
An Efficient Threshold Public Key Cryptosystem

Secure Against Adaptive Chosen Ciphertext
Attack

(Extended Abstract)

Ran Canetti1 and Shafi Goldwasser2?

1 IBM T. J. Watson Research Center, Yorktown Height, NY, 10598,
canetti@watson.ibm.com

2 Laboratory for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139,

shafi@theory.lcs.mit.edu

Abstract. This paper proposes a simple threshold Public-Key Cryp-
tosystem (PKC) which is secure against adaptive chosen ciphertext at-
tack, under the Decisional Diffie-Hellman (DDH) intractability assump-
tion.

Previously, it was shown how to design non-interactive threshold PKC
secure under chosen ciphertext attack, in the random-oracle model and
under the DDH intractability assumption [25]. The random-oracle was
used both in the proof of security and to eliminate interaction. General
completeness results for multi-party computations [6,13] enable in prin-
ciple converting any single server PKC secure against CCA (e.g., [19,17])
into a threshold one, but the conversions are inefficient and require much
interaction among the servers for each ciphertext decrypted.

The recent work by Cramer and Shoup [17] on single server PKC secure
against adaptive CCA is the starting point for the new proposal.

1 Introduction

A threshold public-key cryptosystem (PKC) [18] extends the idea of a PKC
as follows: instead of a single party holding the private decryption key, there
are n decryption servers, each of which hold a piece of the private decryption
key. When a user receives a ciphertext c to be decrypted, she sends c to each
decryption server, receives a piece of information from each, and recovers the
cleartext from the collected pieces.

Semantic security of encryption schemes [28] can be easily extended to the
threshold PKC case. A threshold PKC is called t-secure if a coalition of t curious
but honest servers cannot distinguish between ciphertexts of different messages,
yet sufficiently many servers can jointly reconstruct the cleartext. A threshold

? Supported by DARPA grant DABT63-96-C-0018.

J. Stern (Ed.): EUROCRYPT’99, LNCS 1592, pp. 90–106, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

An Efficient Threshold PKC Secure Against Adaptive CCA 91

PKC is called t-robust if it meets these requirements even when up to t servers
are maliciously faulty.

Secure and robust threshold PKC’s can be designed, under general assump-
tions such as the existence of trapdoor permutations and using multi-party com-
putation completeness theorems [6,26], to convert any centralized semantically
secure PKC into a threshold one. More efficient threshold PKC’s have been de-
signed based on the RSA and DH intractability assumptions [24,18,35]. All of
these proposals require interaction among the servers and the user, in order to
achieve robustness for a linear fraction of faults. The general conversions require
interaction to achieve both security and robustness. In the work of [24] the pres-
ence of a trusted dealer, which distributes verification data for each pair of server
and user in a pre-processing stage, is proposed as a way to eliminate interaction
and yet achieve robustness for linear number of faults (they actually address
RSA signatures but the work can be easily reformulated for RSA decryption).

Stronger notions of security of centralized encryption schemes, namely secu-
rity against ‘Lunch-time Attacks’ and ‘chosen ciphertext attacks’ (CCA) were
defined, constructed, and studied in [33,38,19,17,4]. These notions capture ad-
ditional security concerns when using encryption within a general security ap-
plication. CCA security of threshold PKC has been recently defined in [25]. In
principal the Dolev-Dwork-Naor PKC secure against CCA (using non-interactive
zero knowledge) can be converted, using multi-party completeness theorems,
into a threshold PKC secure against CCA if trapdoor functions exist, but the
resulting scheme is inefficient and requires much interaction among the servers.
Efficient CCA-secure threshold PKC schemes were proposed in [25], in the ran-
dom oracle model under the DDH intractability assumption. The use of random
oracles was essential for proving security against CCA. Once the random oracle
was present it was also used to eliminate interaction to achieve robustness of
the scheme against a linear number of faulty servers. Our goal is to design an
efficient threshold PKC secure against CCA not in the random oracle model.

A threshold decryption service has several applications. Let us sketch a few.
One application (suggested in [25]) is for distributing the escrow service in a
key recovery mechanism and allowing it to decrypt only specific messages rather
than entirely recover the key. Another attractive application is for having pub-
lic encryption keys associated with an organization. Here messages directed to
the organization are encrypted with the organization’s public key; the organiza-
tion’s decryption servers now direct the decrypted plaintext to an appropriate
organization member. Another application is for a decryption service that ‘sits
on the net’ and offers decryption services for customers who do not have their
own certified public keys. This service can also be part of an ‘electronic vault’
application (e.g., [23]). Here it may be important that the decryption be done so
that no one except some specified party, not even the decryption servers them-
selves, will learn anything about the plaintext. (Our security requirements from
a threshold PKC take these scenarios into consideration, in an explicit way.)

92 Ran Canetti and Shafi Goldwasser

1.1 New Results

In this paper we present a new threshold PKC, which is provably secure against
CCA based on the DDH intractability assumption. Our scheme makes no use of
random oracles. The scheme achieves security against a coalition of t honest but
curious servers upto t < n

2 .
The starting point for our scheme is the recent attractive result of Cramer

and Shoup [17] which proposed (using techniques reminiscent of those of [25])
an efficient centralized PKC secure against adaptive CCA, under the DDH in-
tractability assumption.

The idea of the Cramer-Shoup scheme is that the ciphertext carries with it
a tag, which the decryption algorithm checks for validity before computing the
cleartext. If the tag is valid then the cleartext is output, else the decrypting
algorithm outputs ‘invalid’. Simplistically stated, unless the legal encryption
algorithm was used to produce the ciphertext, it is computationally hard to
come up with anything but an invalid tag, and thus it is safe for the server to
decrypt ciphertexts carrying a valid tag.

Differently from previous PKC’s proved secure against lunch-time attacks and
CCA [33,19], this scheme is not publicly verifiable. That is, deciding whether
the tag is valid or not requires the knowledge of the private key. In particular,
this knowledge enables computing from the ciphertext a tag′ which should equal
tag when the ciphertext is valid.

We now turn our attention to trying to make Cramer-Shoup into a threshold
PKC system. First note that if one is willing to increase the size of the ciphertext
(and of the public encryption key) proportionally to the number of servers then
achieving threshold CCA security is very simple: Let each server have a separate
public key of the Cramer-Shoup scheme, and modify the encryption algorithm
to that it first generates a Shamir secret sharing m1...mn of the message m, and
then each mi is separately encrypted using the public key of the ith server. Each
server decrypts its share as usual and hands it to the decrypting user.

However, we are interested in schemes where the ciphertext and the encryp-
tion key are small, and in particular independent of the number of servers. A
straightforward approach would thus be to distribute the private key among all
the decryption servers. When a ciphertext arrives, the servers distributively com-
pute whether the tag is valid or not and if it is valid each server outputs a piece
of the cleartext. The user then uses the pieces to recover the cleartext. The basic
problem of this approach is: how to distributively implement the check that the
tags are valid? General completeness results for multi-party computation indi-
cate that this is of course possible in principle, but requires interaction between
servers for every ciphertext received. More efficient, DDH based protocols seem
to require interaction as well.

The Main Idea: Avoiding the Validity Check The new idea is to first
modify the PKC scheme so as to avoid an explicit validity check. Instead, the
decrypting algorithm (still in the standard PKC case) will output the cleartext

An Efficient Threshold PKC Secure Against Adaptive CCA 93

if the ciphertext is valid, and otherwise a value indistinguishable from random1.
Thus, when the ciphertext is invalid (as defined in [17]) the user will get es-
sentially ‘random garbage’ computationally unrelated to the ciphertext. Such
a modified scheme (which we label m-cs) enjoys a very similar security proof
to the original scheme, but it is now possible to turn it into a threshold PKC
scheme avoiding the distributed validity check.

In our threshold PKC scheme, each of the n servers will output a piece of
information with the following property P :
• if the ciphertext was valid, then the cleartext can be recovered from the pieces
sent by the decryption servers; but
• if the ciphertext was invalid, then the collection of all the pieces is indistin-
guishable from random garbage.

How is this achieved? Let tag, tag’ be as discussed above. We come up with
a function f such that (1) f(tag,tag’) = 1 if tag=tag’ ; (2) f(tag,tag’) = rval
if tag6=tag’ (where rval is indistinguishable from random); and (3) f is easy to
distribute in the sense that it is easy to compute a share of f(tag,tag’) from a
share of the secret key. Condition (3) is necessary for threshold PKC whereas any
function with input/output behavior as specified in conditions (1)-(2) suffices
for m-cs . Using such f , each server will compute from the ciphertext and its
share of the private key, a share of f(tag, tag′) and send to the user a share of
cleartext · f(tag, tag).2 The user will combine the shares to obtain cleartext ·
f(tag, tag′). This choice of f guarantees property P .

We propose to use f(tag, tag′) = (tag/tag′)s where s is a random exponent.
In order to implement f , at system startup the servers will agree on a sequence of
random numbers s shared between them using some secret sharing method such
as polynomial secret sharing, and will use these numbers for f as ciphertexts
arrive.

Where Does the Randomness in Decoding Come from? The idea de-
scribed above requires that for each ciphertext, the servers will use a new random
number that is shared among them using a secret sharing method such as poly-
nomial secret sharing. How are these numbers chosen and shared? We suggest
the following method.

A straightforward implementation would be that before the start of the sys-
tem the servers agree using standard methods (e.g [39,6,20,35,22]) on m random
numbers r1, ...rm each of which is shared using a polynomial secret sharing among
the n players. These are used for decrypting m ciphertexts, after which time a
new set of random numbers will be chosen. This means, that each server must
store in local memory m shares of m random numbers in addition to his secret
1 This value does not have to be random. It would actually be sufficient to output,

in case of invalid tag, a value which is unrelated to the ciphertext.
2 This is a slight over simplification for purpose of exposition in the introduction. In the

actual scheme the server sends a share of mask ·f(tag, tag′) where mask ·cleartext is
part of the ciphertext. Receiving mask will enables the user to compute the cleartext.
See exact details within.

94 Ran Canetti and Shafi Goldwasser

key. (Alternatively, the servers may generate these random numbers every time
a ciphertext appears. However, this method requires interaction among servers
at the time of decryption, and is thus not recommended.)

This implementation may encounter synchronization problems when the ser-
vers receive the ciphertexts in different orders. We suggest solutions within.

We do not know how to keep the memory requirements of the servers in-
dependent of the number of decryptions to be performed, without interaction
among the servers. This is left as an interesting open problem. (See more details
in Section 3.1.)

Robustness Suppose now that some of the decryption servers are maliciously
faulty. To achieve t-robustness we propose several variants of our basic scheme,
all of which use [39,20] style polynomial secret sharing as a building block. Our
solutions use standard tools which have been used in the literature to address
robustness of threshold signature and encryption schemes such as the prover
proving in zero-knowledge to the user that the share provided is proper; we come
up with efficient instantiations of such tools tailored to the tasks at hand. We
stress that in all methods the public encryption key and the encryption algorithm
are identical to those of Cramer-Shoup, and in particular are independent of the
number of servers. We sketch these methods, all of which achieve t-robustness
for up to t < n

3 malicious server faults.
• A first method is fully non-interactive, and is efficient when t = O(

√
n). Prac-

tically speaking, when, say, n = 7 and t = 2 this method is quite efficient.
• A second method requires a simple four-round interactive proof between the
user and the decryption servers (no interaction between the decryption servers
themselves is necessary). Here each server proves to the user that the piece
of decryption information provided is correct. The interactive protocol can be
avoided when sufficient number of decryption servers do not act in a faulty
fashion. The user first runs a local detection-algorithm to see if she can use the
pieces of information she received from the servers to decrypt the ciphertext.
Only when the user detects that too many pieces were faulty, should she carry
out the interactive-proofs to determine which pieces were faulty and should be
discarded. Here the decrypting user needs some verification information for each
of the servers. Thus the size of the public file grows by a factor of n. Yet, it
is stressed that the encryption algorithm remains identical to that of Cramer-
Shoup, and the public key needed for encryption remains small.
• A third method uses the technique of check-vectors introduced by [37] for
VSS implementation and used by [24] to achieve robustness of threshold RSA
signatures. The idea of [24] was that at the time of key generation, a trusted
dealer generates additional verification data for every pair of user-server, and
gives part of this data to the user and part to the server. At the time of signature
verification, the user uses her verification data to verify non-interactively that
each piece of RSA signature she received from each server is non-faulty. A slight
modification of the idea of [24] can be applied to our scheme as well to make
it non-interactive and t-robust for t < n

3 . It will however require each potential

An Efficient Threshold PKC Secure Against Adaptive CCA 95

decrypting user to have some secret information, and increase the size of each
server’s key proportionally to the number of potential decrypting users. Thus,
this variant is adequate when the number of decrypting users is small, or a
‘decryption gateway’ is available. (For lack of space, this method is deleted from
the proceedings version. It is described in [12].)
Remark: The question of whether it is possible to achieve robustness efficiently
against a linear number of faults without interaction (either among the servers or
between the servers and the user) or a trusted dealer is an interesting open prob-
lem for threshold PKC regardless of which security is desirable, be it semantic
security or CCA.

1.2 Additional Contributions of This Paper

A New Definition of Security for Threshold PKC. Another contribution of our
work is proposing an alternative definition of security for threshold PKCs. than
the definition of [17]. (The definition of [17] is stated in the random-oracle model;
yet it can be readily transformed to protocols that do not use the random oracle.)
An attractive feature of the new definition (which follows a standard methodol-
ogy for defining security of cryptographic protocols [27,31,1,9]) is that it is geared
towards defining the security of the threshold PKS as a component within larger
systems. In particular, on top of guaranteeing CCA security it addresses issues
like non-malleability [19], plaintext awareness [5,4] and security against dynamic
adversaries [3,10].

Remote Key Encryption. One of the by-products of our method is yet another
variant of our PKC (for the single or multiple server case) such that the user
can send the ciphertext to a decryption server(or several servers) on line and re-
ceive information which allows the user to recover the cleartext. Yet, neither the
servers nor anyone else listening on line can get any information about the clear-
text. This functionality has been introduced and (very different) constructions
were given in [7]. This variant is secure against lunch-time attacks only.

Proactiveness. Our techniques can be ‘proactivized’ (i.e., modified to withstand
mobile faults, as suggested in [34,11]) in standard ways [29]. See more discussion
in [12].

2 Security of Threshold Cryptosystems

We present a measure of security of threshold PKCs. Our formalization is geared
towards capturing the security requirements that emerge when using the system
as a “service” in a complex and unpredictable environment. In a nutshell, the
definition here requires that the system behaves like an “ideal encryption service”
under any usage pattern. Indeed, this requirement incorporates known security
measures like CCA security, non-malleability, plaintext awareness, and security
against dynamic adversaries.

96 Ran Canetti and Shafi Goldwasser

The definition here takes a different approach than that of [25], where thresh-
old CCA-security is regarded as a natural extension of the standard definition of
CCA-security to the context of threshold cryptosystems. In particular, security
according to the definition here implies security according to the definition of
[25]. (The converse does not hold in general.)

For lack of space we only sketch the definition in this extended abstract. See
[12] for full details on the definition and the relations with that of [25].

Outline of our definition. Following the approach used for defining security of
general cryptographic protocols [27,31,1,9], we proceed in three steps. First we
formalize the model of computation and specify a syntax for threshold PKCs.
Next we specify an idealized model where a threshold PKC is replaced with an
“ideal encryption service”. Finally, we say that a threshold PKC is secure if it
emulates the ideal service in a way described below.

The computational model and threshold PKCs. There are n decryption
servers S1...sn, an encrypting user E and a decrypting user U . A threshold PKC
consists of:
A key generation module, that given the security parameter generates a public
key, pk, known to all parties, and some secret key, ski, known to each server Si;
An encryption algorithm (run by E) that, given pk, a message m to be encrypted,
and random input ρ, outputs a ciphertext c = encpk(m, ρ);
A server decryption module that, when operating within server Si and given ski

and a ciphertext c, possibly interacts with D and other servers and eventually
generates a decryption share µi;
A user decryption module (run by D) that, given a ciphertext c, interacts with
the servers, and eventually outputs m = decpk(c, ρi, µ1...µn).

A run of the system consists of an invocation of the key generation module
(at the end of which pk is made public and the secret keys are given to the
corresponding servers), followed by an interaction among the parties via some
standard model of distributed communication. (For simplicity assume ideally
secure and authenticated communication links). The interaction is orchestrated
by an adversary A who can invoke E and D on cleartexts and ciphertexts of its
choice; in addition, A can corrupt D and up to t servers. (The corruptions are
either static or dynamic. Corrupting D gives A access to the decrypted data.) We
augment the model by allowing the adversary to freely interact with an addi-
tional entity, called an environment machine Z. This (Turing) machine models the
external environment, and in particular provides the adversary with arbitrary
and interactive ‘auxiliary input’ throughout the run of the system. In particular,
Z learns all the information learned by A (and, in general, can have additional
information that is unknown to A.)

We let the global output execτ,A,Z of a run of a threshold PKC τ with adver-
sary A and environment Z be the concatenation of the output of all the parties,
the adversary, and the environment machine. In particular, the global output reg-

An Efficient Threshold PKC Secure Against Adaptive CCA 97

isters all the encryption requests made to E, all the decryption requests made
to D and each Si, and the resulting ciphertexts and cleartexts.

The ideal encryption model. The ideal model consists of replacing the
four modules of a threshold PKC with a trusted service T , parameterized by
a threshold t, and a security parameter k. First T receives a description of a
distribution Γ from the adversary (who is now called an ideal model adversary,
S).3 Next, the trusted party provides the following services:
Ideal Encryption, where E hands T a message m to encrypt. In response, E
receives a receipt c, chosen from distribution Γ independently of m.
Ideal Decryption, where The servers can hand a receipt c to T . Once t servers
have handed c to T , and if c was previously generated by T , then T hands D
the message m that corresponds to c. Otherwise T ignores the request.
A run of the system in the ideal model is orchestrated by the adversary in the
same way as described above.

Let the ideal global output idealt,S,Z be defined analogously to execτ,A,Z
with respect to parties running in the ideal encryption model with ideal-model
adversary S, where t is the trusted party’s threshold.

Security of threshold PKCs. A threshold PKC τ is called t-secure if it
emulates the ideal encryption service, in the following way. For any adversary A
there should exist an ideal model adversary S such that for any environment Z
the global outputs idealt,S,Z and execτ,A,Z are computationally indistinguish-
able (when regarded as distribution ensembles). We stress that the environment
Z is the same in the real-life and ideal executions; that is, S can “mimic” the
behavior of A in any environment.

Replacing an ideal service. The quantification over all environments Z provides
a powerful guarantee. In particular, it captures the interaction of any application
protocol with the PKC in question. Consequently, this definition can be used to
show the following attractive property of PKCs. Consider an arbitrary, multi-
party ‘application protocol’ π where, in addition to communicating over the
specified communication channels, the parties have access to an ideal encryption
service similar to the one described above. Let τ be a PKC that meets the above
definition, and let πτ be the protocol where each call to the ideal service is
replaced, in the natural way, with an invocation of the corresponding module of
τ . Then πτ emulates π, where the notion of emulation is similar to the one used
above. See more details in [12].

3 A Threshold Cryptosystem

Our threshold cryptosystem is based on the Cramer-Shoup cryptosystem [17].
We first briefly review the (basic variant of the) Cramer-Shoup scheme, denoted
3 Typically, Γ will be the distribution of an encryption of a random message in the

domain, under a randomly chosen public key.

98 Ran Canetti and Shafi Goldwasser

cs, and modify it as a step towards constructing the distributed scheme. Next
we present the basic scheme and its extensions.

The Cramer-Shoup scheme. Given security parameter k, the secret key is (p, g1,
g2, x1, x2, y1, y2, z, H) where p is a k-bit prime, g1, g2 are generators of a subgroup
of Zp of a large prime order q, function H is a hash function chosen from a
collision-resistant hash function family and x1, x2, y1, y2, z

R← Zq.4 The public
key is (p, g1, g2, c, d, h) where c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , and h = gz

1 .
It is assumed that messages are encoded as elements in Zq. To encrypt a

message m choose r
R← Zq and let enc(m, r) = (gr

1 , g
r
2, h

rm, crdrα), where α =
H(gr

1, g
r
2 , h

rm). Decrypting a ciphertext (u1, u2, e, v) proceeds as follows. First
compute v′ = ux1+y1α

1 · ux2+y2α
2 . Next, perform a validity check: if v 6= v′ then

output an error message, denoted ‘?’. Otherwise, output m = e/uz
1. Security

of this scheme against CCA is proven, based on the decisional Diffie-Hellman
assumption (DDH), in [17].

Towards a threshold scheme. We first observe that this scheme can be slightly
modified as follows, without losing in security. If the decryptor finds v 6= v′ then
instead of outputting ‘?’ it outputs a random value in Zq. In a sense, the modified
scheme is even “more secure” since the adversary does not get notified by the
decryptor whether a ciphertext is valid.

Next, modify this scheme further, as follows. The decryption algorithm now
does not explicitly check validity. Instead, given (u1, u2, e, v) it outputs e/uz

1 ·
(v′/v)s, where v′ is computed as before and s

R← Zq. (Note that now the decryp-
tion algorithm is randomized.) To see the validity of this modification, notice
that if v = v′ then (v/v′)s = 1 for all s, and the correct value is output. If
v 6= v′ then the decryption algorithm outputs a uniformly distributed value in
Zq, independent of m, as in the previous scheme. Call this scheme m-cs.

Claim. If scheme cs is secure against CCA then so is scheme m-cs.

Proof. Correctness of m-cs (i.e., correct decryption of correctly generated cipher-
texts) clearly holds. To show security against CCA, consider an adversaryA that
wins in the ‘CCA-game’ (see [17]) against m-cs with probability non-negligibly
more than one half. Construct the following adversary, A′ that operates against
cs. A′ runs A, with the exception that whenever A′ receives an answer ‘?’ from
the decryption oracle it chooses r

R← Zq and gives r to A. Finally A′ outputs
whatever A does. The view of A′ is distributed identically to its view in an in-
teraction with m-cs, thus it predicts the bit b chosen by the encryption oracle
of A′ with probability non-negligibly more than one half.

Verifying Validity of Ciphertexts. An apparent disadvantage of m-cs is that
even a legitimate user of the decryption algorithm does not learn whether a

4 In fact, H can be a target-collision-resistant hash function. The notation e
R← D

means that element e is drawn uniformly at random from domain D.

An Efficient Threshold PKC Secure Against Adaptive CCA 99

ciphertext was valid. However, this information may be obtained in several ways:
First, when applying the decryption algorithm twice to an invalid ciphertext,
two independent random numbers are output, but if the ciphertext is valid then
both applications output the same cleartext. Alternatively, valid cleartexts can
be assumed to have a pre-defined format (say, a leading sequence of zeros). The
output of the decryption algorithm on an invalid ciphertext, being a random
number, has the right format with probability that can be made negligibly small.

On Remotely Keyed Encryption: As a side remark, one can trivially change cs

and m-cs to qualify as a remotely-keyed-encryption scheme [7] secured against
lunch-time attacks. Simply, drop d from the public key, and let enc(m, r) =
(gr

1 , g
r
2, h

rm, cr).5 Then the user sends to be decrypted remotely only (gr
1 , g

r
2, c

r),
dropping the third component of the ciphertext. To decrypt, the server who gets
(u1, u2, v) computes v′ = ux1

1 ux2
2 and sends p = (v′/v)s

uz
1

back to the user. The
user sets m = e · p. Clearly, the server got no information about m. A similar
modification can be applied to the threshold PKC coming up in the next section,
to obtain a remotely keyed threshold PKC secure against lunch time attacks.

3.1 An Threshold Cryptosystem for Passive Server Faults

The basic threshold scheme, denoted t-cs, distributes scheme m-cs in a straight-
forward way. Let p, q, g1, g2 be as in the original scheme, and let t be the thresh-
old. The scheme requires an additional parameter, L, specifying the number of
decryption performed before the public and secret keys need to be refreshed. We
first describe the scheme for the case where all serves follow their protocol.
Key generation. For simplicity we assume a trusted dealer for this stage. This
simplifying assumption can be replaced by an interactive protocol performed by
the servers. This can be done using general multi-party computation techniques
[26,6,13] or more efficiently using techniques from [35]. Say that a polynomial
P (ξ) =

∑d
i=0 aiξ

i (mod q) is a random polynomial for a if a0 = a and a1...ad
R←

Zq. The dealer generates:
• x1, x2, y1, y2, z

R← Zq as in the original cs, and random degree t polynomials
P x1(), P x2(), P y1(), P y2(), P z() for x1, x2, y1, y2, z, respectively.
• L values s1...sL

R← Zq and random degree t polynomials P s1()...P sL() for them.
• L random degree 2t polynomials P o1()...P oL() for the value 0.6

Let xj,i = P xj(i). Let yj,i, zi, sl,i, ol,i be defined similarly. The secret key of server
Si is now set to ski = (p, q, g1, g2, x1,i, x2,i, y1,i, y2,i, zi, s1,i...sL,i, o1,i...oL,i). The
public key is identical to that of cs: pk = (p, q, g1, g2, c, d, h) where c = gx1

1 gx2
2 ,

d = gy1
1 gy2

2 , and h = gz
1 .

5 This simplification was suggested in [17].
6 Looking ahead, we note that these values are needed to make sure that the partial

decryptions are computed based on a random degree 2t polynomial. More specifically,
these shares make sure that polynomial Q() defined in Equation (2) below is a random
degree 2t polynomial for the appropriate value.

100 Ran Canetti and Shafi Goldwasser

Encryption is identical to cs: encpk(m, r) = (gr
1, g

r
2, h

rm, crdrα), where α =
H(gr

1, g
r
2 , h

rm).
Decryption. Each server Si proceeds as follows, to decrypt the lth ciphertext,
(u1,u2,e,v). First it computes a share v′i of v′, by letting v′i =u

x1,i+y1,iα
1 u

x2,i+y2,iα
2 .

Then it computes a share uzi
1 of uz

1 and a share g
ol,i

1 of the value ‘1’. Next it
computes and outputs the partial decryption:7

fi = uzi
1 · (v/v′i)

sl,i · gol,i

1 .

The user module collects the partial decryptions f1...fn and computes the value
f0 = Πn

i=1f
λi

i , where the λi’s are the appropriate Lagrange interpolation coeffi-
cients; that is, the λi’s satisfy that for any degree 2t polynomial P () over Zq we
have P (0) =

∑n
i=1 λiP (i). Next, the user outputs m = e/f0.

Theorem 1. If the DDH assumption holds then t-cs is a t-secure threshold
cryptosystem for any t < n

2 , provided that even corrupted servers follow their
protocol.

Proof. See proof in [12]. Here we only verify that the output of the user’s de-
cryption module is identical to the output of the decryption module in m-cs.
Each partial decryption fi can be written as follows:

fi = u
zi−sl,i(x1,i+y1,iα)
1 u

−sl,i(x2,i+y2,iα)
2 vsl,ig

ol,i

1 (1)

Let r1 = logg1
u1 (i.e., r1 satisfies gr1

1 = u1), let r2 = logg2
u2, and let r3 =

logg1
v. Then we have

fi = g
r1·zi−r1·sl,ix1,i−r1α·sl,iy1,i−r2·sl,ix2,i−r2α·sl,iy2,i+r3·sl,i+ol,i

1 .

Consequently, fi = g
Q(i)
1 where Q() is the degree 2t polynomial:

Q() = r1P
z()− r1P

sl()P x1()− r1αP sl ()P y1()− r2P
sl()P x2()

− r2αP sl()P y2() + r3P
sl() + P ol()

(2)

It follows that

f0 = g
Q(0)
1 = gr1·z−r1·slx1−r1α·sly1−r2·slx2−r2α·sly2+r3·sl+0

1 = uz
1 · (v/v′)sl

therefore e/f0 = m · (v′/v)sl .

How to synchronize the s’s. The above scheme may encounter synchronization
problems when the servers receive the ciphertexts in different orders, and con-
sequently associate shares of different s’s with the same ciphertext. A way for
solving this problem is to have the servers agree on a bivariate polynomial H(x, y)

7 Once the partial decryption is generated, the server erases the shares ol,i, sl,i. This
provision is important for proving security of the scheme against dynamic adversaries
that may corrupt parties during the course of the computation.

An Efficient Threshold PKC Secure Against Adaptive CCA 101

of degree t in x and degree L in y, where each server Pi holds the degree-m uni-
variate polynomial Hi(y) = H(i, y). The value si,c associated with the ciphertext
c is computed as si,c = H(i, h(c) where h() is a collision-resistant hash function
that outputs numbers in Zq. It now holds that the first L ciphertexts will be as-
sociated with L independent s’s, regardless of the relative order of arrival at the
servers. (Ciphertext c will be associated with the value sc = H(0, h(c)). Using
bivariate polynomials for related purposes is common in the literature. The use
here is similar to the one in [32].

This method does not reduce the memory requirements from the servers,
since each Hi has L + 1 coefficients. Furthermore, our proof of security against
dynamic adversaries does not go through when this method is used. (Security
against static adversaries remains unchanged.)

In an alternative method (that allows the proof against dynamic adversaries
to go through) the servers use a universal hash function h (not cryptographic,
just avoiding collisions with high probability) to map the ciphertext c to an
index i. Once an sl has been utilized, erase it from the list.8 Note that universal
hash functions suffice here, as it is in the interest of the encrypting party to
prevent collisions in hashed ciphertexts. However, only a fraction of the s’s are
used before collisions become frequent.

On pseudorandomly generated s’s. The need to prepare in advance the s’s and
the o’s (i.e., the shared random values and the shares of the value 0) is a draw-
back of our scheme. It raises an interesting open problem of whether it is possible
to construct a non-interactive and efficient implementation of a threshold pseu-
dorandom function (TPRF), namely a PRF family {fk} where the secret key k is
shared by a number of servers so that the servers can jointly evaluate the func-
tion, yet the function remains pseudorandom to an adversary who may control a
coalition of some of the servers. For our scheme, we would need in addition that
the shares of the servers of fk(c) would correspond to the values of a degree-t
polynomial whose free term is fk(c). If such function family would exist, then
instead of pre-sharing the random s’s, each server Si will, given a ciphertext c,
set si to be the ith share of fk(c). (The shares of the value ‘0’ can be pseudo-
randomly generated using similar methods.)

In fact, a threshold pseudorandom generator (TPRG) will suffice for us and
could possibly be easier to implement. In a TPRG suitable for our purpose, the
seed to the generator would be shared among the servers. Each server would
compute a point on a degree t random polynomial whose free term is the ith
output block of the generator.

8 In the event that a c′ arrives s.t. h(c′) = i for an si that was previously used and
erased, the server alerts the user to replace c′ with c′′ (a perturbed c′) and sh(c′′) is
used instead.

102 Ran Canetti and Shafi Goldwasser

3.2 Achieving Robustness

This section deals with protecting against actively faulty decryption servers. No-
tice that since scheme t-cs is non-interactive then actively faulty servers cannot
help the adversary in compromising the secrecy of encrypted messages that were
not explicitly decrypted by the non-corrupted servers. The only damage that
actively faulty servers can cause is denial of service. This is a lesser concern than
secrecy, and in particular can usually be dealt with using external methods,
such as notifying a higher-layer protocol or an operator. Still, we describe three
methods for dealing with such active faults, as sketched in the Introduction.

Local error correcting. The first method uses the fact that, as long as t < n
3 ,

the correct value f0 is uniquely determined. This holds even if up to t of the
fi’s are arbitrary elements in Zq: Let Q() be the polynomial defined in Equation
(2). Then at least n − t of the partial decryptions f1...fn satisfy fi = g

Q(i)
1 .

Furthermore, there exists only a single degree 2t polynomial that agrees with
n− t of the fi’s.

We describe below a method for finding f0 = g
Q(0)
1 . This method is efficient

only when t = O(
√

n). We do not know how to efficiently find f0 for larger values
of t; this ‘error correction in the exponent’ is an interesting and general open
problem with various applications for cryptographic protocols. In particular,
standard error correction algorithms for Reed-Solomon codes [30,41], which work
when the perturbed Q(i)’s are explicitly given, do not seem to work here.

Our simplistic method for finding the value f0 = g
Q(0)
1 proceeds as follows.

We first pick at random a set G = {fi1 ...fid
} of d = 2t + 1 fi’s, and check its

validity using the appropriate Lagrange coefficients. That is, let λx
1 ...λx

d be such
that P (x) =

∑d
k=1 λx

kP (ik) for all polynomials P () of degree 2t. (These λx
k’s

are specific for x and for the set G.) Then, for each j = 1..n we test whether

fj = Πd
k=1f

λj
k

ik
. Say that s is valid if the test fails for at most t fj’s. We are

guaranteed by the uniqueness of Q() that if G is valid then letting f0 = Πd
k=1f

λ0
k

ik

yields the correct value. Furthermore, if Si is uncorrupted (and thus fi = g
Q(i)
1)

for all i ∈ G then G is valid.
We thus repeatedly choose random sets of size 2t + 1 and check for validity.

Each trial succeeds with probability Ω(e−2t2/n). Thus when t = O(
√

n) we are
guaranteed that a valid set G is found within a constant number of trials. (A
similar argument is used in [2]). When n is small — as would be the case for
practical applications — this method is quite efficient.

Interactive proofs of validity of partial decryptions. This method calls for the
decrypting user to perform a (four-move) Zero Knowledge interaction with each
of the servers to verify the validity of the partial decryptions. While making sure
that neither corrupted servers nor a corrupted user gather more information
(or, rather, more computational ability) than in the basic scheme (t-cs), these
interactions guarantee that the user will almost never accept an invalid partial

An Efficient Threshold PKC Secure Against Adaptive CCA 103

decryption as valid. Once the interactions are done, the user interpolates f0 as
in the basic scheme, based on the acceded partial decryptions. We remark that
the user need not always perform these interactions. It can first locally check
validity (using terminology from the previous method) of the entire set {f1...fn}
and interact with the servers only if {f1...fn} is found invalid.

We use standard techniques for discrete-log based ZK proofs of membership
and knowledge [21,14,15,40,16,8]. First the following verification information is
added to the public key. (We stress that this information is not needed for
encrypting messages; it is used only by the decrypting users.) For each server Si

and each l = 1..L we add:

gzi
1 , g

sl,i

1 , g
sl,i

2 , g
ol,i

2 .

Now, given the lth ciphertext (u1, u2, e, v) server Si sends to the decrypting
user, along with the partial decryption fi (computed as in t-cs), also the values
ũ1 = u

sl,i

1 and ũ2 = u
sl,i

2 . Next, Si and the user U engage in the following
interaction, whose purpose can be informally described as follows. Recall that
α = H(u1, u2, e). Server Si proves to U that:

1. logu1
ũ1 = logg1

g
sl,i

1 and logu2
ũ2 = logg2

g
sl,i

2 .
2. Si “knows” values w1, w2, w3, w4, w5 and x1,i, x2,i, y1,i, y2,i, such that:

(a) w1 · w2 · w3 · w4 · w5 = fi

(b) w−1
1 = ũ

x1,i

1 ũ
x2,i

2 and w−1
2 = ũ

y1,iα
1 ũ

y2,iα
2

(c) logu1
w3 = logg1

gzi
1

(d) logv w4 = logg1
g

sl,i

1

(e) logg1
w5 = logg2

g
ol,i

2 .

The proof proceeds as follows. We describe the proof in two parts. These parts
are performed in parallel. (In fact, U can use the same challenge for both proofs.)
First, to prove item (1) a standard ZK proof of equality of discrete-logs [16] is
performed:

1. U commits to a challenge c
R← Zq.9

2. Si chooses r1, r2
R← Zq, and sends b1 = ur1

1 , b2 = gr1
1 , b3 = ur2

2 , b4 = gr2
2 to U .

3. U de-commits to c
4. Si sends a1 = r1 + csl,i and a2 = r2 + csl,i to U .
5. U accepts if ua1

1 = ũcb1
1 and ga1

1 = g
sl,icb2
1 and ua2

2 = ũcb3
2 and ga2

2 = g
sl,icb4
2 .

The above interaction consists of two [16] proofs, that use the same challenge.
It can be seen that using the same challenge does not significantly increase the
probability of error for the user.

Next, to show item (2) above, server Si and user U engage in the following
interaction (which is a combination of the above proof of equality of discrete
logs, and a proof of “knowledge of a representation” from [14,15] (we use the
formulation of [8]).
9 Specifically, we use the Pedersen commitment scheme [36]. Here the parties may use

two predetermined generators g, h of the subgroup of size q in Z∗
p. The user commits

to c by sending gchs for a randomly chosen s in Zq.

104 Ran Canetti and Shafi Goldwasser

1. U commits to a challenge c
R← Zq, as before.

2. Si chooses r1...r7
R← Zq and sends b1 = ũr1

1 ũr2
1 , b2 = ũr3α

2 ũr4α
2 , b3 = ur5

1 ,
b4 = gr5

1 , b5 = vr6 , b6 = gr6
1 , b7 = gr7

1 , b8 = gr7
2 to U .

3. U de-commits to c.
4. Si sends a1 = r1 + x1,ic, a2 = r2 + x2,ic, a3 = r3 + y1,ic, a4 = r4 + y2,ic,

a5 = r5 + zic, a6 = r6 + sl,ic, a7 = r6 + ol,ic to U .
5. U accepts fi if ga5

1 = gzicb4
1 and ga6

1 = g
sl,icb6
1 and ga7

2 = g
ol,icb8
2 and

ũa1
1 ũa2

2 ũa3α
1 ũa4α

2 ua5
1 va6ga7

1 = f c
i b1b2b3b5b7. (3)

The above interaction combines three [16] proofs of equality of discrete loga-
rithms with two [14,15] proofs of knowledge of representation. In addition to
using the same challenge, here the verifier’s acceptance conditions of the five
proofs are combined in a single product (3). This allows the verifier to check
the validity of the product fi without knowing the individual wi’s. Correct-
ness of this interaction is based on the fact that if Si ‘knows’ representations
w−1

1 = ũ
x1,i

1 ũ
x2,i

2 and w−1
2 = ũ

y1,iα
1 ũ

y2,iα
2 then the values x1,i, x2,i, y1,i, y2,i must

be the ones from Si’s secret key (otherwise a knowledge extractor for Si can be
used to find the index of g2 w.r.t. g1).

User U decides that fi is valid if it accepted fi in both of the above inter-
actions. Finally, U proceeds to compute f0 and m based on the valid fi’s, as in
the basic scheme. Let i-cs denote this interactive variant of t-cs.

Theorem 2. If the DDH assumption holds then i-cs is a t-robust threshold
cryptosystem for any t < n

2 .

The proof combines the simulation technique from the proof of Theorem 1 with
the proofs of the protocols of [16,14,15]. We omit details from this version. (Here
we only withstand static adversaries.) We remark that the protocols described
here do not withstand asynchronously concurrent interactions between a cor-
rupted user and the servers. This problem can be solved once general mechanisms
for efficiently dealing with the concurrency problem are provided.

Acknowledgments

We thank Rosario Gennaro, Oded Goldreich, Shai Halevi, Tal Rabin, Omer Rein-
gold, Ronitt Rubinfeld, Victor Shoup and Madhu Sudan for helpful discussions.
The first author expresses special thanks to Rosario and Tal for very instruc-
tive tutorials. We also thank Moni Naor and Benny Pinkas for pointing out the
bivariate-polynomial solution to the synchronization problem among the servers.

References

1. D. Beaver, “Secure Multi-party Protocols and Zero-Knowledge Proof Systems
Tolerating a Faulty Minority”, J. Cryptology (1991) 4: 75-122.

An Efficient Threshold PKC Secure Against Adaptive CCA 105

2. D. Beaver and J. Feigenbaum, “Hiding instances in multi-oracle queries”,
STACS, 1990.

3. D. Beaver and S. Haber, “Cryptographic Protocols Provably secure Against
Dynamic Adversaries”, Eurocrypt, 1992.

4. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, “Relations among notions
of security for public-key encryption schemes”, CRYPTO ’98, 1998, pp. 26-40.

5. M. Bellare and P. Rogaway, “Optimal Asymmetric Encryption”, Eurocrypt ’94
(LNCS 950), 92-111, 1995.

6. M. Ben-Or, S. Goldwasser and A. Wigderson, “Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation”, 20th STOC, 1988, pp.
1-10.

7. M. Blaze, J. Feigenbaum and M. Naor, “A formal treatment of remotely keyed
encryption”, Eurocrypt ’98, 1998, pp. 251-165.

8. S. Brands, “An efficient off-line electronic cash system based on the representa-
tion problem”, CWI TR CS-R9323, 1993.

9. R. Canetti, “Security and composition of multi-party protocols”, Available at
the Theory of Cryptography Library, http://philby.ucsd.edu, 1998.

10. R. Canetti, U. Feige, O. Goldreich and M. Naor, “Adaptively Secure Computa-
tion”, 28th STOC, 1996. Fuller version in MIT-LCS-TR #682, 1996.

11. R. Canetti and A. Herzberg, “Maintaining security in the presence of transient
faults”, CRYPTO’94, 1994.

12. R. Canetti and S. Goldwasser, “A threshold public-key cryptosystem secure
against chosen ciphertext attacks”, Available at the Theory of Cryptography
Library, http://philby.ucsd.edu, 1999.

13. D. Chaum, C. Crepeau, and I. Damgard, “Multi-party Unconditionally Secure
Protocols”, 20th STOC, 1998, pp. 11–19.

14. D. Chaum, E. Everetse and J. van der Graaf, “An improved protocol for demon-
strating possession of discrete logarithms and some generalizations”, Eurocrypt
’87,, LNCS 304, 1987, pp. 127-141.

15. D.Chaum, A. Fiat and M. Naor, “Untraceable electronic cash”, CRYPTO ’88,
LNCS 403, 1988, pp. 319-327.

16. D. Chaum and T. Pedersen, “Wallet databases with observers”, CRYPTO ’92,
1992, pp. 89-105.

17. R. Cramer and V. Shoup, “A paractical public-key cryptosystem provably secure
against adaptive chosen ciphertext attack”, CRYPTO ’98, 1998.

18. Y. Desmedt and Y. Frankel, “Threshold cryptosystems”, Crypto ’89 (LNCS
435), 1989, pages 307–315.

19. D. Dolev, C. Dwork and M. Naor, Non-malleable cryptography, 23rd STOC,
1991.

20. P. Feldman, “A practical scheme for non-interactive Verifiable Secret Sharing”,
28th FOCS, 1987, pp. 427-437.

21. A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identifi-
cation and signature problems”, CRYPTO’86 (LNCS 263), 186-194, 1986.

22. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems”, these proceedings.

23. J. Garay, R. Gennaro, C. Jutla and T. Rabin, “Secure Distributed Storage and
Retrieval” Proceedings of 11th International Workshop on Distributed Algo-
rithms (WDAG97) Lecture Notes in Computer Science 1320, pp. 275-289, 1997.

24. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust and efficient shar-
ing of RSA functions, CRYPTO ’96, 1996, pp. 157-172.

106 Ran Canetti and Shafi Goldwasser

25. R. Gennaro and V. Shoup, “Securing threshold cryptosystems against chosen
ciphertext attack”, Eurocrypt ’98, 1998, pp. 1-16.

26. O. Goldreich, S. Micali and A. Wigderson, “How to Play any Mental Game”,
19th STOC, 1987, pp. 218-229.

27. S. Goldwasser, and L. Levin, “Fair Computation of General Functions in Pres-
ence of Immoral Majority”, CRYPTO, 1990.

28. S. Goldwasser and S. Micali, “Probabilistic encryption”, JCSS, Vol. 28, No 2,
April 1984, pp. 270-299.

29. A. Herzberg, S. Jarecki, H. Krawczyk and M. Yung “Proactive Secret Sharing
or: How to Cope with Perpetual Leakage”, CRYPTO ’95, LNCS 963, 1995. pp.
339–352.

30. F. J. Macwiliams and N. J. A. Sloane, “The Theory of Error Correcting Codes”,
North-Holland, 1977.

31. S. Micali and P. Rogaway, “Secure Computation”, unpublished manuscript,
1992. Preliminary version in CRYPTO 91.

32. M. Naor, B. Pinkas, and O. Reibgold “Distributed Pseudo-random Functions
and KDCs”, these proceedings.

33. M. Naor and M. Yung, “Public key cryptosystems provably secure against chosen
ciphertext attacks”, 22nd STOC, 427-437, 1990.

34. R. Ostrovsky and M. Yung. “How to withstand mobile virus attacks”. 10th
PODC, 1991, pp. 51–59.

35. T. Pedersen, “A threshold cryptosystem without a trusted party”, Eurocrypt
’91, 1991, pp. 522-526.

36. T. Pedersen. Distributed provers with applications to undeniable signatures.
Eurocrypt ’91, 1991.

37. T. Rabin and M. Ben-Or, “Verifiable Secret Sharing and Multi-party Protocols
with Honest Majority”, 21st STOC, 1989, pp. 73-85.

38. C. Rackoff and D. Simon, “Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack”, CRYPTO ’91, 1991.

39. A. Shamir. “How to Share a Secret”, Communications of the ACM, 22:612–613,
1979.

40. C. Schnorr, “Efficient signature generation by smart cards”, J. Cryptology 4:161-
174, 1991.

41. M. Sudan, “Algorithmic issues in coding theorey”, 17th Conf. on Foundations of
Software Technology and Theoretical Computer Science, Kharapur, India, 1997.
Available on-line at theory.lcs.mit.edu/~madhu/

	Introduction
	New Results
	Additional Contributions of This Paper

	Security of Threshold Cryptosystems
	A Threshold Cryptosystem
	An Threshold Cryptosystem for Passive Server Faults
	Achieving Robustness

