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Abstract. A sound and complete Hoare-style proof system is presented
for a sequential object-oriented language, called SPOOL. The proof sys-
tem is based on a weakest precondition calculus for aliasing and object-
creation.

1 Introduction

This paper introduces a Hoare-style proof system for an object-oriented lan-
guage, called SPOOL. SPOOL is a sequential version of the parallel object-
oriented language POOL [2].

The main aspect of SPOOL that is dealt with is the problem of how to rea-
son about pointer structures. In SPOOL, objects can be created at arbitrary
points in a program, references to them can be stored in variables and passed
around as parameters in messages. This implies that complicated and dynam-
ically evolving structures of references between objects can occur. We want to
reason about these structures on an abstraction level that is at least as high as
that of the programming language. In more detail, this means the following: The
only operations on \pointers" (references to objects) are testing for equality and
dereferencing (looking at the value of an instance variable of the referenced ob-
ject). Furthermore, in a given state of the system, it is only possible to mention
the objects that exist in that state. Objects that do not (yet) exist never play a
role.

Strictly speaking, direct dereferencing is not even allowed in the programming
language, because each object only has access to its own instance variables.
However, for the time being we allow it in the assertion language. Otherwise, even
more advanced techniques would be necessary to reason about the correctness
of a program.

The above restrictions have quite severe consequences for the proof system.
The limited set of operations on pointers implies that �rst-order logic is too
weak to express some interesting properties of pointer structures (for example,
the property, as considered in [9], that it is possible to go from one object to
the other by following a �nite number of x-links). Therefore we have to extend
our assertion language to make it more expressive. In this paper we do so by
allowing the assertion language to reason about �nite sequences of objects.

The proof system itself is based on a weakest precondition calculus for aliasing
and object-creation. This means that in the proof system aliasing and object-
creation are modelled by substitutions which, when applied to a given postcon-
dition, yield the corresponding weakest precondition.
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c Springer-Verlag Berlin Heidelberg 1999



Plan of the paper In the following section we introduce the programming lan-
guage SPOOL. In section 3 the assertion language for describing object struc-
tures is introduced. The proof system is discussed in section 4. In the �nal section
related work is discussed and some general conclusions are drawn.

2 The language SPOOL

The most important concept of SPOOL is the concept of an object. This is
an entity containing data and procedures (methods) acting on these data. The
data are stored in variables, which come in two kinds: instance variables, whose
lifetime is the same as that of the object they belong to, and temporary variables,
which are local to a method and last as long as the method is active. Variables
can contain references to other objects in the system (or even the object under
consideration itself). The object a variable refers to (its value) can be changed
by an assignment. The value of a variable can also be nil, which means that it
refers to no object at all.

The variables of an object cannot be accessed directly by other objects. The
only way for objects to interact is by sending messages to each other. If an
object sends a message, it speci�es the receiver, a method name, and possibly
some parameter objects. Then control is transferred from the sender object to
the receiver. This receiver then executes the speci�ed method, using the param-
eters in the message. Note that this method can, of course, access the instance
variables of the receiver. The method returns a result, an object, which is sent
back to the sender. Then control is transferred back to the sender which resumes
its activities, possibly using this result object.

The sender of a message is blocked until the result comes back, that is, it
cannot answer any message while it still has an outstanding message of its own.
Therefore, when an object sends a message to itself (directly or indirectly) this
will lead to abnormal termination of the program.

Objects are grouped into classes. Objects in one class (the instances of the
class) share the same methods, so in a certain sense they share the same be-
haviour. New instances of a given class can be created at any time. There are
two standard classes, Int and Bool, of integers and booleans, respectively. They
di�er from the other classes in that their instances already exist at the beginning
of the execution of the program and no new ones can be created. Moreover, some
standard operations on these classes are de�ned.

A program essentially consists of a number of class de�nitions, together with
a statement to be executed by an instance of a speci�c class. Usually, but not
necessarily, this instance is the only non-standard object that exists at the be-
ginning of the program: the others still have to be created.

In order to describe the language SPOOL, which is strongly typed, we use
typed versions of all variables, expressions, etc. These types however are implic-
itly assumed in the language description below.

We assume the following sets to be given: A set C of class names, with typical
element c (this means that metavariables like c; c0; c1; : : : range over elements of
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the set C ). We assume that Int;Bool =2 C and de�ne the set C+ = C[fInt;Boolg,
with typical element d. For each c 2 C ; d 2 C+ we assume a set IVarcd, with
typical element x, of instance variables in class c which are of type d. For each
d 2 C we assume a set TVard of temporary variables of type d, with typical
element u. Finally, for each c 2 C and d0; : : : ; dn 2 C+ (n � 0) we assume a
set MNamecd0;:::;dn of method names of class c with result type d0 and parameter
types d1; : : : ; dn. The set MNamecd0;:::;dn will have m as a typical element.

Now we can specify the syntax of our (strongly typed) language (we omit
the typing information).

De�nition1. For any c 2 C and d 2 C+ the set Expcd of expressions of type d
in class c, with typical element e, is de�ned as usual. We give the following base
cases.

e ::= x j u j nil j self � � �

The set SExpcd of expressions with possible side e�ect of type d in class c, with
typical element s, is de�ned as follows:

s ::= e j new j e0!m(e1; : : : ; en)

The �rst kind of side e�ect expression is a normal expression, which has no actual
side e�ect, of course. The second kind is the creation of a new object. This new
object will also be the value of the side e�ect expression. The third kind of side
e�ect expression speci�es that a message is to be sent to the object that results
from e0, with method name m and with arguments (the objects resulting from)
e1; : : : ; en.

The set Statc of statements in class c, with typical element S, are constructed
from assignments by means of the standard sequential operations of sequential
composition, (deterministic) choice and iteration.

De�nition2. The set MethDef c of method de�nitions in class c, with typical
element �, is de�ned by:

� ::= (u1; : : : ; un : S " e)

Here we require that the ui are all di�erent and that none of them occurs at the
left hand side of an assignment in S 2 Statc (and that n � 0).

When an object is sent a message, the method named in the message is
invoked as follows: The variables u1; : : : ; un (the parameters of the method) are
given the values speci�ed in the message, all other temporary variables (i.e. the
local variables of the method, are initialized to nil, and then the statement S is
executed. After that the expression e is evaluated and its value, the result of the
method, is sent back to the sender of the message, where it will be the value of
the send-expression that sent the message.

De�nition3. The set ClassDef c of de�nitions of class c, with typical element D,
is de�ned by:

D ::= c : hm1 = �1; : : : ; mn = �ni

where we require that all the method names are di�erent (and n � 0).
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De�nition4. Finally, the set Progc of programs in class c, with typical ele-
ment �, is de�ned by:

� ::= hU jc : Si

where U denotes a �nite set of class de�nitions and S 2 Statc. The interpretation
of such a program is that the statement S is executed by some object of class c
(the root object) in the context of the declarations contained in the unit U .
In many cases (including the following example) we shall assume that at the
beginning of the execution this root object is the only existing non-standard
object.

Example 1. The following program generates prime numbers using the sieve
method of Eratosthenes.

hSieve : hinput ( (q) : if next = nil
then next := new;

p := q
else if q mod p 6= 0

then next ! input(q)
�

�
" self i;

Driver : h i
j
Driver : i := 2;

�rst := new;
while i < bound
do �rst ! input(i);

i := i + 1
od

i

Figure 1 represents the system in a certain stage of the execution of the
program.

3 The assertion language

In this section a formalism is introduced for expressing certain properties of a
complete system, or con�guration, of objects. Such a system consists for each
class of a set of existing objects in that class (i.e. the objects in that class which
have been created sofar) together with their internal states (i.e. an assignment of
values to their own instance variables), and the currently active object together
with an assignment of values to its temporary variables.

One element of this assertion language will be the introduction of logical
variables. These variables may not occur in the program, but only in the assertion
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Fig. 1. Objects in the sieve program in a certain stage of the execution

language. Therefore we are always sure that the value of a logical variable can
never be changed by a statement. Apart from a certain degree of cleanliness,
this has the additional advantage that we can use logical variables to express
the constancy of certain expressions (for example in the proof rule for message
passing). Logical variables also serve as bound variables for quanti�ers.

The set of expressions in the assertion language is larger than the set of pro-
gramming language expressions not only because it contains logical variables,
but also because by means of a dereferencing operator it is allowed to refer to
instance variables of other objects. Furthermore we include conditional expres-
sions in the assertion language. These conditional expressions will be used for
the analysis of the phenomenon of aliasing which arises because of the presence
of a dereferencing operator.

In two respects our assertion language di�ers from the usual �rst-order pred-
icate logic: Firstly, the range of quanti�ers is limited to the existing objects in
the current state of the system. For the classes di�erent from Int and Bool this
restriction means that we cannot talk about objects that have not yet been
created, even if they could be created in the future. This is done in order to
satisfy the requirements on the proof system stated in the introduction. Because
of this the range of the quanti�ers can be di�erent for di�erent states. More in
particular, a statement can change the truth of an assertion even if none of the
program variables accessed by the statement occurs in the assertion, simply by
creating an object and thereby changing the range of a quanti�er. (The idea of
restricting the range of quanti�ers was inspired by [11].)

Secondly, in order to strengthen the expressiveness of the logic, it is aug-
mented with quanti�cation over �nite sequences of objects. It is quite clear that
this is necessary, because simple �rst-order logic is not able to express certain
interesting properties.

De�nition5. For each d 2 C+ we introduce the symbol d� for the type of all
�nite sequences with elements from d, we let C � stand for the set fd�jd 2 C+g,
and we use C y, with typical element a, for the union C+ [C �. We assume that
for every a in C y we have a set LVara of logical variables of type a, with typical
element z.
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De�nition6. We give the following typical elements of the set LExpca of logical
expressions of type a in class c (we omit the typing information):

l ::= e j z j l:x j if l0 then l1 else l2 �

An expression e is evaluated in the internal state of the currently active object
which is denoted by self. The di�erence with the set Expcd of expressions in the
programming language is that in logical expressions we can use logical variables,
refer to the instance variables of other objects (the expression l:x refers to the
local value of the instance variable x of the object denoted by l), and write condi-
tional expressions. Furthermore, we extended the domain of discourse by means
of logical variables ranging over sequences. In order to reason about sequences
we assume the presence of notations to express, for example, the length of a
sequence (denoted by jlj) and the selection of an element of a sequence (denoted
by l(n), where n is an integer expression).

De�nition7. The set Assc of assertions in class c, with typical elements P
and Q, is de�ned by:

P ::= l j P ^Q j :P j 9zP

Here l denotes a boolean expression (i.e. l 2 Expc
Bool

).

As already explained above, a formula 9zP , with z of some type c 2 C states
that P holds for some existing object in class c. A formula 9zP , with z of a
sequence type c�, states the existence of a sequence of existing objects in class
c.

Example 2. The formula 9z true, where z is of some type c 2 C , thus states the
existence of an object in class c. As such this formula is false in case no such
objects exist. As another example, the following formula states the existence of
a sequence of objects in class Sieve (of the example program in the previous
section) such that the value of p of the nth element in this sequence is the nth
prime number and next refers to the next element, i.e. the n + 1th element, in
the sequence.

9z8n

0
@

(0 < n ^ n � jzj ! z(n):p = prime(n))
^

(0 < n ^ n < jzj ! z(n):next = z(n + 1))

1
A

Here n denotes a logical variable ranging over integers and z ranges over se-
quences of objects in class Sieve. The predicate prime(n) holds if n is a prime.

De�nition8. A correctness formula in class c is a Hoare triple of the form
fPg�fQg, where P;Q 2 Assc and � 2 Progc.

A Hoare-triple fPg�fQg expresses a partial correctness property of the pro-
gram �: It holds if every successfully terminating execution of the program � in
a system of objects which satis�es the precondition P results in a �nal con�gu-
ration which satis�es the postcondition Q.
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4 The proof system

In this section we present a Hoare-style proof system which provides a view of
programs in SPOOL as predicate-transformers.

Simple assignmentsWe shall call a statement a simple assignment if it is of
the form x := e or u := e (that is, it uses the �rst form of a side e�ect expression:
the one without a side e�ect). For the axiomatization of simple assignments to
temporary variables the standard assignment axiom su�ces because objects are
only allowed to refer to the instance variables of other objects and therefore
aliasing, i.e. the situation that di�erent expressions refer to the same variable,
does not arise in case of temporary variables.

In the case that the target variable of an assignment statement is an instance
variable, we use the following axiom:

n
P [e=x]

o
hU jc : x := ei

n
P
o

The substitution operation [e=x] has to account for possible aliases of the
variables x, namely, expressions of the form l:x: It is possible that, after substi-
tution, l refers to the currently active object (i.e. the object denoted by self),
so that l:x is the same variable as x and should be substituted by e. It is al-
so possible that, after substitution, l does not refer to the currently executing
object, and in this case no substitution should take place. Since we cannot de-
cide between these possibilities by the form of the expression only, a conditional
expression is constructed which decides \dynamically".

De�nition9. We have the following main cases of the substitution operation
[e=x]:

l : x [e=x] = if (l[e=x]) = self then e else (l[e=x]) : x �
l : x0 [e=x] = (l[e=x]) : x0 if x0 6= x

The de�nition is extended to assertions other than logical expressions in the
standard way.

Object creation Next we consider the creation of objects. We will introduce
two di�erent axiomatizations of object-creation which are based on the logical
formulation of the weakest precondition and the strongest postcondition, respec-
tively. First we consider a weakest precondition axiomatization.

For an assignment of the form u := new we have a axiom similar to the
previous two: n

P [new=u]
o
hU jc : u := newi

n
P
o

We have to de�ne the substitution [new=u]. As with the notions of substi-
tution used in the axioms for simple assignments, we want the expression after
substitution to have the same meaning in a state before the assignment as the
unsubstituted expression has in the state after the assignment. However, in the
case of a new-assignment, there are expressions for which this is not possible,
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because they refer to the new object (in the new state) and there is no expression
that could refer to that object in the old state, because it does not exist yet.
Therefore the result of the substitution must be left unde�ned in some cases.

However we are able to carry out the substitution in case of assertions, assum-
ing, without loss of expressiveness, that in the assertion language the operations
on sequences are limited to jlj, i.e. the length of the sequence l, and l(n), i.e.
the operation which yields the nth element of l. The idea behind this is that
in an assertion the variable u referring to the new object can essentially occur
only in a context where either one of its instance variables is referenced, or it
is compared for equality with another expression. In both of these cases we can
predict the outcome without having to refer to the new object.

De�nition10. Here are the main cases of the formal de�nition of the substi-
tution [new=u] for logical expressions. As already explained above the result of
the substitution [new=u] is unde�ned for the expression u. Since the (instance)
variables of a newly created object are initialized to nil we have

u:x[new=u] = nil

If neither l1 nor l2 is u or a conditional expression they cannot refer to the newly
created object and we have

�
l1 = l2

�
[new=u] =

�
l1[new=u]

�
=
�
l2[new=u]

�

If either l1 is u and l2 is neither u nor a conditional expression (or vice versa)
we have that after the substitution operation l1 and l2 cannot denote the same
object (because one of them refers to the newly created object while the other
one refers to an already existing object):

�
l1 = l2

�
[new=u] = false

On the other hand if both the expressions l1 and l2 equal u we obviously have
�
l1 = l2

�
[new=u] = true

We have that l[new=u] is de�ned for boolean expressions l.

De�nition11. We extend the substitution operation [new=u] to assertions other
than logical expressions as follows (we assume that the type of u is d 2 C ):

(P ! Q)[new=u] = (P [new=u])! (Q[new=u])
(:P ) [new=u] = :(P [new=u])
(9z P ) [new=u] = (9z(P [new=u]))_ (P [u=z][new=u])
(9z P ) [new=u] = 9z 9z0 (jzj = jz0j ^ (P [z0; u=z][new=u]))
(9z P ) [new=u] = (9z(P [new=u]))

In the third and fourth clause the (bound) variable z is assumed to be of type
d and d�, respectively. The type of the variable z in the last clause is of a type
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di�erent from d and d�. The (bound) variable z0 in the fourth clause is assumed
to be of type boolean (this variable is also assumed not to occur in P ).

The idea of the application of [new=u] to (9z P ) (in case z is of the same type
as u) is that the �rst disjunct (9z(P [new=u])) represents the case that the object
for which P holds is an `old' object (i.e. which exists already before the creation
of the new object) whereas the second disjunct P [u=z][new=u] represents the
case that the new object itself satis�es P .

The idea of the fourth clause is that z and z0 together code a sequence of
objects in the state after the new-statement. At the places where z0 yields true
the value of the coded sequence is the newly created object. Where z0 yields false
the value of the coded sequence is the same as the value of z. This encoding is
described by the substitution operation [z0; u=z] the main characteristic cases of
which are:

z[z0; u=z] is unde�ned�
z(l)
�
[z0; u=z] = if z0(l0) then u else z(l0) �; where l0 = l[z0; u=z]

This substitution operation [z0; u=z] is de�ned for boolean expressions.

Example 3. Let z be a logical variable of the same type as u. We have
�
9z(u = z)

�
[new=u] ��

9z(u = z)[new=u]
�
_ (u = u)[new=u] �

9z false _ true

where the last assertion obviously reduces to true, which indeed is the weakest
precondition of 9z(u = z) with respect to u := new.

Note that we cannot apply the substitution operation [new=u] directly to
assertions involving more high-level operations on sequences. For example, an
assertion like l1 � l2, which expresses that the sequence l1 is a pre�x of l2,
we have �rst to reformulate into a logically equivalent one which uses only the
sequence operations jlj and l(n). Thus, l1 � l2 should be �rst translated into

8n(0 < n ^ n � jl1j ! l1(n) = l2(n))

If our assignment is of the form x := new we have the following axiom:
n
P [new=x]

o
hU jc : x := newi

n
P c
o

The substitution operation [new=x] is de�ned by: P [u=x] [new=u], where u is a
temporary variable that does not occur in P . (It is easy to see that this de�nition
does not depend on the actual u used.)

Thus we see that we are able to compute the weakest precondition of a new-
statement despite the fact that we cannot refer to the newly created object in
the state prior to its creation. Alternatively, we have the following strongest
postcondition axiomatization of object-creation. Let u be a temporary variable
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of type c, and the logical variables z and z0 be of type c� and c, respectively.
Moreover, let V be a �nite set of instance variables in class c. For an assignment
of the form u := new we have the following axiom.

n
P
o
hU jc : u := newi

n
9z
�
P 0 # z ^Q(V; z)

�o

where P 0 = 9z0(P [z0=u]) and Q(V; z) denotes the following assertion

u 62 z ^ 8z0(z0 2 z _ z0 = u) ^
^
x2V

u:x = nil

The operation # z applied to an assertion R restricts all quanti�cations in R
to z. It is described in more detail below. Let us �rst explain the role of the
logical variables z and z0 (which are assumed not to occur in P ). The logical
variable z in the postcondition is intended to the store all the objects in class
c which exist in the state prior to the creation of the new object. The logical
variable z0 is intended to represent the old value of u. Given that z0 denotes
the old value of u, that P holds for the old value of u then can be expressed in
the postcondition simply by P [z0=u]. However the quanti�cation 9z0(P [z0=u]) in
the postcondition will also include the newly created object. In general we thus
have to take into account the changing scope of the quanti�ers. For example,
consider P = 8z00:false (with z00 of type c). Obviously P , which states that there
do not exist objects in class c, does not hold anymore after the creation of a
new object in class c. Our solution to this problem is to restrict the scope of all
quanti�cations involving objects in class c to the old objects in class c, which are
given by z. This restriction operation is denoted by R # z. Its main characteristic
de�ning clauses are the following two:

(9z00R) # z = 9z00(z00 2 z ^R # z)
(9z00R) # z = 9z00(z00 � z ^R # z)

where in the �rst clause z00 is of type c while in the second clause z00 is of type
c� (for convenience we assume the presence of the relation `is an element of the
sequence', denoted by 2, and the containment-relation �, which holds whenever
all the elements of its �rst argument occur in its second argument). Finally, the
assertion Q(V; z) in the postcondition of axiom above expresses that u denotes
the newly created object and speci�es the initial values of the variables in V (of
the newly created object).

For new-statements involving instance variables we have a similar axiom char-
acterizing its strongest postcondition semantics.

It is of interest to observe here that the strongest postcondition axiomatiza-
tion does not require a restricted repetoire of primitive sequence operations.

Method calls Next we present proof rules for verifying the third kind of assign-
ments: the ones where a message is sent and the result stored in the variable on
the left hand side. We present here a rule for non-recursive methods (recursion
is handled by a straightforward adaptation of the classical recursion rule, see for
example [3]).
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For the statement x := e0!m(e1; : : : ; en), we have the following proof rule (for
the statement u := e0!m(e1; : : : ; en) we have a similar rule):

n
P ^

Vk

i=1 vi = nil ^ self 62 �c0
o
hU jc0 : Si

n
Q[e=r]

o
; Q0[ �f=�z]! R[r=x]

n
P 0[ �f=�z]

o
hU jc : x := e0!m(e1; : : : ; en)i

n
R
o

where S 2 Statc
0

and e 2 Expc
0

d0
are the statement and expression occurring in

the de�nition of the method m in the unit U , u1; : : : ; un are its formal parame-
ters, v1; : : : ; vk is a row of temporary variables that are not formal parameters
(k � 0), r is a logical variable of type of the result of the method m (it is as-
sumed that r does not occur in R), �f is an arbitrary row of expressions (not
logical expressions) in class c, and �z is a row of logical variables, mutually dif-
ferent and di�erent from r, such that the type of each zi is the same as the type
of the corresponding fi. Furthermore, we assume given for each d 2 C , a logi-
cal variable �d of type d�. These variables will store the objects in class d that
are blocked (as will be explained below). Finally, P 0 and Q0 denote the result
of applying to P and Q a simultaneous substitution having the \components"
[e0=self]; [�c � self=�c]; [e1=u1]; : : : ; [en=un] (a formal de�nition will follow). We re-
quire that no temporary variables other than the formal parameters u1; : : : ; un
occur in P or Q.

Before explaining the above rule let us �rst summerize the execution of a
method call: First, control is transferred from the sender of the message to the
receiver (context switching). The formal parameters of the receiver are initialized
with the values of the expressions that form the actual parameters of the message
and the other temporary variables are initialized to nil. Then the body S of the
method is executed. After that the result expression e is evaluated, control is
returned to the sender, the temporary variables are restored, and the result
object is assigned to the variable x.

The �rst thing, the context switching, is represented by the substitutions
[e0=self], [�c � self=�c] (the append operation is denoted by �), and [�e=�u] (where
�e = e1; : : : ; en and �u = u1; : : : ; un).

The transfer of control itself corresponds with a `virtual' statement self :=
e0. Thus we see that if P [e0=self] holds from the viewpoint of the sender then
P holds from the viewpoint of the receiver after the transfer of control (i.e.
after self := e0). Or, in other words, an assertion P as seen from the receiver's
viewpoint is equivalent to P [e0=self] from the viewpoint of the sender.

De�nition12. We have the following main cases of the substitution operation
[e=self]: x[e=self] = e : x and self[e=self] = e.

Note that this substitution changes the class of the assertion: P [e0=self] 2

Assc whereas P 2 Assc
0

.

The (standard) substitution [�c � self=�c] models the other aspect of the con-
text switch, namely that the sender of the message is blocked when the receiver
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is active. This aspect of the control switch thus corresponds with a virtual state-
ment �c := �c � self. Moreover, the implicit check that the receiver itself is not
blocked is expressed by the additional information self 62 �c0 in the precondition
of the receiver (below is given an example of how this information can be used).

Now the passing of the parameters is simply represented by the simultaneous
substitution [�e=�u]. (Note that we really need simultaneous substitution here, be-
cause ui might occur in an ej with j < i, but it should not be substituted again.)
In reasoning about the body of the method we may also use the information that
temporary variables that are not parameters are initialized to nil.

The second thing to note is the way the result is passed back. Here the logical
variable r plays an important role. This is best understood by imagining after
the body S of the method the statement r := e (which is syntactically illegal,
however, because r is a logical variable). In the sending object one could imagine
the (equally illegal) statement x := r. Now if the body S terminates in a state
where Q[e=r] holds (a premiss of the rule) then after this \virtual" statement r :=
e we would have a situation in which Q holds. Otherwise stated, the assertion Q
describes the situation after executing the method body, in which the result is
represented by the logical variable r, everything seen from the viewpoint of the
receiver. Now if we context-switch this Q to the sender's side, and if it implies
R[r=x], then we know that after assigning the result to the variable x (our second
imaginary assignment x := r), the assertion R will hold.

Now we come to the role of �f and �z. We know that during the evaluation
of the method the sending object becomes blocked, that is, it cannot answer
any incoming messages. Therefore its instance variables will not change in the
meantime.The temporary variables will be restored after the method is executed,
so these will also be unchanged and �nally the symbol self will retain its meaning
over the call. All the expressions in class c (and in particular the fi) are built
from these expressions plus some inherently constant expressions and therefore
their value will not change during the call. However, the method can change the
variables of other objects and new objects can be created, so that the properties
of these unchanged expressions can change. In order to be able to make use
of the fact that the expressions �f are constant during the call, the rule o�ers
the possibility to replace them temporarily by the logical variables �z, which
are automatically constant. So, in reasoning from the receiver's viewpoint (in
the rule this applies to the assertions P and Q) the value of the expression fi is
represented by zi, and in context switching fi comes in again by the substitution
[ �f=�z]. Note that the constancy of �f is guaranteed up to the point where the result
of the method is assigned to x, and that x may occur in fi, so that it is possible
to make use of the fact that x remains unchanged right up to the assignment of
the result.

Example 4. Let us illustrate the use of the above rule by a small example.
Consider the unit U = c : hm ( (u0) : x1 := u0 " x2i and the program
� = hU jc : x1 := u1!m(x2)i. We want to show

n
u1 : x1 = x1 ^ :u1 = self

o
�
n
u1 : x1 = x2 ^ x1 = u1 : x2

o
:
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Fig. 2. The situation before and after sending the message (example 4)

So let us apply the rule (MI) with the following choices:

P � x1 = z1 ^ :self = z2
Q � x1 = u0 ^ r = x2 ^ :self = z2
R � u1 : x1 = x2 ^ x1 = u1 : x2
k = 0 (we shall use no vi)
f1 � x1 (represented by z1 in P and Q)
f2 � self (represented by z2 in P and Q)

First notice that P [u1; x2=self; u0][x1; self=z1; z2] � u1 : x1 = x1 ^ :u1 = self
so that the result of the rule is precisely what we want.

For the �rst premiss we have to prove
n
x1 = z1 ^ :self = z2

o
hU jc : x1 := u0i

n
x1 = u0 ^ x2 = x2 ^ :self = z2

o
:

This is easily done with the appropriate assignment axiom and the rule of con-
sequence.

With respect to the second premiss, we have

Q[u1; x2=self; u0][x1; self=z1; z2] � u1 : x1 = x2 ^ r = u1 : x2 ^ :u1 = self
R[r=x1] � if u1 = self then r else u1 : x1 � = x2 ^ r = u1 : x2

It is quite clear that the �rst implies the second, and we can use this implication
as an axiom.

In the above example we did not need to use the information represented
by the logical variables �c. The following example illustrates the use of these
variables in reasoning about deadlock.

Example 5. Consider the program � = hU j c : x := self!mi, where m is de�ned
in U without parameters. Since this program obviously deadlocks (in general we
will have to deal with longer cycles in the calling chain) we have the validity ofn
true

o
�
n
false

o
. This can be proved simply by observing that true is equivalent

to self 2 �c � self and that the latter assertion can be obtained by applying the
substitution [�c �self=�c] to the assertion self 2 �c. But this latter assertion, which
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by the above we can use as the part P of the precondition of the receiver in the
rule (MI), obviously contradicts the additional assumption that self 62 �c. Thus
the entire precondition of the receiver reduces to false from which we can derive
false as the postcondition of the body of the method m. From which in turn we
can derive easily by rule (MI) the correctness formula above.

5 Conclusions

In this paper we have given a proof system for a sequential object-oriented
programming language, called SPOOL, that ful�lls the requirements we have
listed in the introduction.

In [6] detailed proofs are given of both soundness (i.e. every derivable cor-
rectness formula is valid) and (relative) completeness (every valid correctness
formula is derivable, assuming, as additional axioms, all the valid assertions).
These proofs are considerable elaborations of the corresponding proofs of the
soundness and completeness of a simple sequential programming language with
recursive procedures (as described in, for example, [3] and [5]).

Related work To the best of our knowledge the proof system presented is the
�rst sound and complete proof system for a sequential object-oriented language.
In [1] and [10] di�erent Hoare-style proof systems for sequential object-oriented
languages are given which are based on the global store model as it has been
developed for the semantics of Algol-like languages. This model however intro-
duces a di�erence between the abstraction level of the assertion language and
that of the programming language itself. Moerover, as observed in [1], the global
store model gives rise to incompleteness.

Future research The proof rule for message passing, incorporating the passing
of parameters and result, context switching, and the constancy of the variables of
the sending object, is rather complex. It seems to work �ne for our proof system,
but its properties have not yet been studied extensively enough. It would be
interesting to see whether the several things that are handled in one rule could
be dealt with by a number of di�erent, simpler rules.

We have considered in this paper only partial correctness. But we are cur-
rently working on extensions which allow one to prove absence of deadlock and
termination.

In the present proof system the protection properties of objects are not re-

ected very well. While in the programming language it is not possible for one
object to access the internal details (variables) of another one, in the assertion
language this is allowed. In order to improve this it might be necessary to devel-
op a system in which an object presents some abstract view of its behaviour to
the outside world. Such an abstract view of an object we expect to consist of a
speci�cation of the interface of an object as it is used in [4, 6, 7, 8] for reasoning
about systems composed of objects which execute in parallel.

Related to the above is the problem of a formal justi�cation of the appro-
priateness of the abstraction level of a formalism for describing properties of
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dynamically evolving object structures. We expect that such a formal justi�-
cation involves a fully abstract semantics of the notion of on object. A related
question, as already described above, is to what extent the problems with the
incompleteness of the global store model are due to the particular choice of the
abstraction level.

In any case, we expect that our approach provides an appropriate basis for
specifying such high-level object-oriented programmingmechanisms like subtyp-
ing, abstract types and inheritance.
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