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Abstract. Twofish is a new block cipher with a 128 bit block, and a
key length of 128, 192, or 256 bits, which has been submitted as an AES
candidate. In this paper, we briefly review the structure of Twofish, and
then discuss the key schedule of T'wofish, and its resistance to attack. We
close with some open questions on the security of Twofish’s key schedule.

1 Introduction

NIST announced the Advanced Encryption Standard (AES) program in 1997
[EESSSZ). NIST solicited comments from the public on the proposed standard,
and eventually issued a call for algorithms to satisfy the standard [FESz].
The intention is for NIST to make all submissions public and eventually, through
a process of public review and comment, choose a new encryption standard to
replace DES.

Twofish is our submission to the AES selection process. It meets all the
required NIST criteria—128-bit block; 128-, 192-, and 256-bit key; efficient on
various platforms; etc.—and some strenuous design requirements, performance
as well as cryptographic, of our own.

Twofish was designed to meet NIST’s design criteria for AES [NISTEZH].
Specifically, they are:

A 128-bit symmetric block cipher.

— Key lengths of 128 bits, 192 bits, and 256 bits.

— No weak keys.

— Efficiency, both on the Intel Pentium Pro and other software and hardware
platforms.

— Flexible design: e.g., accept additional key lengths; be implementable on
a wide variety of platforms and applications; and be suitable for a stream
cipher, hash function, and MAC.

— Simple design, both to facilitate ease of analysis and ease of implementation.
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A central feature of T'wofish’s security and flexibility is its key schedule. In
this paper, we will briefly review the design of Twofish, and then discuss the
security features of the key schedule. The remainder of the paper is as follows:
First, we discuss the specific design of Twofish. Next, we analyze the Twofish
key schedule in some detail. Finally, we point out some open questions with
respect to the key schedule. Note that for space reasons, this paper does not
include a complete discussion of the Twofish design. Instead, we refer the reader
to http://www.counterpane.com.

2 Twofish

Twofish uses a 16-round Feistel-like structure with additional whitening of the
input and output. The only non-Feistel elements are the 1-bit rotates. The ro-
tations can be moved into the F' function to create a pure Feistel structure, but
this requires an additional rotation of the words just before the output whitening
step.

The plaintext is split into four 32-bit words. In the input whitening step, these
are XORed with four key words. This is followed by sixteen rounds. In each round,
the two words on the left are used as input to the g functions. (One of them is
rotated by 8 bits first.) The g function consists of four byte-wide key-dependent
S-boxes, followed by a linear mixing step based on an MDS matrix. The results of
the two g functions are combined using a Pseudo-Hadamard Transform (PHT),
and two keywords are added. These two results are then XORed into the words
on the right (one of which is rotated left by 1 bit first, the other is rotated right
afterwards). The left and right halves are then swapped for the next round. After
all the rounds, the swap of the last round is reversed, and the four words are
XORed with four more key words to produce the ciphertext.

More formally, the 16 bytes of plaintext po, ..., p15 are first split into 4 words

Py, ..., Ps of 32 bits each using the little-endian convention.
3 .
Pi=) puity-2¥  i=0,...,3
j=0

In the input whitening step, these words are XxORed with 4 words of the expanded
key.

RO,Z:PZ®KZ ZZO,,3
In each of the 16 rounds, the first two words are used as input to the function F,
which also takes the round number as input. The third word is XORed with the
first output of F' and then rotated right by one bit. The fourth word is rotated

left by one bit and then XORed with the second output word of F'. Finally, the
two halves are exchanged. Thus,

(F'r',()a F'r‘,l) - F(R’f‘,()a R'r‘,la T)
R'r'+1,0 = ROR(RT,Q S F'r‘,()a 1)
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Ry+1,1 =ROL(R,3,1) & Fy.1
R'r‘+1,2 - RT,O
R'r‘+1,3 - R'r‘,l

for r =0,...,15 and where ROR and ROL are functions that rotate their first
argument (a 32-bit word) left or right by the number of bits indicated by their
second argument.

The output whitening step undoes the ‘swap’ of the last round, and XORs
the data words with 4 words of the expanded key.

Ci = Ri6,(i+2) mod 4 © K14 t=0,...,3

The four words of ciphertext are then written as 16 bytes co, ..., c15 using the
same little-endian conversion used for the plaintext.

| Clisa

¢ = {WJ mod 28 i=0,...,15

2.1 The Function F

The function F' is a key-dependent permutation on 64-bit values. It takes three
arguments, two input words Ry and R;, and the round number r used to select
the appropriate subkeys. Ry is passed through the g function, which yields Tj.
R; is rotated left by 8 bits and then passed through the g function to yield
T,. The results Ty and 717 are then combined in a PHT and two words of the
expanded key are added.

Ty = g(Ro)

Ty = g(ROL(R4, 8))

Fy = (Ty + T} + Ka,45) mod 232
Fy = (Ty 4 2T + Ka,49) mod 232

where (Fy, F) is the result of F. We also define the function F’ for use in our
analysis. I is identical to the F' function, except that it does not add any key
blocks to the output. (The PHT is still performed.)

2.2 The Function g

The function g forms the heart of Twofish. The input word X is split into four
bytes. Each byte is run through its own key-dependent S-box. Each S-box is
bijective, takes 8 bits of input, and produces 8 bits of output. The four results
are interpreted as a vector of length 4 over GF(28), and multiplied by the 4 x 4
MDS matrix (using the field GF(2®) for the computations). The resulting vector
is interpreted as a 32-bit word which is the result of g.

zi=|X/2%| mod2®  i=0,...,3
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yz:'sz[xz} 2:0333

20 Ceee Yo
20 - . n
2 :MDS : Vs

3
=0

where s; are the key-dependent S-boxes and Z is the result of g. For this to be
well-defined, we need to specify the correspondence between byte values and the
field elements of GF(2%). We represent GF(2%) as GF(2)[x]/v(z) where v(z) =
2% 4+ 25 + 2% + 23 + 1 is a primitive polynomial of degree 8 over GF(2). The
field element a = Zi?:() a;x" with a; € GF(2) is identified with the byte value
Zi?:() a;2°. This is in some sense the “natural” mapping; addition in GF(2®)
corresponds to a XOR of the bytes.

2.3 The Key Schedule

The key schedule has to provide 40 words of expanded key Ky, ..., K39, and the
4 key-dependent S-boxes used in the g function. Twofish is defined for keys of
length N = 128, N = 192, and N = 256. Keys of any length shorter than 256
bits can be used by padding them with zeroes until the next larger defined key
length.

We define k = N/64. The key M consists of 8k bytes my, ..., mgx—1. The
bytes are first converted into 2k words of 32 bits each

3
M= muisgy 29 i=0,...,2k—1
j=0

and then into two word vectors of length k.

M, = (Mo, Mz, . .., Maj_2)

M, = (M, M3, ..., Mag_1)
A third word vector of length k is also derived from the key. This is done by
taking the key bytes in groups of 8, interpreting them as a vector over GF(28),
and multiplying them by a 4 x 8 matrix derived from a Reed-Solomon code. Each

result of 4 bytes is then interpreted as a 32-bit word. These words make up the
third vector.

me;

mgi+1
Si,0 e me;12
Si,1 I . mei+3
siz | |- RS: Mgi+4
Si,3 e mMgi+5

mgi+e

mei47
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3
Si = E Si,j . QSJ
Jj=0

fori=0,...,k—1, and

S = (Sk-1,Sk—2,...,50)
Note that S lists the words in “reverse” order. For the RS matrix multiply,
GF(2%) is represented by GF(2)[z]/w(z), where w(z) = 28 + 2® + 23 + 22 + 1
is another primitive polynomial of degree 8 over GF(2). The mapping between

byte values and elements of GF(28) uses the same definition as used for the MDS
matrix multiply.

Additional Key Lengths Twofish can accept keys of any byte length up to
256 bits. For key sizes that are not defined above, the key is padded at the end
with zero bytes to the next larger length that is defined. For example, an 80-bit
key mg, ..., mg would be extended by setting m; = 0 for ¢ = 10,...,15 and
treating it as a 128-bit key.

The Function h The function h takes two inputs—a 32-bit word X and a
list L = (Lo,...,Lg—1) of 32-bit words of length k—and produces one word
of output. This function works in k stages. In each stage, the four bytes are
each passed through a fixed S-box, and XORed with a byte derived from the list.
Finally, the bytes are once again passed through a fixed S-box, and the four
bytes are multiplied by the MDS matrix just as in g. More formally: we split the
words into bytes.

li,j = LLZ/QSJJ mod 28

zj = | X/2%] mod 2°

fori =0,...,k—1and j = 0,...,3. Then the sequence of substitutions and
XORs is applied.
Yk,j = T 7=0,...,3
If K = 4 we have
Y3,0 = q1[ya,0] © 30
Y31 = qo[ys1] ®ls1
Y32 = qolya,2] ® 32
Y33 = qu[ys3] ©l33
If £ > 3 we have

Y2,0 = q1[y3,0] © l2,0
Y21 = q1[ys1] ®laa
Y2,2 = qo[yz,2] ® la,2
Y2,3 = qo[y3,3] © l2;3
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In all cases we have

Yo = q1[qo[qo[y2,0] © l1,0] © lo,0]
Y1 = qolqolq1[y2,1] © l1,1] ® lo.1]
Y2 = q1]q1[qo[y2,2] © l1,2] ® lo 2]
Y3 = qo[q1[q1[y2,3] © l1,3] @ lo 3]

Here, qo and ¢; are fixed permutations on 8-bit values that we will discuss shortly.
The resulting vector of y;’s is multiplied by the MDS matrix, just as in the g
function.

20 Yo
21 N . Y1
2 :MDS : Vs

3
i=0
where Z is the result of h.

The Key-dependent S-boxes We can now define the S-boxes in the function
g by

9(X) = h(X,5)
That is, for ¢ =0, ..., 3, the key-dependent S-box s; is formed by the mapping

from z; to y; in the h function, where the list L is equal to the vector S derived
from the key.

The Expanded Key Words K; The words of the expanded key are defined
using the h function.

p=2244 2164 984 20
A; = h(2ip, M)
B; = ROL(h((2i + 1)p, M,), 8)
Ka; = (A; + B;) mod 2°?
Kaiv1 = ROL((A; + 2B;) mod 22, 9)

The constant p is used here to duplicate bytes; it has the property that for
1 =0,...,255, the word ip consists of four equal bytes, each with the value 1.
The function h is applied to words of this type. For A; the byte values are 21,
and the second argument of h is M,. B; is computed similarly using 2¢ 41 as the
byte value and M, as the second argument, with an extra rotate over 8 bits. The
values A; and B; are combined in a PHT. One of the results is further rotated
by 9 bits. The two results form two words of the expanded key.
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The Permutations go and g; The permutations gg and ¢; are fixed permuta-
tions on 8-bit values. They are constructed from four different 4-bit permutations
each. We have investigated the resulting 8-bit permutations, go and ¢, exten-
sively, and believe them to be at least no weaker than randomly selected 8-bit
permutations.

3 Analysis of The Key Schedule

The key schedule has been designed to provide resistance to attack, while also
providing a great deal of flexibility in implementation. For example, after S has
been computed from M., M,, all remaining key scheduling can be done “on the
fly” during encryption. This allows for very low-memory implementations, and
for implementations with excellent key agility. In implementations with more
memory, all the subkeys can be precomputed for improved performance. In im-
plementations with still more memory, such as on modern high-end processors
with a reasonable RAM cache size, the effects of the key-dependent S-boxes
and the MDS matrix multiply can be precomputed, reducing the work per g
computation to four table lookups and three XORs.

Note that S is only half the size of the key. This was done so that precom-
putation of the S-boxes and MDS matrix multiply would be sufficiently fast,
and so that low-memory implementations would not have to take too large a
performance hit. This means that the g function is slightly different for longer
keys than for shorter keys.

3.1 Byte Sequences

The subkeys in Twofish are generated by using the h function, which can be
seen as four key-dependent S-boxes followed by an MDS matrix. The input to
the S-boxes is basically a counter. In this section we analyze the sequences of
outputs that this construction can generate.

All key material is used to define key-dependent S-boxes in h, which are then
used to derive subkeys. Each S-box gets a sequence of inputs, (0,2,4,...,38)
or (1,3,5,...,39). The S-box generates a corresponding sequence of outputs.
The corresponding outputs from the four S-boxes are combined using the MDS
matrix multiply to produce the sequence of A; and B; words, and those words
are processed with the PHT (with a couple of rotations thrown in) to produce
a pair of subkey words. Analyzing these byte sequences thus gives us important
insights about the whole key schedule.

We can model each byte sequence generated by a key-dependent S-box as
a randomly selected non-repeating byte sequence of length 20. This allows us
to make many useful predictions about the likelihood of finding keys or pairs
of keys with various interesting properties. Because we will be analyzing the
key schedule using this assumption in the remainder of this section, we should
discuss how reasonable it is to treat this byte sequence as randomly generated.
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We have not found any statistical deviations between our key-dependent S-boxes
and the random model in any of our extensive statistical tests.

We are looking at sequences of 20 bytes that are all distinct. There are
256!/236! of those sequences, which is close to 215.

3.2 Equivalent S-box Keys

We have verified that there are no equivalent S-box keys that generate the same
sequence of 20 bytes. In the random model, the chance of this happening for the
N = 256 case is about 263 . 27159 = 2796 This is the chance of such equiva-
lent S-boxes existing at all. In fact, we recently completed an exhaustive search
demonstrating that no pair of key inputs to an S-box produces identical S-box
entries.

3.3 Byte Difference Sequences

Let us consider the more general problem of how to get a given 20-byte difference
sequence between a pair of S-boxes. Suppose we have two S-boxes, each defined
using 32 bits of key material, which are not equal, but which must be chosen to
give us a given difference sequence in the XOR of their byte sequences. We can
estimate the probability of a pair of 4-byte inputs existing with the desired XOR
difference sequence as 263 . 27159 = 2796 Note that this is the probability that
such a pair of inputs exists, not the probability that a random pair of keys will
have this property.

3.4 The A and B Sequences

From the properties of the byte sequences, we can discuss the properties of the
A and B sequences generated by each key M.

Ai = MDS(S()(Z, M), Sl(i, M), SQ(i, M), Sg(i, M))

Since the MDS matrix multiply is invertible, and since i is different for each
round’s subkey words generated, we can see that no A or B value can repeat
itself.

Similarly, we can see from the construction of h that each key byte affects
exactly one S-box used to generate A or B. Changing a single key byte always
alters every one of the 20 bytes of output from that S-box, and so always alters
every word in the 20-word A or B sequence to which it contributes.

Consider a single byte of output from one of the S-boxes. If we cycle any one
of the key bytes that contributes to that S-box through all 256 possible values,
the output of the S-box will also cycle through all 256 possible values. If we take
four key bytes that contribute to four different S-boxes, and we cycle those four
bytes through all possible values, then the result of h will also cycle through all
possible values. This proves that A and B are uniformly distributed for all key
lengths, assuming the key M is uniformly distributed.
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3.5 Difference Sequences in A and B

Let us also consider difference sequences. If we have a specific difference sequence
we want to see in A, we are faced with an interesting problem: since the MDS
matrix multiply is XOR-linear, each desired output XOR from the matrix multiply
allows only one possible input XOR. This means that:

1. A zero output XOR difference in A can occur only with a zero output XOR
difference in all four of the byte sequences used to build A.

2. Only 1020 possible output differences (out of the 232) in A; can occur with
a single “active” (altered) S-box. Most differences require all four S-boxes
used to form A; to be active.

3. Each desired output XOR in A requires a specific output XOR in each of
the four byte sequences used to form A. This means that getting any de-
sired difference sequence into all 20 A; values requires getting a desired XOR
sequence into all four 20-byte sequences. (Note that if the desired output
XOR in A; is an appropriate value, up to three of the four byte sequences
can be identical without much trouble, simply by leaving their key material
unchanged.) As mentioned above, this is very unlikely to be possible for a
randomly chosen difference pattern in the A sequence. (There are of course
difference sequences of A;’s that can occur.)

The above analysis is of course also valid for the B sequence.

3.6 The Sequence (K2;, K2;+1)

As A; and B; are uniformly distributed (over all keys), so are all the K;. As
all pairs (A;, B;) are distinct, all the pairs (Ks;, Ko;41) are distinct, although it
might happen that K; = K for any pair of ¢ and j.

3.7 Difference Sequences in the Subkeys

Each difference sequence in A and B translate into a difference sequences in
(K24, Ko;41). However, while it is natural to consider A and B difference se-
quences in terms of XOR differences, subkeys can reasonably be considered either
as XOR differences or as differences modulo 232. Thus, we may discuss difference
sequences:

D[ZaMaM*} = Ki,M *Ki,M*
X[ZaMaM*} = Ki,M EBKZ,M*

where the difference is computed between the key value M and M*.

3.8 XOR Differences in the Subkeys

Each round, the subkeys are added to the results of the PHT of two g functions,
and the results of those additions are xORed into half of the cipher block. An
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XOR difference in the subkeys has a fairly high probability of passing through
the addition operation and ending up in the cipher block. (The probability of
this is determined by the Hamming weight of the XOR difference, not counting
the highest-order bit.) However, to get into the subkeys, a XOR difference must
first pass through the first addition.

Consider

r+y==z
(x®d)+y=2d

Let k& be the number of bits set in dg, not counting the highest-order bit. Then,
the highest probability value for §; is dg, and the probability that this will hold
is 27%. This is true because addition and XOR are very closely related operations.
The only difference between the two is the carry between bit positions. If flipping
a given bit changes the carry into the next bit position, this alters the output
XOR difference. This happens with probability 1/2 per bit. The situation is more
complex for multiple adjacent bits, but the general rule still holds: for every bit
in the XOR difference not in the high-order bit position, the probability that the
difference will pass through correctly is cut in half.

For the subkey generation, consider an XOR difference, &g, in A. This affects
two subkey words:

Ko = A; + B;
K11 = ROL(A4; + 2B;,9)

where the additions are modulo 232. If we assume these XOR differences propagate
independently in the two subkeys (which appears to be the case), we see that this
leads to an XOR difference of dy in the even subkey word with probability 2%,
and the XOR difference ROL(dp, 9) in the odd subkey with the same probability.
The most probable XOR difference in the round’s subkey block thus occurs with
probabiity 272, A desired XOR difference sequence for all 20 pairs of subkey
words is thus quite difficult to get to work when k£ > 3, assuming the desired
XOR difference sequence can be created in the A sequence at all.

When the XOR difference is in B, the result is slightly more complicated; the
most probable XOR difference in a round’s pair of subkey words may be either
2-(2k=1) or 272k " depending on whether or not the XoR difference in B covers
the next-to-highest-order bit.

An x0R difference in A or B is easy to analyze in terms of additive differences
modulo 232: an XOR difference with k active bits has 2* equally likely additive
differences. Note that if we have a additive difference in A, we get it in both
subkey words, just rotated left nine bits in the odd subkey word. Thus, k-bit
XOR differences lead to a given additive difference in a pair of subkey words with
probability 27%. (The rotation does not really complicate things much for the
attacker, who knows where the changed bits are.)

Note that when additive subkey differences modulo 232 are used in an attack,
they survive badly through the XOR with the plaintext block. We estimate that
XOR differences are much more likely to be directly useful in mounting an attack.
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3.9 Key-dependent Characteristics and Weak Keys

The concept of a key-dependent characteristic seems to have been introduced
in [BRUZ] in their cryptanalysis of Lucifer, and also appears in [LLAU4Z] in
an analysis of IDEA M The idea is that certain iterative properties of the block
cipher useful to an attacker become more effective against the cipher for a specific
subset of keys.

A differential attack on Twofish may consider XOR-based differences, addi-
tive differences, or both. If an attacker sends XOR differences through the PHT
and subkey addition steps, his differential characteristic probabilities will be de-
pendent on the subkey values involved. In general, low-weight subkeys will give
an attacker some advantage, but this advantage is relatively small. (Zero bits in
the subkeys improve the probabilities of cleanly getting XOR-based differential
characteristics through the subkey addition.) Since there appears to be no spe-
cial way to choose the key to make the subkey sequence especially low weight,
we do not believe this kind of key-dependent differential characteristic will have
any relevance in attacking Twofish.

A much more interesting issue in terms of key-dependent characteristics is
whether the key-dependent S-boxes are ever generated with especially high prob-
ability differential or high bias linear characteristics. The statistical analysis pre-
sented earlier shows that the best linear and differential characteristics over all
possible keys are still quite unlikely.

Note that the structure of both differential and linear attacks in Twofish is
such that such attacks appear to generally require good characteristics through
at least three of the four key-dependent S-boxes (if not all four), so a single
high-probability differential or linear characteristic for one S-box will not create
a weakness in the cipher as a whole. Our statistical testing has allowed us to
estimate that few or no keys result in a single S-box with a differential charac-
teristic of probability higher than 24/256 for any length key, and with a linear
characteristic with bias higher than 108/256. These probabilities do not allow for
practical differential or linear attacks. Further, for an attacker to mount a dif-
ferential or linear attack, it appears to be necessary to get very high-probability
differential or linear characteristics in all four S-boxes at once.

3.10 Related-key Cryptanalysis

Related-key cryptanalysis [RubSARSIWIHIKSIVGY uses a cipher’s key schedule
to break plaintexts encrypted with related keys. In its most advanced form, dif-
ferential related-key cryptanalysis, both plaintexts and keys with chosen differ-
entials are used to recover the keys. This type of analysis has had considerable
success against ciphers with simplistic key schedules—e.g., GOST and 3-Way
LGS —and is a realistic attack in some circumstances. A conventional at-
tack is usually judged in terms of the number of plaintexts or ciphertexts needed
for the attack, and the level of access to the cipher needed to get those texts (e.g.,

! See [EESES for further cryptanalysis of IDEA weak keys.
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known plaintext, chosen plaintext, adaptive chosen plaintext); in a related-key
attack, we must add the requirement for encryptions to occur under two differ-
ent, but related, keys.

3.11 Resistance to Related-key Slide Attacks

A “slide” attack occurs in an iterated cipher when the encryption of one block
for rounds 1 through n is the same as the encryption of another block for rounds
s+1to s+n. An attacker can look at two encryptions, and can slide the rounds
forward in one of them relative to another. S-1 [ERandd| can be broken with a
slide attack [Wagdhd|. Travois [Eaizdd] has identical round functions, and can
also be broken with a slide attack. Conventional slide attacks allow one to break
the cipher with only known- or chosen-plaintext queries; however, as we shall
see next, there is a generalization to related-key attacks as well.

Related-key slide attacks were first discovered by Biham in his attack on a
DES variant [Rbiid]. To mount a related-key slide attack on Twofish, an attacker
must find a pair of keys M, M* such that the key-dependent S-boxes in g are
unchanged, but the subkey sequences slide down one round. This amounts to
finding, for each of the eight byte-permutations used for subkey generation, a
change in the keys such that:

Sz(jaM) = 51(] +253M*)

for n values of j. In total, this requires 8n of these relations to hold.

Let us look in more detail for a fixed key M. Let m € {5, ..., 8} be the number
of S-boxes used to compute the round keys that are affected by the difference
between M and M™*. Observe that m > 5 due to the restriction that S cannot
change and the properties of the RS matrix that at least 5 inputs must change
to keep the output constant. There are at most (°)232™~128 possible choices of
M*. We have a total of nm 8-bit relations that need to be satisfied. The expected
number of M* that satisfy these relations is thus () -278mm+32m=128 Forp > 4
this is dominated by the case m = 5; we will ignore the other cases for now. So
for each M we can expect about 2387407 keys M* that support a slide attack for
n > 4. This means that any specific key is unlikely to support a slide attack with
n > 4. Over all possible key pairs, we expect 22937407 pairs M, M* for which a
slide of n > 4 occurs. Thus, it is unlikely that a pair exists at all with n > 8.

Resistance to Related-key Differential Attacks A related-key differential
attack seeks to mount a differential attack on a block cipher through the key, as
well as or instead of through the plaintext/ciphertext port. Against Twofish, such
an attack must control the subkey difference sequence for at least the rounds in
the middle. For the sake of simplifying discussions of the attack, let us consider
an attacker who wants to put a chosen subkey difference into the middle twelve
rounds’ subkeys. That is, he wants to change M to M™*, and control D[i, M, M|
for 4 = 12..35. At the same time, he needs to keep the g function, and thus the
key S, from changing. All else being equal, the longer the key, the more freedom
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an attacker has to mount a related-key differential attack. We thus will assume
the use of 256 bit keys for the remainder of this section. Note that a successful
related key attack on 128 or 192 bit keys that gets only zero subkey differences
in the rounds whose subkey differences it must control translates directly to an
equivalent related key attack on 256 bit keys.

Consider the position of the attacker if he attempts a related-key differential
attack with different S keys. This must result in different g outputs for all inputs,
since we know that there are no pairs of S values that lead to identical S-boxes.
Assuming the pair of S values does not lead to linearly-related S-boxes, it will
not be possible to compensate for this change in .S with changes in the subkeys
in single rounds. The added difficulty is approximately that of adding 24 active
S-boxes to the existing related-key attack. For this reason, we believe that any
useful related-key attack will require a pair of keys that keeps S unchanged.

The Zero Difference Case The simplest related-key attack to analyze is the
one that keeps both S and also the middle twelve rounds’ subkeys unchanged. It
thus seeks to generate identical A and B sequences for twelve rounds, and thus
to keep the individual byte sequences used to derive A and B identical.

The RS code used to derive S from M strictly limits the ways an attacker
can change M without altering S. The attacker must try to keep the number
of active subkey generating S-boxes as low as possible, since each active S-box
is another constraint on his attack. The attacker can keep the number of active
S-boxes down to five without altering S, and so this is what he should do. With
only the key bytes affecting these five subkey generation S-boxes active, he can
alter between one and four bytes in all five S-boxes; the nature of the RS matrix
is that if he needs to alter four bytes in any one of these S-boxes, he must alter
bytes in all five. In practice, in order to maximize his control over the byte
sequences generated by these S-boxes, he must alter four bytes in all five active
S-boxes.

To get zero subkey differences, the attacker must get zero differences in the
byte sequences generated by all five active S-boxes. Consider a single such byte
sequence: The attacker tries to find a pair of four-byte key inputs such that they
lead to identical byte sequences in the middle twelve rounds, which means the
middle twelve bytes. There are 23 pairs of key inputs from which to choose, and
about 2°° possible byte sequences available. If the byte sequences behave more-
or-less like random functions of the key inputs, this implies that it is extremely
unlikely that an attacker can find a pair of key inputs that will get identical byte
sequences in these middle twelve rounds. We discuss this kind of analysis of byte
sequences in section [BEl From this analysis, we would not expect to see a pair
of keys for even one S-box with more than eight successive bytes unchanged,
and we would expect even eight successive bytes of unchanged byte sequence to
require control of all four key bytes into the S-box. We would expect a specific
pair of key bytes to be required to generate these similar byte sequences.



40 John Kelsey et al.

To extend this to five active S-boxes, we expect there to be, at best, a single
pair of values for the twenty active key bytes that leave the middle eight subkeys
unchanged.

Other Difference Sequences An attacker who has control of the XOR differ-
ence sequences in A;, B; does not necessarily have great control over the XOR or
modulo 232 difference sequence that appears in the subkeys.

First, we must consider the context of a related-key differential attack. The
attacker does not generally know all of the key bytes generating either A; or B;.
Instead, he knows the XOR difference sequence in A; and B;.

Consider an A; value with an XOR difference of §. If the Hamming weight
of § is k, not including the high-order bit, then the best estimate for the XOR
difference that ends up in the two subkey words for a given round generally has
probability about 272*. (Control of the A;, B; XOR difference sequence does not
make controlling the subkey XOR differences substantially easier.)

Consider an A; value with an XOR difference of §. If the Hamming weight of
§ is k, then the best estimate for the modulo 232 difference of the two subkey
words for a given round has probability about 27%.

This points out one of the difficulties in mounting any kind of successful
related-key attack with nonzero A;, B; difference sequences. If an attacker can
find a difference sequence for A;, B; that keeps k = 3, and needs to control the
subkey differences for twelve rounds, he has a probability of about 2772 of getting
the most likely XOR subkey difference sequence, and about 2736 of getting the
most likely modulo 232 difference sequence.

Probability of a Successful Attack With One Related-Key Query We
consider the use of the RS matrix in deriving S from M to be a powerful defense
against related-key differential attacks, because it forces an attacker to keep at
least five key generation S-boxes active. Our analysis suggests that any useful
control of the subkey difference sequence requires that each active S-box in the
attack have all four key bytes changed.

Further, our analysis suggests that, for nearly any useful difference sequence,
each active S-box in the attack has a specific pair of defining key bytes it needs
to work. At attacker specifying his key relation in terms of bytewise XOR has
five pairs of sequences of four key bytes each, which he wants to get. This leaves
him with a probability of a pair of keys with his desired relation actually leading
to the desired attack of about 27112, which moves the attack totally outside the
realm of practical attacks.

So long as an attacker is unable to improve this, either by finding a way to get
useful difference sequences into the subkeys without having so many active key
bytes, or by finding a way to mount related-key attacks with different S values
for the different keys, we do not believe that any kind of related key differential
attack is feasible.

Note the implication of this: Clever ways to control a couple extra rounds’
subkey differences are not going to make the attacks feasible, unless they also
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allow the attacker to use far fewer active key bytes. For reference, note that with
one altered key byte per active subkey generation S-box, the attacker ends up
with a 2739 probability that a pair of related keys will yield an attack; with
two key bytes per active S-box, this increases to 2778; with three key bytes per
active S-box, it increases to 2717, In practice, this means that any key relation
requiring more than one byte of key changed per active S-box appears to be
impractical.

3.12 Conclusions

Our analysis suggests that related-key attacks against the full Twofish are not
workable. Note, however, that we have spent less time working on resistance to
chosen key attacks, such as will be available to an attacker if Twofish is used in
the straightforward way to define a hash function. For this reason, we recommend
that more analysis be done before Twofish is used in the straightforward way
as a hash function, and we note that it appears to be much more secure to use
Twofish in this way with 128-bit keys than with 256-bit keys, despite the fact
that this also slows the speed of a hash function down by a factor of two.

4 Open Questions

Several questions remain open regarding the strength of the Twofish key sched-
ule. These include for following:

1. We have discussed differential related key attacks within a certain set of as-
sumptions, including the assumption that the subkey generation mechanism
has certain more-or-less random properties. We do not have a stronger ar-
gument than our intuition and statistical tests that this is the case. A proof
or stronger argument in either direction would be of great interest.

2. We have done some analysis (not reflected here for space reasons) on partial
chosen key attacks on Twofish. Still remaining are issues raised by the desire
to use Twofish in some Davies-Meyer hashing mode. What kind of collision
resistance might we expect in this case.

3. We have assumed that the derivation of gy and g; introduces no weaknesses.
Further analysis of this construction, as well as our larger S-box construction
methods, would be of interest.

4. We have discussed related-key slide attacks. There are many other ways to
reorder the round subkeys. Do any of these ways lead to attacks on the
cipher?
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