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Abstract. Several extensions of tree automata have been de�ned, in
order to take in account non-linearity in terms. Roughly, these automata
allow equality or disequality constraints between subterms. They have
been used to get decision results, e.g. in term rewriting. One natural
question arises when we consider a language recognized by such an au-
tomaton: is this language recognizable, i.e. are the constraints necessary?
Here we study this problem in the class REC6= corresponding to com-
parisons between brothers and we prove its decidability. It gives e.g. a
decision procedure for testing whether the image by a quasi-alphabetic
homomorphism of a recognizable tree language is recognizable.

1 Introduction

Even if many concepts in tree languages can be viewed as extensions of the
word case, some new di�culties and phenomena arise when we consider trees,
in particular "non-linearity" (a term is non linear if it contains two occurrences
of the same variable). For example, the family of recognizable sets is not closed
under non-linear homomorphism. Actually tree automata can't deal with non
linear terms: e.g. the set of terms containing an occurrence of f(x; x) is not
recognizable. As non linear terms occur very often, e.g. in logic or equational
programming, several extensions of tree automata have been de�ned, in order
to take in account non-linearity in terms.
The �rst one is the class of automata with equality tests (Rateg automata)
[13]; unfortunately, the emptiness property is undecidable for this class. Several
"decidable" classes have then been de�ned, dealing with restrictions to the tests
in order to keep good decidability and closure properties.
First, Bogaert and Tison [3] introduced REC6= automata (tree automata with
comparisons between brothers) and denoted REC6= the set of languages recog-
nized by these automata. The rules use tests in order to impose either equal-
ities, or di�erences between brother terms: rules like f(q; q)[x1 = x2] ! q1 or
f(q; q)[x1 6= x2] ! q2 are allowed. The emptiness problem in REC6= has been
proved decidable in [3] and the class has good closure properties.
One more general class with good decidability properties has then been intro-
duced (Caron et al. [5,4,6]): the class of reduction automata, which roughly allow
arbitrary disequality constraints but only �nitely many equality constraints on
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each run of the automaton. By using these classes interesting decision results
have been got; for example, the encompassment theory 1 can be shown decid-
able by using reduction automata and decidability of ground reducibility is a
direct consequence of this result ([7]).

One natural question arises when we consider a language recognized by an au-
tomaton with tests: is this language recognizable, and in this case can we com-
pute the corresponding "classic" automaton? In other words, can we decide
whether "constraints are really necessary to de�ne the language"? Getting rid of
constraints allows e.g. to use classical algorithms for recognizable sets. For the
class of reduction automata, this problem contains strictly the decidability of
recognizability for the set of normal forms of a rewrite system, problem solved
but whose proofs are very technical [12,14].

Here we give a positive answer to this problem for REC6= languages: we can
decide whether such a language is recognizable (and compute a classic automa-
ton when it exists). This partial result has some interesting corollaries; it gives
e.g. a decision procedure for testing whether the image by a quasi-alphabetic
homomorphism of a recognizable tree language is recognizable. (This result can
be connected with the cross-section theorem; the cross-section theorem is false in
general for trees; it is true when the morphism is linear [1], or when the morphism
is quasi-alphabetic and the image is recognizable. It is conjectured true when
the image is recognizable [8]). The result can also be used to decide properties
of term rewrite systems. When a rewrite system R has "good" properties (same
occurrences of a variable are "brothers": it includes the case of shallow systems
[11]), it gives a procedure to test recognizability of the set of normal forms of
R which is much easier than the general one and it allows testing whether the
set of direct descendants R(L) is recognizable for a recognizable language L:
testing these properties can be useful e.g for computing normalizing terms, for
computing reachable terms... ([15],[10]).

The spirit of the proof is natural: we de�ne a kind of "minimization" very sim-
ilar to the classical one (Myhill-Nerode theorem for tree languages [9,6]). The
di�culty is to extend the notion of context by adding equality or disequality
constraints. Then the point is that in the "minimized" automaton, it should
appear "clearly" whether the constraints are necessary or not: e.g., when we
get two rules f(q; q)[x1 = x2] ! q1 and f(q; q)[x1 6= x2] ! q2, with q1 and q2
non equivalent, it should mean that we need the constraints and so that the
language is not recognizable. Actually, the proof is a little more intricate and �-
nite languages can disturb the "natural" minimization. E.g. the "minimized"
automaton associated with the recognizable language h�(ff(a; a); f(b; b)g) is
a ! q; b ! q; f(q; q)[x1 = x2] ! qf ; h(qf ) ! qf and then uses constraints.
So, a �rst step of the proof is devoted to eliminate these degenerate cases.

After basic de�nitions given in Section 2, REC6= automata are introduced in
Section 3. The Section 4 is devoted to the proof.

1 The encompassment theory is the set of �rst order formula with predicates redt(x),
t term. In the theory redt(x) holds if and only if x is a ground term encompassing t

i.e. an instance of t is a subterm of x.
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2 Preliminaries

The set of nonnegative integers is denoted N and N� denotes the set of �nite{
length strings over N. For n 2 N, [n] denotes the set f1; : : : ; ng, so that [0] is
another name for the empty set ;.

An alphabet � is ranked if � =
S
p�p where �p 6= ; only for a �nite number

of p's and the non empty �p are �nite and pairwise disjoint. Elements of �p are
said to be of arity p. Elements of arity 0 are called constants. We suppose that
� contains at least one constant.

Let X be a set of variables. A term over �[X is a partial function t : N�! �[X
with domain Pos(t) satisfying the following properties:

- Pos(t) is nonempty and pre�x-closed;
- If t(�) 2 �n, then fi 2 N j �i 2 Pos(t)g = f1; 2; : : : ; ng;
- If t(�) 2 X , then fi 2 N j �i 2 Pos(t)g = ;.

The set of all terms (or trees) is denoted by T�(X ). If X = ; then T�(X ) is
denoted by T� . Each element of Pos(t) is called a position.
Let t 2 T�(X ) and p 2 Pos(t). We denote by tjp the subterm of t rooted at
position p and by t(p) the label of t at position p. 8i 2 [n] such that pi 2 Pos(t),
tjpi is said to be a son of the label t(p).
Let Xn be a set of n variables. A term C 2 T�(Xn) where each variable occurs
at most once in C is called a context. The term C[t1; : : : ; tn] for t1; : : : ; tn 2 T�
denotes the term in T� obtained from C by replacing for each i 2 [n] xi by ti.
We denote by Cn(�) the set of contexts over n variables fx1; : : : ; xng and C(�)
the set of contexts containing a single variable.

3 Tree Automata with Comparisons between Brothers

Automata with comparisons between brothers (REC6= automata) have been
introduced by Bogaert and Tison [3]. They impose either equalities, or dif-
ferences between brother terms. These equalities and di�erences are expressed
by constraint expressions. Here we will restrict to de�ne normalized-complete
REC 6= automata (each REC6= automaton is equivalent to a automaton called
normalized-complete REC 6= automaton [3]).
Rules of normalized-complete REC6= automata impose, for each pair (pi; pj) of
positions of a term t where p is a position and i 6= j 2 N, that tjpi = tjpj or
tjpi 6= tjpj. These comparisons are expressed by full constraint expressions.
First, we de�ne the notion of full constraint expressions. Then we give the de�-
nition of normalized-complete REC6= automata.

De�nition 1. A full constraint expression c over n variables (xi)i2[n], n 2 N,

(in the following xi will always denote the ith son of a node) is a conjunction of
equalities xi = xj and of disequalities xi 6= xj such that there exists a partition
(Ei)i2[m] of [n], m � n satisfying:

c =
^

k2[m]

^
l;l02Ek

xl = xl0 ^
^

k;k02[m];k 6=k0

^
l2Ek;l02Ek0

xl 6= xl0 (1)

We denote c = (Ei)i2[m] in order to simplify the notation, card(c) = m the
cardinality of c and CE0

n the set of full constraint expressions over n variables.
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For example, CE0
3 = f(f1; 2; 3g); (f1;2g;f3g); (f1;3g;f2g); (f2;3g;f1g); (f1g;

f2g; f3g)g.
In the case n = 0, the full constraint expression over no variable is denoted by
> (null constraint).

De�nition 2. A tuple of terms (ti)i2[n] satis�es a full constraint expression c
i� the evaluation of c for the valuation (8i � n; xi = ti) is true, when \=" is
interpreted as equality of terms, \ 6=" as its negation, \>" as true, ^ as the usual
boolean function and. For example, the tuple of constants (a; b; a) satis�es the
full constraint expression x1 6= x2 ^ x1 = x3 ^ x2 6= x3.

Let us remark that if c and c0 are full constraint expressions over n variables
then c ^ c0 is unsatis�able if c 6= c0.

De�nition 3. Let c be a full constraint of CE0
n and (qi)i2[n] be a n-tuple of

states. We say that (qi)i2[n] satis�es the equality constraints of c if for 8k; l 2
[n]; (c) (xk = xl))) (qk = ql).

Let us now de�ne normalized-complete REC6= automata.

De�nition 4. A normalized-complete automaton A with comparisons between
brothers (normalized-complete REC6= automaton) is a tuple (�;Q;F;R) where
� is a ranked alphabet, Q a �nite set of states, F � Q a set of �nal states and
R �

S
i�i�CE0

i�Qi+1 a set of rules (a rule (f; c; q1; : : : ; qn; q) will be denoted
f(q1; : : : ; qn)[c]! q) with:

� A deterministic i.e. for all rules f(q1; : : : ; qn)[c]! q and f(q1; : : : ; qn)[c]!
q0, q = q0;

� For each letter f 2 �n, each n-tuple (qi)i2[n] 2 Q, each constraint c of
CE0

n such that (qi)i2[n] satis�es the equality contraints of c, there exists at
least one rule f(q1; : : : ; qn)[c]! q;

� And for each letter f 2 �n, each n-tuple (qi)i2[n] 2 Q, each constraint c
of CE0

n such that (qi)i2[n] doesn't satisfy the equality contraints of c, there
exists no rule f(q1; : : : ; qn)[c]! q 2 R.

Let f 2 �n and (ti)i2[n] be terms of T�. The relation
�
!A is de�ned as follows:

f(t1; : : : :tn)
�
!A q if and only if�

9f(q1; : : : ; qn)[c]! q 2 R such that 8i 2 [n]; ti
�
!A qi

and (ti)i2[n] satis�es the constraint c

�

Let q be a state of Q. We denote by LA(q) the set of terms t such that t
�
!A q.

A tree t 2 T� is accepted by A if there exists a �nal state q such that t 2 LA(q).
The language L(A) recognized by A is the set of accepted terms. We denote by
REC 6= the set of tree languages recognized by the class of REC6= automata.

Example 5. Let A = (fa; h; fg; fq; qf; qpg; fqfg;R) with R:

a! q h(q)! q h(qf )! qp
h(qp)! qp f(q; q; q)[c]! qf f(q; q; q)[c0]! qp 8c0 2 CE0

3 n fcg
f(q1; q2; q3)[c

0]! qp 8(q1; q2; q3) 2 Q3 n f(q; q; q)g; 8c0 2 CE0
3

where c is the full constraint expression x1 = x2 ^ x3 6= x1 ^ x3 6= x2. Then A
recognizes the language ff(hn(a); hn(a); hm(a)) j m;n 2 N;m 6= ng.

153The Recognizability Problem for Tree Automata with Comparisons between Brothers       



4 Recognizability Problem

We consider the recognizability problem in the class REC6=:
Input: A ranked alphabet � and a language F 2 REC6=.

Question: Is F recognizable?

We will prove that the recognizability problem is decidable; furthermore, when
the input language is recognizable, our algorithm computes a corresponding tree
automaton.
The idea of the algorithm is the following: we de�ne a kind of minimization, close
to the classic one (Myhill-Nerode theorem for tree languages [9,6]) but dealing
with constraints: roughly, two states will be equivalent, when they have the same
behaviour for the same context with constraints. This needs de�ning constrained
terms which are terms labeled with equality and disequality constraints. Then,
the point is that, when the reduction works well, it should be the case that non
necessary constraints are dropped. For example, let us suppose that we have
two rules f(q; q)[x1 = x2] ! q1 and f(q; q)[x1 6= x2] ! q2; when q1 and q2 are
equivalent, it means that the constraints are not necessary.
However, the reasoning fails when the language associated with a state is �nite:
a ! q; b ! q; f(q; q)[x1 = x2] ! qf use constraints to de�ne the �nite (thus
recognizable) language ff(a; a); f(b; b)g. So in a �rst step, we eliminate states q
s.t. LA(q) is �nite (section 4.1). Then we extend the notion of context to take
in account equality and disequality constraints (section 4.2) and then, we de�ne
and compute "the" reduced automaton (section 4.3). Finally, we prove that the
language is recognizable i� the reduced automaton is not "constraint-sensitive"
(section 4.4), i.e. two rules whose left-hand-side di�er only by constraints have
the same right-hand-side. We deduce decidability of the recognizability problem
in the class REC6= and obtain an e�ective construction of the corresponding
automaton, when the language is recognizable.

4.1 How to reduce to the "in�nite" case

Let F 2 REC 6= and A = (�;Q;F;R) be a normalized-completeREC6= automa-
ton recognizing F . Let us suppose that there exists at least a state q of A such
that LA(q) is �nite. Let us denote:

F1 =
[

q2F;LA(q) �nite

LA(q) and F2 =
[

q2F;LA(q) in�nite

LA(q):

Since L(A) = F1[F2 and F1 is �nite, L(A) is recognizable i� F2 is recognizable.
The language F2 is recognized by the REC6= automatonB = (�;Q;F 0;R) where
F 0 = fqjq 2 F;LA(q) in�niteg. We construct a new alphabet � by encoding, for
each state q such that LB(q) is �nite, the terms of LB(q) in the symbols of � .
We de�ne a REC6= automaton B0 on � and a linear morphism ' from T� (X )
onto T�(X ) such that for each state q of B0, LB0(q) is in�nite and such that
'(L(B0)) = L(B) and '�1(L(B)) = L(B0). We deduce that (L(B) is recognizable)
, (L(B0) is recognizable) since ' is linear (the entire proof can be found in [2]).
We deduce that the general case can be reduced to the in�nite case since for
each state q of the automaton B0, LB0(q) is in�nite.
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Before studying the "in�nite" case, let us give an example of construction of
B0 and '. Let � = fa=0; f=2g and B = (�;Q;F 0;R) where Q = fq; qp; qfg,
F 0 = fqfg and R is composed of the following rules:

a! q f(q; q)[x1 = x2]! qf
f(qf ; qf)[x1 = x2]! qf f(qp; qp)[x1 = x2]! qp
f(q1; q2)[x1 6= x2]! qp 8(q1; q2) 2 (Q� Q)

B is a normalized-complete REC6= automaton. Obviously LB(q) = fag and,
LB(qp) and LB(qf ) are in�nite. Then we consider 2 a symbol not in � and we
de�ne the alphabet � = ff(2;2); f(2;a); f(a;2); f(a;a)g.
Then B0 = (�;Q0; F 0;R0) is the REC6= automaton where Q0 = fqp; qfg and R0

is composed of the following rules:

f(a;a) ! qf f(2;2)(q1; q2)[x1 6= x2]! qp 8(q1; q2) 2 (Q0 � Q0)
f(2;a)(q1)! qp 8q1 2 Q0 f(2;2)(qf ; qf)[x1 = x2]! qf
f(a;2)(q2)! qp 8q2 2 Q0 f(2;2)(qp; qp)[x1 = x2]! qp

And ' : T� (X )! T�(X ) is the linear morphism de�ned as follows:

'(f(a;a)) = f(a; a) '(f(2;a))(x1) = f(x1; a)
'(f(2;2))(x1; x2) = f(x1; x2) '(f(a;2))(x1) = f(a; x1)

So we can suppose in the rest of the proof that for each state q of the normalized-
complete automaton A = (�;Q;F;R) recognizing F , LA(q) is in�nite.

4.2 Constrained Terms
In the class of recognizable tree languages, an equivalence relation using contexts
is used in order to minimize the automata (Myhill-Nerode theorem for tree
languages [9,6]). We de�ne a similar notion in the class of REC6= automata.
As the rules of REC 6= automata contain comparisons between brother terms,
we introduce the notion of terms imposing equalities and disequalities between
brother terms, these comparisons being expressed by full constraint expressions.
Such terms are called constrained terms. The label of a constrained term at a
position p is the combination of a symbol and of a full constraint expression
c such that the equality constraints of c are satis�ed by the sons of the label
and such that there is no disequality constraint between equal ground sons of
the label. Leaves of a constrained term may also be states or occurences of an
unique variable.
More formally, let x be a variable and �0 be the ranked alphabet de�ned by
8n 2 N, �0

n = ffc j f 2 �n; c 2 CE0
ng. A constrained term C over � [ Q is

a term of T�0(Q [ fxg) where the states of Q are constants and 8p non leaf
position of C, 9n > 0, such that C(p) = fc 2 �0

n with:

� The n-tuple (Cjpi)i2[n] satis�es the equality constraints of c;

� c contains no disequality constraint between equal ground sons i.e. 8i; j 2
[n]; (Cjpi 2 T�0 and Cjpi = Cjpj)) (c) (xi = xj)).

Example 6. Let g; f 2 �2 and q1; q2 2 Q. Then fc(gc0 (q1; x); gc0(q2; x)) with
c = [x1 = x2] and c0 = [x1 6= x2] is not a constrained term since gc0(q1; x) 6=
gc0(q2; x). But fc(gc0(q1; x); gc0(q1; x)) with c = [x1 = x2] and c0 = [x1 6= x2] is a
constrained term.
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Constrained terms are terms hence we use the usual notion of height of a term on
constrained terms with height(c) = 0 if c 2 Q[fxg and height(c) = 1 if c 2 �0

0.
Let C be a constrained term and q 2 Q, we denote by C[q] the constrained term
obtained from C by replacing each occurence of x by q.

Run on constrained terms We extend the notion of run on terms to run on
constrained terms. Let C be a constrained term and q; q0 be states. We denote
C[q]

�
!A q0 i�

� Either C = q0 or (C = x and q = q0);

� Or C = fc(C1; : : : ; Cn) with fc 2 �0
n, (Ci)i2[n] constrained terms such that

8i 2 [n]Ci[q]
�
!A qi and f(q1; : : : ; qn)[c]! q0 2 R.

Let us now extend the notion of run to run between constrained terms. Let C;C0

be constrained terms and q be a state. We denote C[q]
�
!A C0 i� there exists a

set P of positions of C such that:

� 8p 2 P , C0jp 2 Q and C[q]jp
�
!A C0jp;

� 8p 2 Pos(C) not pre�xed by a position of P , C0(p) = C[q](p).

4.3 Minimization

De�nition 7. let �A be the relation on Q de�ned by for all q; q0 2 Q, q �A q0

if for each constrained term C, (C[q]
�
!A q1 2 F , C[q0]

�
!A q2 2 F ).

The relation �A is obviously an equivalence relation. In the following, we as-
sociate with the automaton A a normalized-complete REC 6= Am said "mini-
mized" whose states are the equivalence classes of the relation �A and such that
L(A) = L(Am).
First we prove that the equivalence classes of the relation �A are computable.
Then we de�ne the automaton Am.

Equivalence Classes Algorithm EQUIV

input: Normalized-complete REC6= automaton A := (�;Q;F;R)
begin

Set P to fF;Q n Fg /* P is the initial equivalence relation*/
repeat

P 0 := P
/* Re�ne equivalence P 0 in P */
qPq0 if qP 0q0 and 8C constrained term of height 1,

C[q]
�
!A q1 and C[q0]

�
!A q2 with q1P

0q2
until P 0 = P

output: P set of equivalence classes of �A

end

We denote by ~q the equivalence class of a state q w.r.t. P , the set computed by
the algorithm EQUIV. Let us prove that the algorithm EQUIV is correct i.e.
that P is the set of equivalence classes of �A (Lemma 10). First we consider
two rules whose left hand sides di�er only by replacing all occurences of one
state bounded by equalities imposed by the constraint by a state of the same
equivalence class w.r.t. P . Then we prove that the right hand side of the two
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rules belong to the same equivalence class w.r.t. P (Lemma 8). We deduce that
the equivalence classes w.r.t. P are compatible with the rules of the automaton
A (Corollary 9).

Lemma 8. Let f(q1; : : : ; qn)[c] ! q 2 R and f(q01; : : : ; q
0
n)[c] ! q0 2 R such

that there exists j 2 [n] such that qj 2 ~q0j, 8i 2 [n]; ((c ) xi = xj) ) q0i = q0j)

and ((c) xi 6= xj)) q0i = qi). Then q 2 ~q0.

Proof. First the rule f(q01; : : : ; q
0
n)[c] ! q0 is well de�ned since we can prove

that (q0)i2[n] satis�es the equality constraints of c. Let us now consider the
constrained term C de�ned by head(C) = fc and for each i 2 [n] if c) xi = xj
then C(i) = x else C(i) = qi.
Obviously 8i 2 [n]; C[qj]ji = f(q1; : : : ; qn)ji then C[qj]!A q. Let us now prove
that 8i 2 [n]; C[q0j]ji = f(q01; : : : ; q

0
n)ji. Let i 2 [n]. If c ) xi = xj then q0i = q0j.

Then C[q0j]ji = q0j = q0i = f(q01; : : : ; q
0
n)ji. If c) xi 6= xj then C[q0j]ji = qi = q0i =

f(q01; : : : ; q
0
n)ji. Hence 8i 2 [n]; C[q0j]ji = f(q01; : : : ; q

0
n)ji then C[q0j]!A q0.

Moreover C is a constrained term of height 1 hence according to the EQUIV
algorithm, we have q 2 ~q0 since qj 2 ~q0j which ends the proof of Lemma 8.

Corollary 9. Let f(q1; : : : ; qn)[c] ! q 2 R and f(q01; : : : ; q
0
n)[c] ! q0 2 R such

that 8j 2 [n] qj 2 ~q0j. Then q 2 ~q0.

Let us now prove that the algorithm EQUIV is correct.

Lemma 10. P is the set of equivalence classes of �A i.e.:

8q; q0 2 Q (q �A q0), (q 2 ~q0:)

Proof. First, we can prove that 8q; q0 2 Q (q 62 ~q0) ) (q 6�A q0) by induction
on the step of the algorithm EQUIV where q 62 ~q0 appears. We deduce that
8q; q0 2 Q (q �A q0)) (q 2 ~q0).
In order to prove the implication(, we �rst prove that:

8q; q0 2 Q; q 2 ~q0 )

 
8C constrained term

(
C[q]

�
!A s

C[q0]
�
!A s0

) (s 2 ~s0)

!

by induction on the height of the constrained term. Let q; q0 2 Q such that q 2 ~q0

and C a constrained term such that C[q]
�
!A s and C[q0]

�
!A s0.

C of height 0: Either C 2 Q: Hence 9q" 2 Q such that C = q". C[q] =
C[q0] = q" hence s = s0 = q". Finally s 2 ~s0;

Or C = x: C[q] = q and C[q0] = q0 hence s = q and s0 = q0. Finally s 2 ~s0

since q 2 ~q0.
Induction hypothesis: Let k 2 N. Let us suppose that the property is true

for all constrained term C of height less than or equal to k. Let C be a
constrained term of height k+1. There exists f 2 �n; c 2 CE0

n; (Ci)i2[n]
constrained terms such that C = fc(C1; : : : ; Cn). According to induction

hypothesis, 8i 2 [n]; Ci[q]
�
!A qi and Ci[q0]

�
!A q0i with qi 2 ~q0i.
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(Ci)i2[n] satis�es the equality constraints of c. Moreover A is deterministic
hence 8k; l 2 [n] such that c) (xk = xl), we have qk = ql and q0k = q0l since
Ck = Cl. We deduce (qi)i2[n] and (q0i)i2[n] satis�es the equality constraints
of c. Hence since A is normalized-complete, there exists f(q1; : : : ; qn)[c] !
s 2 R and f(q01; : : : ; q

0
n)[c]! s0 2 R.

Moreover 8i 2 [n]; qi 2 ~q0i. We deduce from the Corollary 9 that s 2 ~s0.

At the beginning of the execution of EQUIV, P = fF;Q n Fg, hence:

8q 2 F; 8q0 2 Q; (q0 2 ~q)) (q0 2 F ) (2)

since at each step of the algorithm qPq0. We deduce that 8q; q0 2 Q (q 6�A q0))
(q0 62 ~q) which ends the proof of Lemma 10.

Let us now de�ne the automaton Am. Let us denote ~q the equivalence class of a
state q w.r.t. �A. Let Am = (�;Qm; Fm;Rm) de�ned as follows:

� Qm is the set of equivalence classes of �A.

� Fm = f~q j q 2 Fg.

� Rm = ff( ~q1; : : : ; ~qn)[c]! ~q j 8i 2 [n] 9q0i 2 ~qi; 9q0 2 ~q
such that f(q01; : : : ; q

0
n)[c]! q0 2 Rg:

We prove now that Am is a normalized-complete REC 6= automaton (Lemma 11)
and that L(A) = L(Am) (Lemma 12).

Lemma 11. Am is a normalized-complete REC6= automaton.

Proof. First we prove that Am is deterministic. Let f( ~q1; : : : ; ~qn)[c] ! ~q 2 Rm

and f( ~q1; : : : ; ~qn)[c]! ~s 2 Rm. According to the de�nition of Rm:

� 8i 2 [n]; 9q0i 2 ~qi; 9q0 2 ~q such that f(q01; : : : ; q
0
n)[c]! q0 2 R.

� 8i 2 [n]; 9q00i 2 ~qi; 9s0 2 ~s such that f(q001 ; : : : ; q
00
n)[c]! s0 2 R.

8i 2 [n] q00i 2
~q0i hence according to Lemma 8, s0 2 ~q0. Then ~q = ~s since ~q = ~q0,

~s = ~s0 and ~q0 = ~s0. Finally Am is deterministic. Let us now prove that Am

is normalized-complete. Let f 2 �n, ~q1; : : : ; ~qn 2 Qm and c 2 CE0
n such that

( ~qi)i2[n] satis�es the equality contraints of c.
Let (q0i)i2[n] such that 8i 2 [n] q0i 2 ~qi and 8k; l 2 [n] (c ) (xk = xl)) )
(q0k = q0l). The last condition is possible since 8k; l 2 [n] (c ) (xk = xl)) )
( ~qk = ~ql) and ( ~qi)i2[n] satis�es the equality contraints of c. (q0i)i2[n] satis�es the
equality contraints of c and A is complete hence 9f(q01; : : : ; q

0
n)[c] ! q 2 R.

Hence f( ~q01; : : : ; ~q
0
n)[c]! ~q 2 Rm according to the EQUIV algorithm. Moreover

8i 2 [n], we have ~qi = ~q0i hence f( ~q1; : : : ; ~qn)[c]! ~q 2 Rm.
Finally, we deduce Am is a normalized-complete REC 6= automaton which ends
the proof of Lemma 11.

Lemma 12. L(A) = L(Am).

158 Bruno Bogaert  et al.



Proof. First we can prove by induction on the height of t that 8t 2 T�; 8q 2
Q; (t

�
!A q)) (t

�
!Am ~q). We deduce that L(A) � L(Am).

Then we deduce L(Am) � L(A) from the property (2) and the following prop-
erty:

8t 2 T� ; 8q 2 Q; (t
�
!Am ~q)) (9q0 2 ~q such that t

�
!A q0):

We deduce that L(A) = L(Am) which ends the proof of Lemma 12.

Remark 13. We can prove easily that 8q 2 Qm;LAm(q) is in�nite and that
8q; q0 2 Qm; (q �Am q0), (q = q0).

4.4 Characterization

Let A be a normalized-completeREC6= automaton. According to the Section 4.3,
we can consider automata satisfying properties of Remark 13. We give now
a necessary and su�cient condition for the language recognized by A to be
recognizable.

Proposition 14. Let A = (�;Q;F;R) be a normalized-complete REC6= au-

tomaton such that for each state q of A, LA(q) is in�nite and such that 8q; q0 2
Q, (q �A q0) , (q = q0). Then L(A) is recognizable if and only if for all rules

f(q1; : : : ; qn)[c]! q, f(q1; : : : ; qn)[c0]! q0 of R, we have q = q0.

In order to prove Proposition 14, we need some technical lemmas. First, since the
language recognized by each state of A is in�nite, we prove that we can "instan-
tiate" each constrained term to a ground term. In fact we prove (De�nition 15
and Lemma 16) that we can associate with each constrained term over � [Q a
constrained term over � without occurence of x by replacing each occurence of
a state q by an element of LA(q) and each occurence of x by an element of an
in�nite set of ground terms.

De�nition 15. Let C be a constrained term. We denote:

� V(C) the set of variable positions of C: V(C) = fp 2 Pos(C) j C(p) = xg.

� S(C) the set of state positions of C: S(C) = fp 2 Pos(C) j C(p) 2 Qg.

� For each q 2 Q, S(C)(q) = fp 2 S(C) j C(p) = qg.

Lemma 16. Let C be a constrained term over � [ Q and T be an in�nite set

of terms of T� . There exists a constrained term C0 over � without occurence of

x such that:

� 8p 2 Pos(C) n (V(C) [ S(C)); C0(p) = C(p),

� Each variable of C is replaced by a constrained term associated with an

element of T i.e. 8p 2 V(C); 9t 2 T; C0jp = labt,

� Each state of C is replaced by a constrained term associated with an ele-

ment of the language recognized by the state i.e. 8q 2 Q; 8p 2 S(C)(q); 9t 2
LA(q); C

0jp = labt,

where labt denotes for each term t the constrained term over � obtained from

t, i.e. 8p 2 Pos(t), if t(p) = f 2 �n, n > 0, then labt(p) = fc with c the full

constraint satis�ed by (tjpi)i2[n], else labt(p) = t(p).
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Proof. Let C be a constrained term over �[Q and T be an in�nite set of terms
of T�. First let us deduce from the full constraint expressions of each position
of C, full constraint expressions between the positions of C where the variable
x occurs and between the positions of C where the same state occurs.
In fact if we consider the positions where the variable x occurs (positions of
V(C)), we express all the equalities between these positions imposed by the con-
straints of C. When none equality is imposed between two positions we impose
a disequality since :

� Constraints impose only equalities between brothers hence between terms
whose positions have the same length.

� According to the de�nition of constrained terms, equalities are only im-
posed between equal terms in a constrained term.

We can do the same for positions of S(C)(q) for each q of Q.
More formally, for each position p of C such that C(p) 2 �0, we denote contC(p)
the constraint obtained by projection from �0 onto CE0

n and we de�ne 8p 2
S(C) [ V(C) a variable zp. We denote cV(C) the full constraint expression over
(zp)p2V(C) and 8q 2 Q; cS(C)(q) the full constraint expression over (zp)p2S(C)(q)

de�ned as follows:

1. We express the equalities imposed by the constraints:
8p 2 Pos(C), 8i; j (contC(p)) (xi = xj))) 8
 such that zpi
 de�ned�

zpi
 2 V(C) ) (zpi
 = zpj
) 2 cV(C)

zpi
 2 S(C)(q); q 2 Q) (zpi
 = zpj
) 2 cS(C)(q)

�
2. We apply the transitive closure to express all equalities:

(zp1 = zp2 ^ zp2 = zp3 ) 2 cV(C) ) (zp1 = zp3) 2 cV(C).
8q 2 Q; (zp1 = zp2 ^ zp2 = zp3) 2 cS(C)(q) ) (zp1 = zp3) 2 cS(C)(q).

3. 8p; p0 2 V(C); p 6= p0; (zp = zp0 ) 62 cV(C) ) (zp 6= zp0) 2 cV(C);
4. 8q 2 Q; 8p; p0 2 S(C)(q); p 6= p0; (zp = zp0) 62 cS(C)(q) ) (zp 6= zp0) 2

cS(C)(q).

Since T is in�nite and 8q 2 Q, LA(q) is in�nite, there exists (tp)p2V(C) 2 T and
8q 2 Q, (tp)p2S(C)(q) 2 LA(q) such that:

1. 8p 2 V(C)[S(C), tp is of height strictly greater than height of C and strictly
greater than height of terms of the set ftp0 j p0 2 V(C) [ S(C), length of p0

strictly less than length of pg.
2. 8p 2 V(C); 8p0 2 S(C), tp 6= tp0 .
3. 8q; q0, q 6= q0, 8p 2 S(C)(q); 8p0 2 S(C)(q0), tp 6= tp0 .
4. (tp)p2V(C) satis�es cV(C).
5. 8q 2 Q; (tp)p2S(C)(q) satis�es cS(C)(q).

Let us remark that point point3 is satis�ed for all families of terms since A is
deterministic. Let C0 be the term of T�0 de�ned as follows:

� 8p 2 Pos(C) n (V(C) [ S(C)) C0(p) = C(p);

� 8p 2 V(C) [ S(C) C0jp = labtp .

160 Bruno Bogaert  et al.



For each p 2 V(C), p0 2 S(C), constraints of C impose zp 6= zp0 since C(p) 6=
C(p0). This constraint is satis�ed by labtp and labtp0 according to previous
points 1 and 2. Similarly for each p 2 S(C)(q), p0 2 S(C)(q0), q 6= q0, con-
straints of C impose zp 6= zp0 . This constraint is satis�ed by labtp and labtp0
according to previous points 1 and 3. We deduce that C0 is a constrained term
over � without occurence of x which ends the proof of Lemma 16.

Let us now prove that we can "instantiate" each constrained term over � [ Q
to a constrained term over � by replacing each occurence of a state q by an
element of LA(q) (De�nition 17 and Lemma 18); similarly, given an in�nite
set of ground term T , we can "instantiate" each constrained term over � by
replacing each occurence of x by a constrained term associated with an element
of T (Lemma 19).

De�nition 17. Let C be a constrained term over � [Q. A state-instance of C
is a constrained term obtained from C, replacing each state q by a constrained
term labt; t 2 LA(q).

Lemma 18. There exists a state-instance of each constrained term.

Proof. Let C be a constrained term and C0 be a constrained term obtained from
C according to Lemma 16. Let C00 be the constrained term de�ned by

� 8p 2 Pos(C) n V(C), C00(p) = C0(p);

� 8p 2 V(C), C00jp = x.

C" is obviously a state-instance of C which ends the proof of Lemma 18.

Let us remark that when C0 is a state-instance of a constrained term C, then
8q 2 Q; (C[q]

�
!A s) C0[q]

�
!A s).

Lemma 19. Let C be a constrained term over � and T be an in�nite set of

terms of T� . There exists (tp)p2V(C) 2 T such that C0 de�ned by

� 8p 2 Pos(C) n V(C); C0(p) = C(p);

� 8p 2 V(C); C0
jp = labtp ,

is a constrained term.

This lemma is an immediate corrolary of Lemma 16. Let us now prove that the
condition of Proposition 14 is necessary.

Lemma 20. Let us suppose that there exists two rules of R, f(q1; : : : ; qn)[c]!
q and f(q1; : : : ; qn)[c

0] ! q0 such that c 6= c0 and q 6= q0. Then L(A) is not

recognizable.

Proof. Let us suppose that L(A) is a regular tree language: there exists B =
(�;Q;F;�) a deterministic and complete bottom-up tree automaton recognizing

it. For each q 2 Q, we denote LB(q) the set of terms t of T� such that t
�
!B q(t).

Let us recall the following basic property:
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Property 21. 8C 2 Cn(�); 8q 2 Q; 8(ti)i2[n] 2 LB(q); 8(t
0
i)i2[n] 2 LB(q)

(C[t1; : : : ; tn] 2 L(B), C[t01; : : : ; t
0
n] 2 L(B)):

The sketch of proof is the following: we construct two terms, saying t1 and t2
such that t1 belongs to L(A) and t2 does not. Furthermore, t1 and t2 will di�er
only on some positions p where t1(p) = t2(p) = f but subterms at these positions
in t1 satisfy the constraint c while in t2, subterms at the same positions satisfy
the constraint c0.
From t1 and t2 we deduce a general context Cg, intuitively the common pre�x
of t1 and t2, such that there exists qB state of B, (ui)i2[n] and (u0i)i2[n] terms
of LB(qB), such that Cg[(up)] 2 L(A) and Cg[(u0p)] 62 L(A). This will contradict
Property 21 since we supposed that L(A) is recognizable.

Since A is complete, we can suppose without loss of generality that c and c0

di�er only by the splitting of a set, i.e. 9(Ek)k2K ; I; J � [n] such that:

c = ((Ek)k2K ; I [ J); card(c) = k + 1;

c0 = ((Ek)k2K ; I; J); card(c
0) = k + 2:

q 6= q0 hence q 6�A q0. We deduce that there exists a constrained term C over
� [Q such that (C[q]

�
!A s 2 F , C[q0]

�
!A s0 62 F ). We stand that s 2 F and

according to Lemma 18, there exists �C a state-instance of C. �C[q]
�
!A s since

C[q]
�
!A s and �C[q0]

�
!A s0 since C[q0]

�
!A s0.

Let us consider the constrained term F1 = fc(s1; : : : ; sn) where 8k 2 I[J , sk = x
and 8k 62 I [ J , sk = qk. Lemma 18 ensures the existence of a state-instance F 0

1

of F1. Then F 0
1[qI]

�
!A q since F1[qI]

�
!A q.

Let C1 be the constrained term �C[F 0
1] and qI be the unique state present in the

rule r at positions belonging to I [ J . The run on C1[qI] leads to the �nal state

s since C1[qI] = �C[F 0
1[qI]]

�
!A

�C[q]
�
!A s.

The constrained term F2 is obtained from F1 by replacing the root symbol fc by
fc0 . Hence, F2 and F1 have the same projection onto T�(fxg). From Lemma 18
there exists F 0

2 a state-instance of F2. F 0
2 is choosen in such a way that root

subterms at the same position k 62 I [ J in F 0
1 and F 0

2 are identical (remember

that c and c0 only di�er by the splitting of I[J into I and J). Then F 0
2[qI]

�
!A q0

since F2[qI]
�
!A q0.

In the same way as previously, C2 denotes �C[F 0
2]. Let us notice that F 0

1 (resp.
C1) and F 0

2 (resp. C2) have the same projection onto T�(fxg). The run on C2[qI]

leads to the non �nal state s0 since C2[qI] = �C[F 0
2[qI]]

�
!A

�C[q0]
�
!A s0.

As we supposed that L(A) = L(B) and as LA(qI) is in�nite then there exists qB
state of B such that the set T = LA(qI) \LB(qB) is in�nite.
As T is in�nite, and according to Lemma 19, there exist terms (up)p2V(C1) 2 T
such that C0

1 de�ned by

� 8p 2 Pos(C1) n V(C1); C
0
1(p) = C1(p);

� 8p 2 V(C1); C
0
1jp = labup ,
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is a constrained term. As 8p; labup
�
!A qI, the run of this constrained term is

the �nal state s. The term t1, projection of C0
1 onto T� satis�es t1 2 L(A).

In the same way, there exist terms (u0p)p2V(C2) 2 T such that C0
2 de�ned by

� 8p 2 Pos(C2) n V(C2); C 0
2(p) = C2(p);

� 8p 2 V(C2); C0
2jp = labu0

p
,

is a constrained term and the run of C0
2 is the non �nal state s0. As A is deter-

ministic, t2, the projection of C0
2 over T� does not belong to L(A).

Let Cg be the projection of C1 onto T�(fxg) (which is the same as the projection
of C2). Cg is a context -without labels- over a single variable x.
We replace each occurence of x in Cg by distinct new variables: it results a
context C0

g over distinct new variables (xp)p2V(Cg) de�ned by

� 8p 2 Pos(Cg) n V(Cg); C0
g(p) = Cg(p);

� 8p 2 V(Cg); C0
g(p) = xp.

We can prove that t1 2 L(A) = Cg[(up)] and t2 = Cg[(u0p)]. Moreover, 8p; up
�
!B

qB and u0p
�
!B qB, which contradicts the Property 21 since t1 2 A and t2 62 A.

We deduce that L(A) is not recognizable, which ends the proof of Lemma 20.

Let us now prove that the condition of Proposition 14 is su�cient.

Lemma 22. Let us suppose that for all rules of R, f(q1; : : : ; qn)[c] ! q and

f(q1; : : : ; qn)[c0] ! q0, we have q = q0. Then L(A) is recognizable and we can

compute a tree automaton recognizing L(A).

Proof. Let B = (�;Q;F;�) be the tree automaton whose set of rules � is
de�ned by: 8f 2 �n; 8(qi)i2[n] 2 Q, f(q1; : : : ; qn) ! q 2 � where q is de�ned
by a rule f(q1; : : : ; qn)[c] ! q of R (q is unique according to hypothesis of the
lemma). We easily prove that L(A) = L(B). Hence L(A) is recognizable which
ends the proofs of Lemma 22 and of Proposition 14.

Let A = (�;Q;F;R) be a normalized-complete REC6= automaton such that
for each state q of A, LA(q) is in�nite. According to Remark 13 and Proposi-
tion 14, we deduce that the recognizability problem of L(A) is decidable. Finally,
according to Section 4.1, we deduce the following theorem:

Theorem 23. The recognizability problem in the class REC6= is decidable.

5 Conclusion

We proved here that recognizability problem is decidable in the class REC6=.
It implies e.g. the decidability of recognizability of �(L) where � is a quasi-
algebraic tree homomorphism (i.e. variables occurr at depth one in a letter's
image) and L a recognizable language.
It provides also a rather simple algorithm for testing recognizability of the set of
normal forms (resp. of the set of direct descendants of a recognizable language)
for some subclasses of rewrite systems (like shallow ones).
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Furthermore, the notions we de�ne here -like constrained terms- could perhaps
be extended and help to answer the two following open problems:
Is recognizability decidable in the class of reduction automata?
Can we decide whether the homomorphic image of a recognizable tree language
is recognizable?
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