant of the �-calculus with explicit sites that harbour mobile processes.
Cardelli and Gordon [6] propose a type system for the Mobile Ambient calculus
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ensuring that a well-typed mobile computation cannot cause certain kinds of
run-time faults, even when capabilities can be exchanged between processes.

The idea of static analysis for security has been followed also in the Java
world, for example in the Java Bytecode Veri�er [18], and in the techniques of
proof-carrying code [23]. Also Abadi faces in [2] the problem of implementing
secure systems and proposes to use full abstraction to check that the compile
code enjoys the same security properties as the source program.

A di�erent approach consists in dynamically checking properties. This point
of view has been adopted by a certain number of information 
ow models [14,
19, 20, 11, 12] (to cite only a few), mainly concerned with checking (variants of)
the security property we studied here. All these papers, consider the external
observable behaviour only as the object of the analysis.

Here, we presented a Control Flow Analysis for the �-calculus that stati-
cally predicts how names will be bound to actual channels at run-time. The
only extensions made to the syntax of processes are that a channel � is ex-
plicitly assigned to a restricted name, and that an input action has the form
x(y�), making explicit the rôle of the placeholder y; this change was motivated
by the inclusion of �-conversion in the semantics. Our intention was to apply
our analysis for detecting violations of a security property that needs security
levels, so processes may carry labels expressing their clearance. The result of our
analysis for a process P is a solution (�; �). The abstract environment � gives
information about which channels a binder � may be bound to, by means of
communication. The abstract communication environment � gives information
about the channels sent and received by a process with clearance l. All the so-
lution components approximate the actual solution, because they may give a
super-set of the corresponding actual values.

We de�ned judgements of the form (�; �) j=l
me P and a set of clauses that

operate on them so as to validate the correctness of the solution. The additional
marker environment me binds the free names of P to actual channels. The label
l records the security level of P . We proved that a best solution always exists. In
the full paper we shall give a constructive procedure for generating solutions that
essentially generates a set of constraints corresponding to the checks necessary
to validate solutions. These constraints can be solved in low polynomial time.

We used our analysis to establish the no read-up/no write-down security
property of Bell and LaPadula. This property requires that a process with
high clearance level never sends channels to processes with a low clearance.
We de�ned a static check on solutions and proved that it implies the no read-
up/no write-down property. Also, the check that a process P is discreet with
respect to given & ,me has a polynomial time complexity. A web-based system
that validates the solutions and checks discreetness can be found at the URL:
http://www.daimi.au.dk./�rrh/discreet.html.

We have not considered here the more general notion of the no read-up/no
write-down property, that assigns levels of con�dentiality also to the exchanged
data (i.e. the objects of input and output actions). Processes with low level
clearance are then not allowed to access (i.e. they can neither send nor receive)
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highly classi�ed data. The reason is that the dynamic version of this property
is surprisingly more intricate than its static version. The latter, that entails the
former, only requires an additional check on the second component of a solution
(i.e., 8� 2 �in(l)(�

0) the con�dentiality level of �, possibly read along channel
�0, should be smaller than the security level of the process under check, namely
l; similarly for �out).

Other properties that deserve further investigation are connected with the so-
called \indirect 
ow" of information, i.e. on the possibility of a low level process
to detect the value of some con�dential datum by \observing" the behaviour of
higher level processes.
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