
Computationally Private Information Retrieval

with Polylogarithmic Communication

Christian Cachin1?, Silvio Micali2, and Markus Stadler3

1 IBM Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland,
cachin@acm.org.

2 Laboratory for Computer Science, MIT, Cambridge, MA 02139, USA.
3 Crypto AG, P.O. Box 460, CH-6301 Zug, Switzerland,

markus.stadler@acm.org.

Abstract. We present a single-database computationally private infor-
mation retrieval scheme with polylogarithmic communication complex-
ity. Our construction is based on a new, but reasonable intractability
assumption, which we call the Φ-Hiding Assumption (ΦHA): essentially
the difficulty of deciding whether a small prime divides φ(m), where m
is a composite integer of unknown factorization.
Keywords: Integer factorization, Euler’s function, Φ-hiding assumption,
Private information retrieval.

1 Introduction

Private information retrieval. The notion of private information retrieval
(PIR for short) was introduced by Chor, Goldreich, Kushilevitz and Sudan [7]
and has already received a lot of attention. The study of PIR is motivated by
the growing concern about the user’s privacy when querying a large commercial
database. (The problem was independently studied by Cooper and Birman [8]
to implement an anonymous messaging service for mobile users.)

Ideally, the PIR problem consists of devising a communication protocol in-
volving just two parties, the database and the user, each having a secret in-
put. The database’s secret input is called the data string, an n-bit string B =
b1b2 · · · bn. The user’s secret input is an integer i between 1 and n. The protocol
should enable the user to learn bi in a communication-efficient way and at the
same time hide i from the database. (The trivial and inefficient solution is having
the database send the entire string B to the user.)

Information-theoretic PIRs (with database replication). Perhaps sur-
prisingly, the original paper [7] shows that the PIR problem is solvable efficiently
in an information-theoretic setting if the database does not consist of a sin-
gle player, but of multiple players, each holding the same data string B, who
can communicate with the user but not with each other (a model reminiscent
of the multi-prover proof systems of [4]). By saying that this model offers an

? Research done at Laboratory for Computer Science, MIT.

J. Stern (Ed.): EUROCRYPT’99, LNCS 1592, pp. 402–414, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Computationally Private Information Retrieval 403

information-theoretic solution, we mean that an individual database player can-
not learn i at all, no matter how much computation it may perform, as long as
it does not collude with other database players.

Several solutions in this model are presented in the paper of Chor et al. For
example, (1) there are two-database information-theoretic PIRs with O(n1/3)
communication complexity, and (2) there are O(log n)-database information-
theoretic PIRs with polylog(n) communication complexity. In subsequent work,
Ambainis gives a construction for k-database information-theoretic PIRs with
O(n1/(2k−1)) communication complexity [2].

Computational PIRs (with database replication). Notice that the latter
two information-theoretic PIRs achieve subpolynomial communication complex-
ity, but require more than a constant number of database servers. Chor and
Gilboa [6], however, show that it is possible to achieve subpolynomial commu-
nication complexity with minimal database replication if one requires only com-
putational privacy of the user input—a theoretically weaker though practically
sufficient notion. They give a two-database PIR scheme with communication
complexity O(nε) for any ε > 0. Their system makes use of a security parameter
k and guarantees that, as long as an individual database performs a polynomial
(in k) amount of computation and does not collude with the other one, it learns
nothing about the value i.

Computational PIRs (without database replication). Though possibly
viable, the assumption that the database servers are separated and yet mirror the
same database contents may not be too practical. Fortunately, and again surpris-
ingly, Kushilevitz and Ostrovsky [15] show that replication is not needed. Under
a well-known number-theoretic assumption, they prove the existence of a single-
database computational PIR with subpolynomial communication. More precisely,
under the quadratic residuosity assumption [13], they exhibit a CPIR protocol
between a user and one database with communication complexity O(nε), for any
ε > 0, where again n represents the length of the data string. (For brevity, we
refer to such a single-database, computational PIR, as a CPIR.)

It should be noted that the CPIR of [15] has an additional communication
complexity that is polynomial in the security parameter k, but this additional
amount of communication is de facto absorbed in the mentioned O(nε) complex-
ity, because for all practical purposes k can be chosen quite small.

This result has raised the question of whether it is possible to construct
CPIRs with lower communication complexity.

Main result. We provide a positive answer to the above question based on a
new but plausible number-theoretic assumption: the Φ Assumption, or ΦA for
short. The ΦA consists of two parts, the Φ-Hiding Assumption (ΦHA) and the
Φ-Sampling Assumption (ΦSA).

Informally, the ΦHA states that it is computationally intractable to decide
whether a given small prime divides φ(m), where m is a composite integer of

404 Christian Cachin, Silvio Micali, and Markus Stadler

unknown factorization. (Recall that φ is Euler’s totient function, and that com-
puting φ(m) on input m is as hard as factoring m.) The ΦSA states that it
is possible to efficiently find a random composite m such that a given prime p
divides φ(m).

The ΦA is attractively simple and concrete. Finding crisp and plausible as-
sumptions is an important task in the design and analysis of cryptographic
protocols, and we believe that the ΦA will prove useful in other contexts and
will attract further study. Based on it we prove the following

Main Theorem: Under the ΦA, there is a two-round CPIR whose communica-
tion complexity is polylogarithmic in n (and polynomial in the security param-
eter).

We note that our CPIR is “essentially optimal” in several ways:

Communication complexity. Disregarding the privacy of the user input alto-
gether, in order for the user to obtain the ith bit of an n-bit data string, at
least log n bits have to be communicated between the user and the database
in any case.

Computational complexity. Our CPIR is also very efficient from a computa-
tional-complexity point of view. Namely, (1) the user runs in time polyno-
mial in k log n and (2) the database runs in time proportional to n times a
polynomial in k. Both properties are close to optimal in our context. The
user computational complexity is close to optimal because, as already men-
tioned, in any scheme achieving sub-linear communication, the user must
send at least log n bits of information, and thus perform at least logn steps
of computation. The database computational complexity is close to optimal
because the database must read each bit of its data string in any single-
database PIR. (Otherwise, it would know that the user cannot possibly have
received any of the unread bits and therefore gain some information about
the user input i.)

Round complexity. The round complexity of our CPIR is essentially optimal
because, as long as the user can choose his own input i at will in each
execution, no single-round CPIR exists1.

Privacy model. Our CPIR achieves computational privacy. Although infor-
mation-theoretic privacy is stronger, our scheme is optimal among single-
database PIRs since there are no single-database PIRs with information-
theoretic privacy (other than sending the entire data string).

1 We do not rule out the possibility of single-round CPIRs in alternative models,
for example, in a model where the user always learns the bit in position i in any
execution in which the data string has at least i bits.

Computationally Private Information Retrieval 405

2 Preliminaries and Definitions

2.1 Notation

Integers. We denote by N the set of natural numbers. Unless otherwise speci-
fied, a natural number is presented in its binary expansion whenever given as an
input to an algorithm. If n ∈ N, by 1n we denote the unary expansion of n, that
is, the concatenation of n 1’s. If a, b ∈ N, we denote that a evenly divides b by
writing a|b. Let Zm be the ring of integers modulo m and Z∗

m its multiplicative
group. The Euler totient function of an integer m, denoted by φ(m), is defined
as the number of positive integers ≤ m that are relatively prime to m.

Strings. If σ and τ are binary strings, we denote σ’s length by |σ|, σ’s ith bit
by σi, and the concatenation of σ and τ by σ ◦ τ .

Computation models. By an algorithm we mean a (probabilistic) Turing ma-
chine. By saying that an algorithm is efficient we mean that, for at most but
an exponentially small fraction of its random tapes, it runs in fixed polynomial
time. By a k-gate circuit we mean a finite function computable by an acyclic
circuitry with k Boolean gates, where each gate is either a NOT-gate (with one
input and one output) or an AND gate (with two binary inputs and one binary
output).

Probability spaces. (Taken from [5] and [14].) If A(·) is an algorithm, then
for any input x, the notation “A(x)” refers to the probability space that assigns
to the string σ the probability that A, on input x, outputs σ.

If S is a probability space, then “x
R← S” denotes the algorithm which assigns

to x an element randomly selected according to S. If F is a finite set, then
the notation “x

R← F” denotes the algorithm which assigns to x an element
selected according to the probability space whose sample space is F and uniform
probability distribution on the sample points.

If p(·, ·, · · ·) is a predicate, the notation

PROB [x R← S; y R← T ; · · · : p(x, y, · · ·)]
denotes the probability that p(x, y, · · ·) will be true after the ordered execution
of the algorithms x

R← S, y
R← T, · · · .

2.2 Fully Polylogarithmic CPIR

Our proposed CPIR works in only two rounds and achieves both polylogarithmic
communication complexity and polylogarithmic user computational complexity.
For the sake of simplicity, we formalize only such types of CPIRs below.

Definition: Let D(·, ·, ·), Q(·, ·, ·) and R(·, ·, ·, ·, ·) be efficient algorithms. We
say that (D, Q, R) is a fully polylogarithmic computationally private information
retrieval scheme (or polylog CPIR for short) if there exist constants a, b, c, d > 0
such that,

406 Christian Cachin, Silvio Micali, and Markus Stadler

1. (Correctness) ∀n, ∀ n-bit strings B, ∀i ∈ [1, n], and ∀k,

PROB [(q, s) R← Q(n, i, 1k) ; r
R← D(B, q, 1k) : R(n, i, (q, s), r, 1k) = Bi]

> 1− 2−ak

2. (Privacy) ∀n, ∀i, j ∈ [1, n], ∀k such that 2k > nb, and ∀ 2ck-gate circuits A,

∣∣PROB [(q, s) R← Q(n, i, 1k) : A(n, q, 1k) = 1] −
PROB [(q, s) R← Q(n, j, 1k) : A(n, q, 1k) = 1]

∣∣ < 2−dk.

We call a, b, c, and d the fundamental constants (of the CPIR); B the data
string; D the database algorithm; the pair (Q, R) the user algorithm; Q the
query generator ; R the response retriever ; q the query; s the secret (associated
to q); r the response; and k the security parameter. (Intuitively, query q contains
user input i, and response r contains database bit bi, but both contents are
unintelligible without secret s.)

Remarks.

1. Our correctness constraint slightly generalizes the one of [15]: Whereas there
correctness is required to hold with probability 1, we require it to hold with
very high probability.

2. As mentioned above, the communication complexity of our CPIR is polylog-
arithmic in n (the length of the data string) times a polynomial in k (the
security parameter). Because k is an independent parameter, it is of course
possible to choose it so large that the polynomial dependence on k dominates
over the polylogarithmic dependence on n. But choosing k is an overkill since
our definition guarantees “an exponential amount of privacy” also when k is
only polylogarithmic in n.

2.3 Number Theory

Some useful sets. Let us define the sets we need in our assumptions and
constructions.

Definition: We denote by PRIMESa the set of the primes of length a, and by
Ha the set of the composite integers that are product of two primes of length a.
(For a large, Ha contains the hardest inputs to any known factoring algorithm.)

We say that a composite integer m φ-hides a prime p if p|φ(m). Denote by
Hb(m) the set of b-bit primes p that are φ-hidden by m, denote by H̄b(m) the set
PRIMES b −Hb(m), and denote by Hb

a the set of those m ∈ Ha (i.e., products
of two a-bit primes) that φ-hide a b-bit prime.

Some useful facts. Let us state without proof some basic or well-known
number-theoretic facts used in constructing our CPIR.

Computationally Private Information Retrieval 407

Fact 1: There exists an efficient algorithm that on input a outputs a random
prime in PRIMESa.

Fact 2: There exists an efficient algorithm that on input a outputs a random
element of Ha.

Fact 3: There exists an efficient algorithm that, on input a b-bit prime p and
an integer m together with its integer factorization, outputs whether or not
p ∈ Hb(m).

Fact 4: There exists an efficient algorithm that, on inputs x, p, m, and m’s
integer factorization, outputs whether or not x has a pth root mod m.

Our assumptions.

The Φ-Assumption (ΦA):

∃e, f, g, h > 0 such that
• Φ-Hiding Assumption (ΦHA): ∀k > h and ∀ 2ek-gate circuits C,

PROB [m R← Hk
kf ; p0

R← Hk(m) ; p1
R← H̄k(m) ;

b
R← {0, 1} : C(m, pb) = b] <

1
2

+ 2−gk.

• Φ-Sampling Assumption (ΦSA): ∀k > h, there exists a sampling algo-
rithm S(·) such that for all k-bit primes p, S(p) outputs a random kf -bit
number m ∈ Hk

kf that φ-hides p, together with m’s integer factorization.

We refer to e, f, g, and h as the first, second, third, and fourth fundamental
constant of the ΦA, respectively.

Remarks.

1. Revealing a large prime dividing φ(m) may compromise m’s factorization.
Namely, if p is a prime > m1/4 and p|φ(m), then one can efficiently factor
m on inputs m and p [11,10,9]. Consequently, it is easy to decide whether
p divides φ(m) whenever p > m1/4. But nothing similar is known when p is
much smaller, and for the ΦHA, it suffices that deciding whether p divides
φ(m) is hard when p is not just a constant fraction shorter than m, but
polynomially shorter.
We further note that if the complexity of factoring is Ω(2log mc

) for some
constant c between 0 and 1, then revealing a prime p dividing φ(m) cannot
possibly compromise m’s factorization significantly if log p is significantly
smaller than (log m)c. Indeed, since p can be represented using at most log p
bits, revealing p cannot contribute more than a speed-up of 2dlog pe ≈ p for
factoring m.
Note that the ΦHA does not hold for p = 3. If m = Q1Q2 and m ≡ 2
(mod 3), then one can tell that one of Q1 and Q2 is congruent to 1 mod 3
and the other is 2 mod 3. In this case, it’s obvious that 3 divides φ(m) =
(Q1 − 1)(Q2 − 1).

408 Christian Cachin, Silvio Micali, and Markus Stadler

2. The ΦSA is weaker than the well-known and widely accepted Extended Rie-
mann Hypothesis (ERH). Consider the following algorithm S(·):
Inputs: a k-bit prime p.
Output: a kf -bit integer m ∈ Hk

kf that φ-hides p and its integer factoriza-
tion.

Code for S(p):
(a) Repeatedly choose a random (kf−k)-bit integer q1 until Q1 = pq1+1

is a prime.
(b) Choose a random kf -bit prime Q2.
(c) Let m← Q1 ·Q2 and return m and (Q1, Q2).

Under the ERH, algorithm S finds a suitable m in expected polynomial time
in kf (see Exercise 30 in Chapter 8 of [3]).

3 Our CPIR

3.1 The High-Level Design

At a very high level, the user’s query consists of a compact program that contains
the user input i in a hidden way. The database runs this program on its data
string, and the result of this computation is its response r.

A bit more specifically, this compact program is actually run on the data
string in a bit-by-bit fashion. Letting B be the data string, the user sends the
database an algorithm A and a k-bit value x0 (where k is the security parameter),
and the database computes a sequence of k-bit values: x1 = A(x0, B1), x2 =
A(x1, B2), . . . , xn = A(xn−1, Bn). The last value xn is the response r. The user
retrieves Bi by evaluating on xn a predicate Ri, which is hard to guess without
the secret key of the user.

This high-level design works essentially because the predicate Ri further en-
joys the following properties relative to the sequence of values x0, . . . , xn:

1. Ri(x0) = 0;
2. ∀j = 1, . . . , i− 1, Ri(xj) = 0;
3. Ri(xi) = 1 if and only if Bi = 1; and
4. ∀j ≥ i, Ri(xj+1) = 1 if and only if Ri(xj) = 1.

It follows by induction that Ri(xn) = 1 if and only if Bi = 1.

3.2 The Implementation

To specify our polylog CPIR we must give a database algorithm D and user
algorithms Q (query generator) and R (response retriever). These algorithms
use two common efficient subroutines T and P that we describe first. Algorithm
T could be any probabilistic primality test [17,16], but we let it be a primality
prover [12,1] so as to gain some advantage in the notation and presentation (at
the expense of running time).

Computationally Private Information Retrieval 409

Basic inputs.

A number n ∈ N; an n-bit sequence B; an integer i ∈ [1, n]; and a unary security
parameter 1k such that k > (log n)2.

Primality prover T (·).
Input: an integer z (in binary).
Output: 1 if z is prime, and 0 if z is composite.
Code for T (z): See [1].

Prime(-Sequence) generator P (·, ·, ·).
Inputs: an integer a ∈ [1, n]; a sequence of k3 k-bit strings Y = (y0, . . . , yk3−1);

and 1k.
Output: a k-bit integer pa (a prime with overwhelming probability).

Because P is deterministic, for Y and k fixed, it generates a sequence of
(probable) primes p1, . . . , pn with a = 1, . . . , n.

Code for P (a, Y, 1k):
1. j ← 0.
2. σaj ← ā ◦ j̄, where ā is the (log n)-bit representation of a and j̄ the

(k − log n)-bit representation of j.
3. zj ←

∑k3−1
l=0 ylσaj

l, where all strings yl and σaj are interpreted as ele-
ments of GF (2k) and the operations are in GF (2k).

4. If T (zj) = 1 or j = 2k−log n, then return pa ← zj and halt; else, j ← j+1
and go to step 2.

Query generator Q(·, ·, ·).
Inputs: n; an integer i ∈ [1, n]; and 1k.
Outputs: a query q = (m, x, Y) and a secret s, where m is a kf -bit composite

(f being the second constant of the ΦA), x ∈ Z∗
m, Y a k3-long sequence of

k-bit strings, and where s consists of m’s prime factorization.
Code for Q(n, i, 1k):

1. Randomly and independently choose y0, . . . , yk3−1 ∈ {0, 1}k and let Y =
(y0, . . . , yk3−1).

2. pi ← P (i, Y, 1k).
3. Choose a random kf -bit integer m that φ-hides pi = P (i, Y, 1k) and let

s be its integer factorization.
4. Choose a random x ∈ Z∗

m.
5. Output the query q = (m, x, Y) and the secret s.

Database algorithm D(·, ·, ·).
Inputs: B; q = (m, x, Y), a query output by Q(n, i, 1k); and 1k.
Output: r ∈ Z∗

m.

410 Christian Cachin, Silvio Micali, and Markus Stadler

Code for D(B, q, 1k):
1. x0 ← x.
2. For j = 1, . . . , n, compute:

(a) pj ← P (j, Y, 1k).
(b) ej ← p

Bj

j .
(c) xj ← x

ej

j−1 mod m.
3. Output the response r = xn.

Response retriever R(·, ·, ·, ·, ·):
Inputs: n; i; (m, x, Y), s), an output of Q(n, i, 1k); r ∈ Z

∗
m, an output of

D(B, (m, x, Y), 1k); and 1k.
Output: a bit b. (With overwhelming probability, b = Bi.)
Code for R(n, i, (q, s), r, 1k): If r has pith roots mod m, then output 1, else

output 0.

Theorem: Under the ΦA, (D, Q, R) is a polylog CPIR.

3.3 Proof of the Theorem

Running time (sketch). Subroutine P is efficient because (on inputs i, Y ,
and 1k) its most intensive operation consists, for at most k3 times, of evaluating
once a k-degree polynomial over GF (2k) and running the primality prover T .
Algorithm Q is efficient because subroutines P and T are efficient, because pi

is a k-bit prime with overwhelming probability, and because, under the ΦSA,
selecting a random 2kf -bit composite ∈ Hk

kf φ-hiding pi is efficient. (Notice that,
because n and i are presented in binary, Q actually runs in time polylogarithmic
in n.) Algorithm D is efficient because it performs essentially one exponentiation
mod m for each bit of the data string (and thus runs in time polynomial in k
and linear in n). Algorithm R is efficient because of Fact 4 and because it has
m’s factorization (the secret s) available as an input. (R actually runs in time
polynomial in k because m’s length is polynomial in k.)

Correctness (sketch). Let us start with a quick and dirty analysis of the
prime-sequence generator P . Because the elements of Y are randomly and inde-
pendently selected, in every execution of P (a, Y, 1k), the values z0, . . . , z2k−log n

are k3-wise independent. Thus with probability lower bounded by 1− 2O(−k2),
at least one of them is prime, and thus pa is prime. Because the length n of the
data string satisfies n2 < 2k, with probability exponentially (in k) close to 1, all
possible outputs p1, . . . , pn are primes. Actually, with probability exponentially
(in k) close to 1, p1, . . . , pn consists of random and distinct primes of length k.
Observe that the kf -bit modulus m can φ-hide at most a constant number of
primes from a set of randomly chosen k-bit primes except with exponentially (in
k) small probability. Thus, with probability still exponentially (in k) close to 1,
pi will be the only prime in our sequence to divide φ(m).

Computationally Private Information Retrieval 411

In sum, because it suffices for correctness to hold with exponentially (in k)
high probability, we might as well assume that, in every execution of Q(n, i, 1k),
p1, . . . , pn are indeed random, distinct primes of length k, such that only pi

divides φ(m). Let Ri be the following predicate on Z∗
m:

Ri(x) =

{
1 if x has a pith root mod m

0 otherwise.

The user retrieves bi by evaluating Ri(xn). It is easy to check that properties
1–4 of our high-level design hold as promised:

1. Ri(x0) = 0.
This property follows from the fact that the function x → xpj mod m on
Z

∗
m is 1-to-1 if pj is relatively prime to φ(m), and at least pj-to-1 otherwise.

Because pi is in Θ(2k) except with exponentially (in k) small probability,
the probability that a random element of Z∗

m has a pith root mod m is also
exponentially small (in k). Thus we might as well assume that x0 has no
pith roots mod m (remember that correctness should hold only most of the
time).2

2. ∀j = 1, . . . , i− 1, Ri(xj) = 0.
This follows because x0 has no pith roots mod m and because if x has no
pith roots mod m, for all primes p not dividing φ(m) also xp has no pith
roots mod m. Again because of the size of the primes pj for j 6= i, one can
show that except with exponentially small (in k) probability, none of the pj

divides φ(m).
3. Ri(xi) = 1 if and only if Bi = 1.

If Bi = 0, then xi = xi−1. Thus, by property 2 above, xi has no pith roots
mod m. If Bi = 1, then xi = xpi

i−1 mod m. Thus, xi has pith roots mod m
by construction.

4. ∀j ≥ i, Ri(xj+1) = 1 if and only if Ri(xj) = 1.
The “if part” follows from the fact that if xj has pith roots mod m, then
there exists a y such that xj = ypi mod m and therefore also xj+1 = x

pj

j =
ypipj = (ypj)pi mod m has pith roots. For the “only-if part,” see the proof
of property 2 above.

Privacy (sketch). Suppose for contradiction that the privacy condition does
not hold for (D, Q, R). Then for all b, c, d > 0, there exist n, indices i and j

(i 6= j), k > log nb, and a 2bk-gate circuit Ã (with binary output) such that

|α1 − α2| ≥ ε

for some ε > 2−dk, where

α1 = PROB
[
((m, x, Y), s) R← Q(n, i, 1k) : Ã(n, (m, x, Y), 1k) = 1

]
,

α2 = PROB
[
((m, x, Y), s) R← Q(n, j, 1k) : Ã(n, (m, x, Y), 1k) = 1

]
.

2 We choose x0 at random rather than ensuring that it has no pith roots mod m to
facilitate proving the privacy constraint.

412 Christian Cachin, Silvio Micali, and Markus Stadler

(Intuitively, Ã’s advantage ε is always bigger than any exponentially small in k
quantity.) Define now the following probability:

β = PROB
[
m

R← Hk
kf ; x

R← Z
∗
m ; Y

R← GF (2k)k3
: Ã(n, (m, x, Y), 1k) = 1

]
.

(Notice that, in the sequence of experiments defining β, Y still defines a prime
pi and a prime pj with overwhelming probability, but there is no guarantee that
m φ-hides either of them.) It follows either |α1 − β| ≥ ε/2 or |α2 − β| ≥ ε/2.
W.l.o.g. assume |α1 − β| ≥ ε/2 and also α1 − β ≥ ε/2.

We can construct a guessing circuit C̃ = C̃n,i to contradict the ΦHA as
follows.

Guessing circuit C̃n,i(·, ·).
Inputs: a number m ∈ Hk

kf ; and a k-bit prime p.
Output: a bit b (indicating whether m φ-hides p).
Code for C̃n,i(m, p):

1. Choose k3 uniformly random k-bit numbers a1, . . . , ak3 .
2. Run primality prover T on aj for j = 1, . . . , k3 and let j′ be the smallest

j for which T (aj) = 1. If T returns 0 for all aj , then j′ ← k3.
3. Use Lagrange interpolation to find the coefficients y0, . . . , yk3−1 of a poly-

nomial ξ(σ) over GF (2k) with degree k3 − 1 such that ξ(σij) = aj for
j = 1, . . . , j′ − 1, j′ + 1, . . . , k3 and ξ(σij′) = p, where σij ∈ GF (2k)
corresponds to the k-bit string i ◦ j as in the prime-sequence generator
P . Let Y = (y0, . . . , yk3−1).

4. Choose x at random from Z
∗
m and run Ã(n, (m, x, Y), 1k). If Ã returns 0,

then return 1, otherwise (if Ã returns 1), then return 0.

Notice that C̃ can be constructed with a number of gates that is at most poly-
nomially (in k) greater than the number of gates of Ã.

Above we have defined how C̃ operates for any m ∈ Hk
kf and any p ∈

PRIMESk. Let us now analyze C̃’s behavior on the input distribution required
by the ΦHA (i.e., when m

R← Hk
kf and p

R← Hk(m) with probability 1/2 and
p

R← H̄k(m) with probability 1/2) and calculate the probability that C̃ guesses
correctly from which distribution p is drawn.

PROB [C̃ correct] =
1
2
· PROB [C̃ correct|p R← Hk(m)]

+
1
2
· PROB [C̃ correct|p R← H̄k(m)]

=
1
2
· PROB [C̃ = 0|p R← Hk(m)]

+
1
2
· PROB [C̃ = 1|p R← H̄k(m)].

The distribution of the output of C̃ depends directly on Ã. If p
R← Hk(m),

then, by construction, Ã is run with the same input distribution as in the def-
inition of α1, except for the case that C̃ finds no prime among a1, . . . , ak3 in

Computationally Private Information Retrieval 413

step 2 (assume this is not the case for the moment). Let us examine Ã’s input
distribution in C̃ when p

R← H̄k(m) and compare it to Ã’s input distribution in
the definition of β. The experiment leading to β contains three distinct cases for
pi = P (i, Y, 1k):

1. pi is composite;
2. pi ∈ Hk(m); or
3. pi ∈ H̄k(m).

Note that case 3 is actually how Ã is called by our C̃ in the ΦHA and occurs
with overwhelming probability. Let δ0 be the probability of case 1, which will be
computed below, and assume for the moment that pi is indeed a random k-bit
prime. The probability δ1 that a random element of PRIMES k is in Hk(m) is
upper bounded by kf2−k = O(2−k/2). (This is the conditional probability of
case 2 above given that pi is prime.) For C̃, this implies

PROB [C̃ = 1|p R← PRIMESk] ≤ PROB [C̃ = 1|p R← H̄k(m)] + δ1.

Now consider the case that no prime is detected among a1, . . . , ak3 in step 2.
Because T is an ideal primality prover, this probability is at most about (1− 1

k)k3

and therefore δ0 = O(2−k/2).
We can now bound PROB [C̃ correct] as

PROB [C̃ correct] ≥ 1
2
· (1 − δ0) · PROB [C̃ = 0|p R← Hk(m)]

+
1
2
· (1− δ0) ·

(
PROB [C̃ = 1|p R← PRIMESk]− δ1

)
≥ 1

2
· (1 − δ0) · α1 +

1
2
· (1− δ0) · (1− β − δ1)

≥ 1
2
· (1 + α1 − δ0 − β − δ0 − δ1

)
≥ 1

2
+

ε

4
− δ0 − δ1

2
.

The last inequality follows from the assumption α1 − β ≥ ε/2.
To conclude, C̃ distinguishes correctly with probability at least

1
2

+
ε

4
− δ0 − δ1

2
.

Intuitively, since δ1 and δ0 are exponentially small in k, but ε exceeds any ex-
ponentially small quantity, there remains an advantage for C̃ that is not expo-
nentially small and it is clear that C̃ violates the ΦHA.

Acknowledgments

The authors wish to thank Wenbo Mao for interesting comments on an earlier
version of the paper.

414 Christian Cachin, Silvio Micali, and Markus Stadler

References

1. L. M. Adleman and M.-D. A. Huang, “Recognizing primes in random polynomial
time,” in Proc. 19th Annual ACM Symposium on Theory of Computing (STOC),
pp. 462–469, 1987.

2. A. Ambainis, “Upper bound on the communication complexity of private infor-
mation retrieval,” in Proc. 24th ICALP, vol. 1256 of Lecture Notes in Computer
Science, Springer, 1997.

3. E. Bach and J. Shallit, Algorithmic Number Theory, vol. 1: Efficient Algorithms.
Cambridge: MIT Press, 1996.

4. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, “Multi prover interactive
proofs: How to remove intractability,” in Proc. 20th Annual ACM Symposium on
Theory of Computing (STOC), pp. 113–131, 1988.

5. M. Blum, A. De Santis, S. Micali, and G. Persiano, “Noninteractive zero-
knowledge,” SIAM Journal on Computing, vol. 20, pp. 1085–1118, Dec. 1991.

6. B. Chor and N. Gilboa, “Computationally private information retrieval,” in Proc.
29th Annual ACM Symposium on Theory of Computing (STOC), pp. 304–313,
1997.

7. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information re-
trieval,” in Proc. 36th IEEE Symposium on Foundations of Computer Science
(FOCS), 1995.

8. D. A. Cooper and K. P. Birman, “Preserving privacy in a network of mobile com-
puters,” in Proc. IEEE Symposium on Security and Privacy, pp. 26–38, 1995.

9. D. Coppersmith, “Finding a small root of a bivariate integer equation; factoring
with high bits known,” in Advances in Cryptology: EUROCRYPT ’96 (U. Maurer,
ed.), vol. 1233 of Lecture Notes in Computer Science, Springer, 1996.

10. D. Coppersmith, “Finding a small root of a univariate modular equation,” in Ad-
vances in Cryptology: EUROCRYPT ’96 (U. Maurer, ed.), vol. 1233 of Lecture
Notes in Computer Science, Springer, 1996.

11. D. Coppersmith. personal communication, 1998.
12. S. Goldwasser and J. Kilian, “Almost all primes can be quickly certified,” in Proc.

18th Annual ACM Symposium on Theory of Computing (STOC), pp. 316–329,
1986.

13. S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and
System Sciences, vol. 28, pp. 270–299, 1984.

14. S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure
against adaptive chosen-message attacks,” SIAM Journal on Computing, vol. 17,
pp. 281–308, Apr. 1988.

15. E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single database,
computationally-private information retrieval,” in Proc. 38th IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 364–373, 1997.

16. M. O. Rabin, “How to exchange secrets by oblivious transfer,” Tech. Rep. TR-81,
Harvard, 1981.

17. R. Solovay and V. Strassen, “A fast monte-carlo test for primality,” SIAM Journal
on Computing, vol. 6, no. 1, pp. 84–85, 1977.

	Introduction
	Preliminaries and Definitions
	Notation
	Fully Polylogarithmic CPIR
	Number Theory

	Our CPIR
	The High-Level Design
	The Implementation
	Proof of the Theorem

