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Abstract. This study o�ers a characterization of the collection of prop-
erties expressible in Hennessy-Milner Logic (HML) with recursion that
can be tested using �nite LTSs. In addition to actions used to probe the
behaviour of the tested system, the LTSs that we use as tests will be
able to perform a distinguished action nok to signal their dissatisfaction
during the interaction with the tested process. A process s passes the

test T i� T does not perform the action nok when it interacts with s.
A test T tests for a property � in HML with recursion i� it is passed
by exactly the states that satisfy �. The paper gives an expressive com-
pleteness result o�ering a characterization of the collection of properties
in HML with recursion that are testable in the above sense.

1 Introduction

Observational semantics for concurrent processes are based upon the general
idea that two processes should be equated, unless they behave di�erently, in
some precise sense, when they are made to interact with some distinguishing
environment. Such an idea is, in arguably its purest form, the foundation of
the theory of the testing equivalences of De Nicola and Hennessy [4, 6]. In
the theory of testing equivalence, two processes, described abstractly as labelled
transition systems (LTSs) [8], are deemed to be equivalent i� they pass exactly
the same tests. A test is itself an LTS � i.e., a process � which may perform
a distinguished action to signal that it is (un)happy with the outcome of its
interaction with the tested process. Intuitively, the purpose of submitting a
process to a test is to discover whether it enjoys some distinguished property
or not. Testing equivalence then stipulates that two processes that enjoy the
same properties for which tests can be devised are to be considered equivalent.
The main aim of this study is to present a characterization of the collection of
properties of concurrent processes that can be tested using LTSs. Of course,
in order to be able to even attempt such a characterization (let alone provide

? The work reported in this paper was mostly carried out during the authors' stay at
the Dipartimento di Sistemi ed Informatica, Università di Firenze, Italy.

?? Partially supported by a grant from the CNR, Gruppo Nazionale per l'Informatica
Matematica (GNIM). Email:luca@cs.auc.dk.

? ? ? Supported by the Danish Research Council. Email: annai@cs.auc.dk.
y
Basic Research in Computer Science, Centre of the Danish National Research Foun-
dation.

W. Thomas (Ed.): FOSSACS’99, LNCS 1578, pp. 41-55, 1999. 
c Springer-Verlag Berlin Heidelberg 1999



it), we need to precisely de�ne a formalism for the description of properties of
LTSs, single out a collection of LTSs as tests, and describe the testing process
and when an LTS passes or fails a test.

As our speci�cation formalism for properties of processes, we use Hennessy-
Milner Logic (HML) with recursion [10]. This is a very expressive property
language which results from the addition of least and greatest �xed points to
the logic considered by Hennessy and Milner in their seminal study [7]. The
resulting property language is indeed just a reformulation of the modal �-calculus
[10]. Following the idea of using test automata to check whether processes enjoy
properties described by formulae in such a language [2, 1], we use �nite LTSs as
property testers. In addition to actions used to probe the behaviour of the tested
system, the LTSs that we use as tests will be able to perform a distinguished
action nok (read `not okay') to signal their dissatisfaction during the interaction
with the tested process. As in the approach underlying the testing equivalences,
a test interacts with a process by communicating with it, and, in keeping with
the aforementioned references, the interaction between processes and tests will
be described using the (derived) operation of restricted parallel composition from
CCS [13].

We say that a process s fails the test T i� T can perform the action nok when
it interacts with s. Otherwise s passes T . A test T tests for a property � in HML
with recursion i� it is passed by exactly the states that satisfy �. The main result
of the paper is an expressive completeness result o�ering a characterization of
the collection of properties in HML with recursion that are testable in the above
sense. We refer to this language as SHML (for `safety HML'). More precisely we
show that:

� every property � of SHML is testable, in the sense that there exists a test
T� such that s satis�es � if and only if s passes T�, for every process s; and

� every test T is expressible in SHML, in the sense that there exists a formula
�T of SHML such that, for every process s, the agent s passes T if and only
if s satis�es �T .

This expressive completeness result will be obtained as a corollary of a stronger
result pertaining to the compositionality of the property language SHML. A
property language is compositional if checking whether a composite system skT
satis�es a property � can be reduced to deciding whether the component s has a
corresponding property �=T . As the property �=T is required to be expressible
in the property language under consideration, compositionality clearly puts a
demand on its expressive power. Let Lnok be the property language that only
contains the simple safety property [nok]ff, expressing that the nok action cannot
be performed. We prove that SHML is the least expressive, compositional exten-
sion of the language Lnok (Thm. 3.19). This yields the desired expressive com-
pleteness result because any compositional property language that can express
the property [nok]ff is expressive complete with respect to tests (Propn. 3.13).
Any increase in expressiveness for the language SHML can only be obtained at
the loss of testability.
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The paper is organized as follows. After reviewing the model of labelled
transition systems and HML with recursion (Sect. 2), we introduce tests and
describe how they can be used to test for properties of processes (Sect. 3). We
then proceed to argue that not every formula in HML with recursion is testable
(Propn. 3.4), but that its sub-language SHML is (Sect. 3.1). Our main results
on the compositionality and completeness of SHML are presented in Sect. 3.2.

2 Preliminaries

We begin by brie�y reviewing the basic notions from process theory that will
be needed in this study. The interested reader is referred to, e.g., [7, 10, 13] for
more details.

Labelled Transition Systems Let Act be a set of actions, and let a; b range
over it. We assume that Act comes equipped with a mapping � : Act ! Act

such that a = a, for every a 2 Act. Action �a is said to be the complement of
a. We let Act� (ranged over by �) stand for Act [ f�g, where � is a symbol not
occurring in Act. Following Milner [13], the symbol � will stand for an internal
action of a system; such actions will typically arise from the synchronization of
complementary actions (cf. the rules for the operation of parallel composition in
Defn. 2.2).

De�nition 2.1. A labelled transition system (LTS) over the set of actions Act�
is a triple T = hS;Act� ;�!i where S is a set of states, and �! � S �Act� �S
is a transition relation. An LTS is �nite i� its set of states and its transition
relation are both �nite. It is rooted if a distinguished state root(T ) 2 S is singled
out as its start state.

As it is standard practice in process theory, we use the more suggestive notation

s
�
! s0 in lieu of (s; �; s0) 2�!. We also write s

�
9 if there is no state s0 such

that s
�
! s0. Following [13], we now proceed to de�ne versions of the transition

relations that abstract from the internal evolution of states as follows:

s
"
) s0 i� s

�
!

�

s0

s
�
) s0 i� 9s1; s2: s

"
) s1

�
! s2

"
) s0

where we use
�
!

�

to stand for the re�exive, transitive closure of
�
!.

De�nition 2.2 (Operations on LTSs).

� Let Ti = hSi;Act� ;�!ii (i 2 f1; 2g) be two LTSs. The parallel composition
of T1 and T2 is the LTS T1 k T2 = hS1 � S2;Act� ;�!i, where the transition
relation �! is de�ned by the rules (� 2 Act� ; a 2 Act):

s1
�
!1 s

0
1

s1ks2
�
! s01ks2

s2
�
!2 s

0
2

s1ks2
�
! s1ks

0
2

s1
a
!1 s

0
1 s2

a
!2 s

0
2

s1ks2
�
! s01ks

0
2

In the rules above, and in the remainder of the paper, we use the more
suggestive notation s k s0 in lieu of (s; s0).
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� Let T = hS;Act� ;!i be an LTS and let L � Act be a set of actions. The
restriction of T over L is the LTS T nL = hSnL;Act� ;;i, where SnL =
fsnL j s 2 Sg and the transition relation ; is de�ned by the rules:

s
�
! s0

snL
�
; s0nL

s
a
! s0

snL
a
; s0nL

where a; a 62 L.

The reader familiar with [13] may have noticed that the above de�nitions of
parallel composition and restriction are precisely those of CCS. We refer the
interested reader to op. cit. for more details on these operations.

Hennessy-Milner Logic with Recursion In their seminal study [7], Hen-
nessy and Milner gave a logical characterization of bisimulation equivalence [14]
(over states of image-�nite LTSs) in terms of a (multi-)modal logic which has
since then been referred to asHennessy-Milner Logic (HML). For the sake of com-
pleteness and clarity, we now brie�y review a variation of this property language
for concurrent processes which contains operations for the recursive de�nition
of formulae � a feature that dramatically increases its expressive power. The
interested reader is referred to, e.g., [10] for more details.

De�nition 2.3. Let Var be a countably in�nite set of formula variables, and let
nok denote an action symbol not contained in Act. The collection HML(Var) of
formulae over Var and Act [ fnokg is given by the following grammar:

� ::= tt j ff j � _ � j � ^ � j h�i� j [�]� j X j min(X;�) j max(X;�)

where � 2 Act [ fnokg, X is a formula variable and min(X;�) (respectively,
max(X;')) stands for the least (respectively, largest) solution of the recursion
equation X = '.

We use SHML(Var) (for `safety HML') to stand for the collection of formulae
in HML(Var) that do not contain occurrences of _, h�i and min(X;�).

A closed recursive formula of HML(Var) is a formula in which every formula
variable X is bound, i.e., every occurrence of X appears within the scope of
some min(X;�) or max(X;�) construct. A variable X is free in the formula � if
some occurrence of it in � is not bound. For example, the formula max(X;X) is
closed, but min(X; [a]Y ) is not because Y is free in it. The collection of closed
formulae contained in HML(Var) (respectively, SHML(Var)) will be written HML

(resp. SHML). In the remainder of this paper, every formula will be closed,
unless speci�ed otherwise, and we shall identify formulae that only di�er in the
names of their bound variables. For formulae � and  , and a variable X , we
write �f =Xg for the formula obtained by replacing every free occurrence of X
in � with  . The details of such an operation in the presence of binders are
standard (see, e.g., [15]), and are omitted here.

Given an LTS T = hS;Act� ;�!i, an environment is a mapping � : Var ! 2S .
For an environment �, variable X and subset of states S, we write �[X 7! S] for
the environment mapping X to S, and acting like � on all the other variables.
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De�nition 2.4 (Satisfaction Relation). Let T = hS;Act� ;�!i be an LTS.
For every environment � and formula ' contained in HML(Var), the collection
[[']]� of states in S satisfying the formula ' with respect to � is de�ned by
structural recursion on ' thus:

[[tt]]�
def
= S

[[ff]]�
def
= ?

[['1 _ '2]]
def
= [['1]]� [ [['2]]�

[['1 ^ '2]]
def
= [['1]]� \ [['2]]�

[[h�i']]
def
=
n
s j s

�
) s0 for some s0 2 [[']]�

o

[[[�]']]
def
=
n
s j for every s0, s

�
) s0 implies s0 2 [[']]�

o

[[X ]]�
def
= �(X)

[[min(X;')]]�
def
=
\

fS j [[']]�[X 7! S] � Sg

[[max(X;')]]�
def
=
[

fS j S � [[']]�[X 7! S]g :

The interested reader will �nd more details on this de�nition in, e.g., [10]. Here
we just con�ne ourselves to remarking that, as the interpretation of each formula
� containing at most X free induces a monotone mapping [[�]] : 2S ! 2S , the
closed formulae min(X;�) and max(X;�) are indeed interpreted as the least and
largest solutions, respectively, of the equation X = �. If ' is a closed formula,
then the collection of states satisfying it is independent of the environment �,
and will be written [[']]. In the sequel, for every state s and closed formula ',
we shall write s j= ' (read `s satis�es '') in lieu of s 2 [[']].

When restricted to SHML, the satisfaction relation j= is the largest relation
included in S�SHML satisfying the implications in Table 1. A relation satisfying
the de�ning implications for j= will be called a satis�ability relation. It follows
from standard �xed-point theory [16] that, over S �HML, the relation j= is the
union of all satis�ability relations and that the above implications are in fact
biimplications for j=.

Remark. Since nok is not contained in Act, every state of an LTS trivially
satis�es formulae of the form [nok]�. The role played by these formulae in the
developments of this paper will become clear in Sect. 3.2. Dually, no state of an
LTS satis�es formulae of the form hnoki'.

Formulae � and  are logically equivalent (with respect to j=) i� they are satis�ed
by the same states. We say that a formula is satis�able i� it is satis�ed by at
least one state in some LTS, otherwise we say that it is unsatis�able.

3 Testing Formulae

As mentioned in Sect. 1, the main aim of this paper is to present a complete
characterization of the class of testable properties of states of LTSs that can
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s j= tt ) true

s j= ff ) false

s j= '1 ^ '2 ) s j= '1 and s j= '2

s j= [�]' ) 8s0: s
�
) s0 implies s0 j= '

s j= max(X;') ) s j= 'fmax(X;')=Xg

Table 1. Satisfaction implications

be expressed in the language HML. In this section we de�ne the collection of
tests and the notion of property testing used in this study. Informally, testing
involves the parallel composition of the tested state with a test. Following the
spirit of the classic approach of De Nicola and Hennessy [4, 6], we say that the
tested state fails a test if the distinguished reject action nok can be performed
by the test while it interacts with it, and passes otherwise. The formal de�nition
of testing then involves the de�nition of what a test is, how interaction takes
place and when the test has failed or succeeded. We now proceed to make these
notions precise.

De�nition 3.1 (Tests). A test is a �nite, rooted LTS over the set of actions
Act� [ fnokg.

In the remainder of this study, tests will often be concisely described using the
regular fragment of Milner's CCS [13] given by the following grammar:

T ::= 0 j �:T j T + T j X j �x(X = T )

where � 2 Act� [ fnokg, and X ranges over Var. As usual, we shall only be
concerned with the closed expressions generated by the above grammar, with
�x(X = T ) as the binding construct, and we shall identify expressions that only
di�er in the names of their bound variables. In the sequel, the symbol � will
be used to denote syntactic equality up to renaming of bound variables. The
operation of substitution over the set of expressions given above is de�ned ex-
actly as for formulae in HML(Var). The operational semantics of the expressions
generated by the above grammar is given by the classic rules for CCS. These are
reported below for the sake of clarity:

�:T
�
! T

T1
�
! T 0

1

T1 + T2
�
! T 0

1

T2
�
! T 0

2

T1 + T2
�
! T 0

2

Tf�x(X = T )=Xg
�
! T 0

�x(X = T )
�
! T 0

where � is either nok or an action in Act� . The intention is that the term T
stands for the test whose start state is T itself, whose transitions are precisely
those that are provable using the above inference rules, and whose set of states
is the collection of expressions reachable from T by performing zero or more
transitions. We refer the reader to [13] for more information on the operational
semantics of CCS.
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De�nition 3.2 (Testing Properties). Let ' be a formula in HML, and let T
be a test.

� A state s of an LTS passes the test T i� (skroot(T ))nAct
nok

;. Otherwise we
say that s fails the test T .

� We say that the test T tests for the formula ' (and that ' is testable) i� for
every LTS T and every state s of T , s j= ' i� s passes the test T .

� Let L be a collection of formulae in HML. We say that L is testable i� each
of the formulae in L is.

Example 3.3. The formula [a]ff states that a process does not a�ord a
a
)-

transition. We therefore expect that a suitable test for such a property is

T � �a:nok:0. Indeed, the reader will easily realize that (skT )nAct
nok

; i� s
a
;,

for every state s. The formula [a]ff is thus testable, in the sense of this paper.

The formula max(X; [a]ff^ [b]X) is satis�ed by those states which cannot per-

form a
a
)-transition, no matter how they engage in a sequence of

b
)-transitions.

A suitable test for such a property is �x(X = �a:nok:0 + �b:X), and the formula
max(X; [a]ff ^ [b]X) is thus testable.

As already stated, our main aim in this paper is to present a characterization of
the collection of HML-properties that are testable in the sense of Defn. 3.2. To
this end, we begin by providing evidence to the e�ect that not every property
expressible in HML is testable.

Proposition 3.4 (Two Negative Results).

1. Let � be a formula in HML. Suppose that � is satis�able. Then, for every
action a in Act, the formula hai� is not testable.

2. Let a and b be two distinct actions in Act. Then the formula [a]ff _ [b]ff is
not testable.

Remark. If ' is unsatis�able, then the formula hai' is logically equivalent to
ff. Since ff is testable using the test nok:0, the requirement on ' is necessary
for Propn. 3.4(1) to hold. Note moreover that, as previously remarked, both the
formulae [a]ff and [b]ff are testable, but their disjunction is not (Propn. 3.4(2)).

Our aim in the remainder of this paper is to show that the collection of testable
properties is precisely SHML. This is formalized by the following result.

Theorem 3.5. The collection of formulae SHML is testable. Moreover, every
testable property in HML can be expressed in SHML.

The remainder of this paper will be devoted to a proof of the above theorem. In
the process of developing such a proof, we shall also establish some results per-
taining to the expressive power of SHML which may be of independent interest.
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3.1 Testability of SHML

We begin our proof of Thm. 3.5 by showing that the language SHML is testable.
To this end, we de�ne, for every open formula � in the language SHML(Var), a
regular CCS expression T� by structural recursion thus:

Ttt
def
= 0 T[a]�

def
= �a:T�

Tff
def
= nok:0 TX

def
= X

T�1^�2
def
= �:T�1 + �:T�2 Tmax(X;�)

def
= �x(X = T�) :

For example, if � � max(X; [a]ff ^ [b]X) then T� is the test �x(X = �:�a:nok:0+
�:�b:X). We recall that we identify CCS descriptions of tests that only di�er in
the name of their bound variables since they give rise to isomorphic LTSs. Our
order of business in this section will be to show the following result:

Theorem 3.6. Let � be a closed formula contained in SHML. Then the test T�
tests for it.

In the proof of this theorem, it will be convenient to have an alternative, novel
characterization of the satisfaction relation for formulae in the language SHML.
This we now proceed to present.

De�nition 3.7. Let T = hS;Act� ;�!i be an LTS. The satisfaction relation j="

is the largest relation included in S�SHML satisfying the following implications:

s j=" tt ) true

s j=" ff ) false

s j=" '1 ^ '2 ) s0 j=" '1 and s0 j=" '2; for every s
0 such that s

"
) s0

s j=" [a]' ) s
a
) s0 implies s0 j=" '; for every s

0

s j=" max(X;') ) s0 j=" 'fmax(X;')=Xg; for every s
0 such that s

"
) s0

A relation satisfying the above implications will be called a weak satis�ability
relation.

The satisfaction relation j=" is closed with respect to the relation
"
), in the sense

of the following proposition.

Proposition 3.8. Let T = hS;Act� ;�!i be an LTS. Then, for every s 2 S

and ' 2 SHML, s j=" ' i� s0 j=" ', for every s0 such that s
"
) s0.

Proof. The only interesting thing to check is that if s j=" ' and s
"
) s0, then

s0 j=" '. To this end, it is su�cient to prove that the relation R de�ned thus:

R
def
= f(s; ') j 9t: t j=" ' and t

"
) sg

is a weak satis�ability relation. The straightforward veri�cation is left to the
reader. 2
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We now proceed to establish that the relations j=" and j= coincide for formulae
in SHML.

Proposition 3.9. Let � be a formula contained in SHML. Then, for every state
s of an LTS, s j= � i� s j=" �.

In the proof of Thm. 3.6, it will be convenient to have at our disposal some
further auxiliary results. For ease of reference, these are collected in the following
lemma.

Lemma 3.10.

1. Let � be a formula in SHML. Assume that T�
nok

!. Then � is logically
equivalent to ff.

2. Let � be a formula in SHML. Assume that T�
�
! T . Then there are formulae

�1 and �2 in SHML such that T � T�1 , and � is logically equivalent to �1^�2.

3. Let � be a formula in SHML. Assume that T�
�a
! T . Then there is a formula

 in SHML such that T � T , and � is logically equivalent to [a] .

Using these results, we are now in a position to prove Thm. 3.6.

Proof of Thm. 3.6: In light of Propn. 3.9, it is su�cient to show that, for
every state s of an LTS and closed formula � 2 SHML,

s j=" � i� (skT�)nAct
nok

; :

We prove the two implications separately.

� `If Implication'. It is su�cient to show that the relation

R
def
=
n
(s; �) j (skT�)nAct

nok

; and � 2 SHML

o

is a weak satis�ability relation. The details of the proof are left to the reader.
� `Only If Implication'. We prove the contrapositive statement. To this
end, assume that

(skT�)nAct
"
) (s0kT 0)nAct

nok

!

for some state s0 and test T 0. We show that s 6j=" � holds by induction on

the length of the computation (skT�)nAct
"
) (s0kT 0)nAct.

� Base Case: (skT�)nAct � (s0kT 0)nAct
nok

!. In this case, we may in-

fer that T�
nok

!. By Lemma 3.10(1), it follows that � is unsatis�able.
Propn. 3.9 now yields that s 6j=" �, which was to be shown.

� Inductive Step: (skT�)nAct
�
! (s00kT 00)nAct

"
) (s0kT 0)nAct

nok

!, for
some state s00 and test T 00. We proceed by a case analysis on the form
the transition

(skT�)nAct
�
! (s00kT 00)nAct

may take.
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� Case: s
�
! s00 and T 00 � T�. In this case, we may apply the inductive

hypothesis to infer that s00 6j=" �. By Propn. 3.8, it follows that
s 6j=" �, which was to be shown.

� Case: T�
�
! T 00 and s = s00. By Lemma 3.10(2), it follows that � is

logically equivalent to �1^�2 for some formulae �1 and �2 in SHML,
and that T 00 � T�1 . By induction, we may now infer that s 6j=" �1.
Since � is logically equivalent to �1 ^ �2, this implies that s 6j=" �
(Propn. 3.9), which was to be shown.

� Case: s
a
! s00 and T�

�a
! T 00, for some action a 2 Act. By

Lemma 3.10(3), it follows that � is logically equivalent to [a] for
some formula  in SHML, and that T 00 � T . By induction, we may
now infer that s00 6j="  . Since � is logically equivalent to [a] and

s
a
! s00 6j="  , this implies that s 6j=" � (Propn. 3.9), which was to be

shown.

This completes the inductive argument, and the proof of the `only if'
implication.

The proof of the theorem is now complete. 2

3.2 Expressive Completeness of SHML

We have just shown that every property ' which can be expressed in the language
SHML is testable, in the sense of Defn. 3.2. We now address the problem of the
expressive completeness of this property language with respect to tests. More
precisely, we study whether all properties that are testable can be expressed in
the property language SHML � in the sense that, for every test T , there exists
a formula  T in SHML such that every state of an LTS passes the test T if,
and only if, it satis�es  T . Our aim in this section is to complete the proof
of Thm. 3.5 by arguing that the language SHML is expressive complete, in the
sense that every test T may be expressed as a property in the language SHML

in the precise technical sense outlined above. This amounts to establishing an
expressive completeness result for SHML akin to classic ones presented in, e.g.,
[9, 5, 17]. In the proof of this expressive completeness result, we shall follow an
indirect approach by focusing on the compositionality of a property language L
with respect to tests and the parallel composition operator k. As we shall see
(cf. Propn. 3.13), if a property language L, that contains the property [nok]ff,
is compositional with respect to tests and k (cf. Defn. 3.12) then it is expressive
complete (cf. Defn. 3.11). We shall show that SHML is compositional with
respect to tests and k, and obtain the expressive completeness of such a language
as a corollary of this stronger result.

We begin with some preliminary de�nitions, introducing the key concepts of
compositionality and (expressive) completeness.

De�nition 3.11 (Expressive completeness). Let L be a collection of for-
mulae in HML. We say that L is (expressive) complete (with respect to tests) if
for every test T there exists a formula 'T 2 L such that, for every state s of an
LTS, s j= 'T i� s passes the test T .
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Compositionality, on the other hand, is formally de�ned as follows:

De�nition 3.12 (Compositionality). Let L be a collection of formulae in
HML. We say that L is compositional (with respect to tests and k) if, for every
' 2 L and every test T , there exists a formula '=T 2 L such that, for every
state s of an LTS, s k root(T ) j= ' i� s j= '=T .

Intuitively, the formula '=T states a necessary and su�cient condition for state
s to satisfy ' when it is made to interact with the test T .

Our interest in compositionality stems from the following result that links it
to the notion of completeness. In the sequel, we use Lnok to denote the property
language that only consists of the formula [nok]ff. (Recall that nok is a fresh
action not contained in Act.)

Proposition 3.13. Let L be a collection of formulae in HML that includes Lnok.
Suppose that L is compositional. Then L is complete with respect to tests.

Proof. Consider an arbitrary test T . We aim at exhibiting a formula �T 2 L
meeting the requirements in Defn. 3.11. Since L is compositional and contains
the formula [nok]ff, we may de�ne 'T to be the formula ([nok]ff)=T . Let s be
an arbitrary state of an LTS. We can now argue that s passes T i� it satis�es
�T thus:

s passes the test T i� (skroot(T ))nAct
nok

;

i� (skroot(T ))nAct j= [nok]ff

i� (skroot(T )) j= [nok]ff

(As nok 62 Act)

i� s j= ([nok]ff)=T

(As L is compositional)

i� s j= 'T :

This completes the proof. 2

As we shall now show, SHML is compositional with respect to tests and k, and
thus expressive complete with respect to tests. We begin by de�ning a quotient
construction for formulae of SHML, in the spirit of those given for di�erent
property languages and over di�erent models in, e.g., [12, 3, 11].

De�nition 3.14 (Quotient Construction). Let T be a test, and let t be one
of its states. For every formula ' SHML, we de�ne the formula '=t (read `'
quotiented by t') as shown in Table 2.

Some remarks about the de�nition presented in Table 2 are now in order. The
de�nition of the quotient formula '=t presented ibidem should be read as yielding
a �nite list of recursion equations, over variables of the form  =t0, for every
formula ' and state t of a test. The quotient formula '=t itself is the component
associated with '=t in the largest solution of the system of equations having '=t
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ff=t
def
= ff

tt=t
def
= tt

(�1 ^ �2)=t
def
= �1=t ^ �2=t

([�]�)=t
def
= [�](�=t) ^

^
n
t0 j t

�
) t0

o(�=t
0) ^

^
n
(b; t0) j t

b
) t0

o[b]
�
([�]�)=t0

�

max(X;�)=t
def
= (�fmax(X;�)=Xg)=t

Table 2. Quotient construct for SHML

as leading variable. For instance, if ' is the formula [a]ff and t is a node of a

test whose only transition is t
�b
! t, then, as the reader can easily verify, '=t is

the largest solution of the recursion equation:

'=t
def
= [a]ff ^ [b]('=t)

which corresponds to the formula max(X; [a]ff ^ [b]X) in the property language
SHML. This formula states the, intuitively clear, fact that a state of the form
s k t cannot perform a

a
)-transition i� s cannot execute such a step no matter

how it engages in a sequence of synchronizations on b with t. Note that the
quotient of a recursion-free formula may be a formula involving recursion. It
can be shown that this is inevitable, because the recursion-free fragment of
SHML is not compositional. Finally, we remark that, because of our �niteness
restrictions on tests, the right-hand side of the de�ning equation for ([�]�)=t is
a �nite conjunction of formulae.

The following key result states the correctness of the quotient construction.

Theorem 3.15. Let ' be a closed formula in SHML. Suppose that s is a state
of an LTS, and t is a state of a test. Then s k t j= ' i� s j= '=t.

Proof. We prove the two implications separately.

� `Only If Implication'. Consider the environment � mapping each variable
'=t in the list of equations in Table 2 to the set of states fs j skt j= 'g. We
prove that � is a post-�xed point of the monotonic functional on environ-
ments associated with the equations in Table 2, i.e., that if s 2 �(�=t) then
s 2 [[ ]]�, where  is the right-hand side of the de�ning equation for �=t.
This we now proceed to do by a case analysis on the form the formula ' may
take. We only present the details for the most interesting case in the proof.

� Case: ' � [�] . Assume that skt j= [�] . We show that state s
is contained in [[�]]� for every conjunct � in the right-hand side of the
de�ning equation for ([�] )=t.
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� Case: � � [�]( =t). To show that s 2 [[�]]�, it is su�cient to prove

that s0 2 [[ =t]]�, for every s0 such that s
�
) s0. To this end, we

reason as follows:

s
�
) s0 implies skt

�
) s0kt

implies s0kt j=  

(As skt j= [�] )

i� s0 2 �( =t)

(By the de�nition of �)

i� s0 2 [[ =t]]� :

� Case: � �  =t0 with t
�
) t0. To show that s 2 [[�]]�, it is su�cient

to prove that s 2 [[ =t0]]�, for every t0 such that t
�
) t0. To this end,

we reason as follows:

t
�
) t0 implies skt

�
) skt0

implies skt0 j=  

(As skt j= [�] )

i� s 2 �( =t0)

(By the de�nition of �)

i� s 2 [[ =t0]]� :

� Case: � � [�b]
�
([�] )=t0

�
with t

b
) t0. To show that s 2 [[�]]�, it

is su�cient to prove that s0 2 [[([�] )=t0]]�, for every s0 such that

s
�b
) s0. To this end, we reason as follows:

s
�b
) s0 and t

b
) t0 imply skt

�
) s0kt0

implies s0kt0 j= [�] 

(By Propns. 3.8 and 3.9, as skt j= [�] )

i� s0 2 �(([�] )=t0)

(By the de�nition of �)

i� s0 2 [[([�] )=t0]]� :

The proof for the case � � [�] is now complete.

� `If Implication'. Consider the relation R de�ned thus:

R
def
= f(skt; ') j s j= '=tg :

It is not hard to show that R is a satis�ability relation.

The proof of the theorem is now complete. 2

Corollary 3.16. The property language SHML is compositional with respect to
tests and the parallel composition operator k.
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Proof. Given a property ' 2 SHML and a test T , de�ne '=T to be the formula
'=root(T ) given by the quotient construction. The claim is now an immediate
consequence of Thm. 3.15. 2

Theorem 3.17. The property language SHML is expressive complete.

Example 3.18. Applying the construction in the proof of Propn. 3.13, and the
de�nition of the quotient formula to the tests

T1 � �x(X = �a:nok:0+�b:X) and

T2 � �x(X = �:�a:nok:0+ �:�b:X)

yields that the formula tested by both T1 and T2 is max(X; [a]ff ^ [b]X).

Collecting the results in Thms. 3.6 and 3.17, we have now �nally completed
the proof of Thm. 3.5. Thus, as claimed, the collection of testable properties
coincides with that of the properties expressible in SHML. The following result
gives another characterization of the expressive power of SHML which has some
independent interest.

Theorem 3.19. The property language SHML is the least expressive extension
of Lnok that is compositional with respect to tests and k.

Proof. Assume that L is a property language that extends Lnok and is compo-
sitional. We show that every property in SHML is logically equivalent to one in
L, i.e., that L is at least as expressive as SHML. To this end, let ' be a property
in SHML. By Thm. 3.6, there is a test T' such that s j= ' i� s passes the
test T', for every state s. Since L is an extension of Lnok that is compositional,
Propn. 3.13 yields that L is complete. Thus there is a formula  2 L such that
s j=  i� s passes the test T', for every state s. It follows that  and ' are
satis�ed by precisely the same states, and are therefore logically equivalent. 2
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