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The purpose of these notes is to discuss some examples of the importance
of types for reasoning about concurrent systems, and to list some relevant ref-
erences. The list is surely not meant to be exhaustive, as the area is broad and
very active. The examples are presented in the �-calculus [29], a paradigmatical
process calculus for message-passing concurrency. We will not describe the proof
techniques based on types with which the equalities in the examples are actually
proved; for this, the interested reader can follow the references.
Acknowledgements. I would like to thank Benjamin Pierce, for our collaborations
and the numerous discussions on the topic of these notes.

The �-calculus. As the �-calculus, so the �-calculus language consists of a
small set of primitive constructs. In the �-calculus, they are constructs for build-
ing functions. In the �-calculus, they are constructs for building processes, no-
tably: composition P j Q to run two processes in parallel; restriction �x P to
localise the scope of name x to process P (name is a synonymous for channels);
input x(y).P to receive a name z at x and then to continue as Pfz=yg; output
xhyi.P to emit name y at x and then to continue as P ; replication !P to express
processes with an in�nite behaviour (!P stands for a countable in�nite number
of copies of P in parallel); the inactive process 0. In the pure (i.e., untyped)
calculus, all values transmitted are names.

We will �nd it convenient to present some of the examples on the polyadic
�-calculus, an extension of the pure calculus in which tuples of names may be
transmitted. A polyadic input process x(y1; : : : ; yn).P waits for an n-uple of
names z1; : : : ; zn at x and then continues as Pfz1; : : : ; zn=y1; : : : ; yng (that is, P
with the yi's replaced by the zi's); a polyadic ouput process xhy1; : : : ; yni.P emits
names y1; : : : ; yn at x and then continues as P . We will abbreviate processes of
the form xhy1; : : : ; yni.0 as xhy1; : : : ; yni.

The most important predecessor of the �-calculus is CCS. The main novelty
of the �-calculus over CCS is that names themselves may be communicated. This
gives �-calculus a much greater expressiveness. We can encode, for instance: data
values, the �-calculus, higher-order process calculi (i.e., calculi where terms of the
language can be exchanged) [27, 28, 42], which indicates that the �-calculus can
be a model of languages incorporating functional and concurrent features, and
that it may be a foundation for the design of new programming languages; the
spatial dependencies among processes [39], which indicates that the �-calculus
can be a model of languages for distributed computing; (some) object-oriented
languages [21, 52, 22, 20].

Types. A type system is, roughly, a mechanism for classifying the expressions
of a program. Type systems are useful for several reasons: to perform optimisa-
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tions in compilers; to detect simple kinds of programming errors at compilation
time; to aid the structure and design of systems; to extract behavioral informa-
tion that can be used for reasoning about programs. In sequential programming
languages, type systems are widely used and generally well-understood. In con-
current programming languages, by contrast, the tradition of type systems is
much less established.

In the �-calculus world, types have quickly emerged as an important part of
its theory and of its applications, and as one of the most important di�erences
with respect to CCS-like languages. The types that have been proposed for the
�-calculus are often inspired by well-known type systems of sequential languages,
especially �-calculi. Also type systems speci�c to processes have been (and are
being) investigated, for instance for preventing certain forms of interferences
among processes or certain forms of deadlocks.

One of the main reasons for which types are important for reasoning on �-
calculus processes is the following. Although well-developed, the theory of the
pure �-calculus is often insu�cient to prove �expected� properties of processes.
This because a �-calculus programmer normally uses names according to some
precise logical discipline (the same happens for the �-calculus, which is hardly-
ever used untyped since each variable has usually an `intended' functionality).
This discipline on names does not appear anywhere in the terms of the pure
calculus, and therefore cannot be taken into account in proofs. Types can bring
this structure back into light. Below we illustrate this point with two examples
that have to do with encapsulation.

Encapsulation. Desirable features in both sequential and concurrent languages
are facilities for encapsulation, that is for constraining the access to components
such as data and resources. The need of encapsulation has led to the deveolpment
of abstract data types and is a key feature of objects in object-oriented languages.

In CCS, encapsulation is given by the restriction operator. Restricting a
channel x on a process P , written (using �-calculus notation) �x P , guarantees
that interactions along x between subcomponents of P occur without interference
from outside. For instance, suppose we have two 1-place bu�ers, Buf1 and Buf2,
the �rst of which receives values along a channel x and resends them along y,
whereas the second receives at y and resends at z. They can be composed into
a 2-place bu�er which receives at x and resends at z thus: �y (Buf1 j Buf2).
Here, the restriction ensures us that actions at y from Buf1 and Buf2 are not
stolen by processes in the external environment. With the formal de�nitions of
Buf1 and Buf2 at hand, one can indeed prove that the system �y (Buf1 j Buf2)
is behaviourally equivalent to a 2-place bu�er.

The restriction operator provides quite a satisfactory level of protection in
CCS, where the visibility of channels in processes is �xed. By contrast, restriction
alone is often not satisfactory in the �-calculus, where the visibility of channels
may change dynamically. Here are two examples.

Example 1 (A printer with mobile ownership [34]). Consider the situation in
which several client processes cooperate in the use of a shared resource such as
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a printer. Data are sent for printing by the client processes along a channel p.
Clients may also communicate channel p so that new clients can get access to
the printer. Suppose that initially there are two clients

C1 = phj1i. phj2i : : :

C2 = bhpi

and therefore, writing P for the printer process, the initial system is

�p (P j C1 j C2).

One might wish to prove that C1's print jobs represented by j1 and j2 are even-
tually received and processed in that order by the printer, possibly under some
fairness condition on the printer scheduling policy. Unfortunately this is false: a
misbehaving new client C3 which has obtained p from C2 can disrupt the pro-
tocol expected by P and C1 just by reading print requests from p and throwing
them away:

C3 = p(j). p(j0).0.

2

Example 2 (A boolean package implementation [35]). For an even more dramatic
example, consider a �-calculus representation of a simple boolean package:

BoolPack1 = (�t; f; if )
�

getBoolht; f; ifi
j !t(x; y).xhi
j !f(x; y). yhi

j !if(b; x; y). bhx; yi
�

The package provides implementation of the true and false values and of an
if-true function. In the �-calculus, a boolean value is implemented as a process
located at a certain name; above the name is t for the value true and f for the
value false. This process receives two return channels, above called x and y,
and produces an answer at the �rst or at the second depending on whether
the value true or false is implemented. The if-true function is located at
if, where it receives three arguments: the location b of a boolean value and
two return channels x and y; the function interacts with the boolean located
at b and, depending on whether this is true or false, an answer at x or y is
produced. Both the boolean values and the if-true function are replicated so
that they may be used more than once. Other functionalities, like and, or and
not functions, can be added to the package in a similar way.

A client can use the package by reading at getBool the channels t; f and if.
After this, what remains of the package is

!t(x; y).xhi
j !f(x; y). yhi

j !if(b; x; y). bhx; yi
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But now the implementation of the package is completely uncovered! A misbe-
having client has free access to the internal representation of the components. It
may interfere with these components, by attempting to read from t; f or if. It
may also send at if a tuple of names the �rst of which is not the location of a
boolean value. If multiple processes get to know the access channels t; f and if

(which may happen because these channel may be communicated), then a client
has no guarantee about the correctness of the answers obtained from querying
the package. 2

Using types to obtain encapsulation. In the two examples, the protection
of a resource fails if the access to the resource is transmitted, because no as-
sumptions on the use of that access by a recipient can be made. Simple and
powerful encapsulation barriers against the mobility of names can be created
using type concepts familiar from the literature of typed �-calculi. We discuss
the two examples above.

The misbehaving printer client C3 of Example 1 can be prevented by sepa-
rating between the input and the output capabilities of a channel. It su�ces to
assign the input capability on channel p to the printer and the output capability
to the initial clients C1 and C2. In this way, new clients which receive p from
existing clients will only receive the output capability on p. The misbehaving C3
is thus ruled out as ill-typed, as it uses p in input. This idea of �directionality in
channels� was introduced in [34] and formalised by means of type constructs, the
i/o types. They give rise to a natural subtyping relation, similar to those used for
reference types in imperative languages like Forsythe (cf: Reynolds [38]). In the
case of the �-calculus encodings of the �-calculus [27], this subtyping validates
the standard subtyping rules for function types [42]. This subtyping is also im-
portant when modeling object-oriented languages, whose type systems usually
incorporate some powerful form of subtyping.

A common concept in typed �-calculi is polymorphism. It is rather straight-
forward to add it onto a �-calculus type system by allowing channels to carry
a tuple of both types and values. Forms of polymorphic type systems for the
�-calculus are presented in [12, 50, 48, 47, 35, 11]. Polymorphic types can be used
in Example 2 of the boolean package BoolPack1 to hide the implementation
details of the package components, in a way similar to Mitchell and Plotkin's
representation of abstract data types in the �-calculus [30]. We can make channel
getBool polymorphic by abstracting away the type of the boolean channels t
and f . This forces a well-typed observer to use t and f only as arguments of the
if-true function. Indeed, using polymorphism this way the package BoolPack1
is undistinguishable from the package

BoolPack2 = (�t; f; if )
�

getBoolht; f; ifi
j !t(x; y). yhi
j !f(x; y).xhi

j !if(b; x; y). bhy; xi
�
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The latter has a di�erent internal representations of the boolean values (a value
true responds on the second of the two return channels, rather than on the �rst,
and similarly for the value false) and of the if-true function. By �undistin-
guishable�, we mean that no well-typed observer can tell the di�erence between
the two packages by interacting with them.

The packages BoolPack1 and BoolPack2 are not behavioural equivalent in
the standard theories of behavioural equivalences for process calculi. Trace equiv-
alence is considered the coarsest behavioural equivalence; the packages are not
trace equivalent because they have several di�erent traces of actions, e.g.,

getBoolsht; f; ifiif(t; x; y). thx; yi

is a trace of BoolPack1 but not of BoolPack2.
Similarly, suppose we have, as in some versions of the �-calculus, a mismatch

construct [x 6= y]P that behaves as P if names x and y are di�erent, as 0 if
they are equal. With polymorphism we can make BoolPack1 equivalent to the
package BoolPack3 obtained from BoolPack1 by replacing the line implementing
the conditional test with:

if(b; x; y). (bhx; yi j [b 6= t][b 6= f ] BAD).

where BAD can be any process. The new package is equivalent to BoolPack1

because the value received at if for b is always either t or f . This example shows
that a client of the boolean package is not authorized to make up new values of
the same type as the boolean channels t and f , since the client knows nothing
about this type. Again, the equivalence betweeb BoolPack1 and BoolPack3 is
not valid in the standard theories of behavioural equivalences for process calculi.

Types for reasoning. Types are important for reasoning on �-calculus pro-
cesses. First, types reduce the number of legal contexts in which a given process
may be tested. The consequence is that more behavioural equalities between pro-
cesses are true than in the untyped calculus. Examples of this have been given
above. The equalities considered in these examples fail in the untyped �-calculus,
even with respect to the very coarse notion of trace equivalence. That is, there
are contexts of the untyped �-calculus that are able to detect the di�erence be-
tween the processes of the equalities. By imposing type systems, these contexts
are ruled out as ill-typed. On the remaining legal contexts the processes being
compared are undistinguishable. Useful algebraic laws, such as laws for copy-
ing or distributing resources whose e�ect is to localise computation or laws for
enhancing the parallelism in a process, can thus become valid.

Secondly, types facilitate the reasoning, by allowing the use of some proof
techniques or simplifying their application. For instance type system for linearity,
con�uence, and receptiveness (see below) guarantee that certain communications
are not preemptive. This is a partial con�uence property, in the presence of which
only parts of process behaviours need to be explored. Types can also allow more
e�cient implementations of communications between channels, or optimisations
in compilers such as tail-call optimisation.
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Another situation where types are useful is in limiting the explosion of the
number of the derivatives of a process. To see why this can be a problem, consider
a process a(x).P . In the untyped �-calculus, its behaviour is determined by the
set of all derivatives Pfb=xg, where b ranges over the free names of P plus a fresh
one. In case of a cascade of inputs, this gives rise to state explosion, which at
present is a serious obstacle to the development of tools for mechanical analysis
of processes. The number of legal derivatives of processes can be reduced using
types. For instance, in the example of the boolean package BoolPack1, having
polymorphic types we know that the only possible names that can be received
for the parameter b of the if-true function are t and f .

Types in �-calculi: some references. In the �-calculus, where functions are
the unit of interaction, the key type construct is arrow type. In the �-calculus
names are the unit of interaction and therefore the key type construct is the
channel (or name) type ] T . A type assignment a : ] T means that a can be used
as a channel to carry values of type T . As names can carry names, T itself can be
a channel type. If we add a set of basic types, such as integer or boolean types, we
obtain the analogous of simply-typed �-calculus, which we may therefore call the
simply-typed �-calculus. Type constructs familiar from sequential languages, such
as those for products, unions, records, variants, recursive types, polymorphism,
subtyping, linearity, can be adapted to the �-calculus [12, 50, 51, 18, 48, 47, 24,
19, 32, 11, 35, 3].

If we have recursive types, then we may avoid basic types as initial elements
for de�ning types. The calculus with channel, product and recursive types is the
polyadic �-calculus, mentioned at the beginning of these notes. Its type system
is, essentially, Milner's sorting systems [27], historically the �rst form of type
system for the �-calculus (in the sorting system type equality is syntactic, i.e.,
`by-name'; more �exible notions of type equality are adopted in later systems).

The following type systems are development of those above but go beyond
traditional type systems for sequential languages. Sewell [43] and Hennessy and
Riely [17, 16] extend the i/o type system with richer sets of capabilities for dis-
tributed versions of the �-calculus (also [9] extends i/o types, on a Linda-based
distributed language). Ste�en and Nestmann [45] use types to obtain con�uent
processes. Receptive types [40] guarantee that the input end of a name is �func-
tional�, in the sense that it is always available (hence messages sent along that
names can be immediately processed) and with the same continuation. Yoshida
[53], Boudol [7] and Kobayashi and Sumii [23, 46], Ravara and Vasconcelos [37]
put forward type systems that prevent certain forms of deadlocks. Abadi [1] uses
types for guaranteeing secrecy properties in security protocols. The typing rules
guarantee that a protocol that typechecks does not leak its secret information.
Typing rules and protocols are presented on the spi-calculus, an extension of
the �-calculus with shared-key cryptographic primitives. Honda [19] proposes
a general framework for the the above-mentioned types, as well as other type
systems.
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Experimental typed programming languages, or proposals for typed program-
ming languages, inspired by the �-calculus include Pict [36], Join [10], Blue [6],
and Tyco [49].

Reasoning techniques for typed behavioural equivalences are presented in [34,
5, 3, 26, 17] for i/o or related types, in [35] for polymorphic types, in [24] for linear
types, in [40] for receptive types. One of the most important application areas for
the �-calculus is object-oriented languages. The reason is that naming is a central
notion both for these languages and for the �-calculus. Proof techniques based
on types have been used to prove the validity of algebraic laws and programm
transformations on object-oriented languages [22, 41, 8, 20].

Other type sytems for concurrent calculi. Type systems can be used to
guarantee safety properties, such as the absence of run-time errors. Examples 1
and 2 above show more re�ned properties, in which types prevent undesirable
interactions among processes (even if these interactions would not produce run-
time errors) thus guaranteeing that certain security constraints are not violated.
In the printer Example 1, i/o types prevent malicious adversary from stealing
jobs sent to the printer. In the boolean package Example 2, polymorphism pre-
vents free access to the implementation details of the package.

Here are other works that apply types to security, on calculi or languages
that are not based on the �-calculus. Smith and Volpano [44] use type systems
to control information �ow and to guarantee that private information is not
improperly disclosed. Program variables are separated into high security and
low security variables; the type system prevents information from �owing from
high variables to low variables, so that the �nal values of the low variables are
independent of the initial values of the high variables. On the use of type systems
for controlling the �ow of secure information, see also Heintze and Riecke [15].
Leroy and Rouaix [25] show how types can guarantee certain security properties
on applets. Necula and Lee's proof-carrying code [31] is an elegant technique for
ensuring safety of mobile code; mobile code is equipped with a proof attesting the
conformity of the code to some safety policy. De�ning and checking the validity
of proofs exploits the type theory of the Edinburgh Logical Framework.

Applications of type theories to process reasoning include the use of theorem
provers to verify the correctness of process protocols and process transformations
[4, 33, 14].

We conclude mentioning a denotational approach to types for reasoning on
processes. Abramsky, Gay and Nagarajan [2] have proposed Interaction Cate-
gories as a semantic foundation for typed concurrent languages, based on cate-
gory theory and linear logic. In Interaction Categories, objects are types, mor-
phisms are processes respecting those types, and composition is process interac-
tion. Interaction Categories have been used to give the semantics to data-�ow
languages such as Lustre and Signal, and to de�ne classes of processes that
are deadlock-free in a compositional way. [13] presents a typed process calculus
whose design follows the structure of Interaction Categories. It is not clear at
present how Interaction Categories can handle process mobility and distribution.
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