
Authenticated Diffie–Hellman Key Agreement
Protocols

Simon Blake-Wilson1 and Alfred Menezes2

1 Certicom Research, 200 Matheson Blvd. W., Suite 103
Mississauga, Ontario, Canada L5R 3L7

sblakewi@certicom.com
2 Department of Combinatorics & Optimization

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
ajmeneze@cacr.math.uwaterloo.ca

Abstract. This paper surveys recent work on the design and analysis of
key agreement protocols that are based on the intractability of the Diffie–
Hellman problem. The focus is on protocols that have been standardized,
or are in the process of being standardized, by organizations such as
ANSI, IEEE, ISO/IEC, and NIST. The practical and provable security
aspects of these protocols are discussed.

1 Introduction

Authenticated key establishment protocols are designed to provide two or more
specified entities communicating over an open network with a shared secret key
which may subsequently be used to achieve some cryptographic goal such as
confidentiality or data integrity. Secure authenticated key establishment proto-
cols are important as effective replacements for traditional key establishment
achieved using expensive and inefficient couriers.

Key establishment protocols come in various flavors. In key transport proto-
cols, a key is created by one entity and securely transmitted to the second entity,
while in key agreement protocols both entities contribute information which is
used to derive the shared secret key. In symmetric protocols the two entities
a priori possess common secret information, while in asymmetric protocols the
two entities share only public information that has been authenticated. This pa-
per is concerned with two-party authenticated key agreement protocols in the
asymmetric setting.

The design of asymmetric authenticated key agreement protocols has a check-
ered history. Over the years, numerous protocols have been proposed to meet a
variety of desirable security and performance requirements. Many of these proto-
cols were subsequently found to be flawed, and then either were modified to resist
the new attacks, or were totally abandoned. After a series of attacks and mod-
ifications, only those surviving protocols which had received substantial public
scrutiny and were believed to resist all known attacks were deemed secure for
practical usage. Protocols that evolve from this ‘attack-response’ methodology
are said to provide heuristic security.

S. Tavares and H. Meijer (Eds.): SAC’98, LNCS 1556, pp. 339–361, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



340 Simon Blake-Wilson and Alfred Menezes

There are two primary drawbacks of protocols which provide heuristic se-
curity. First, their security attributes are typically unclear or not completely
specified. Second, they offer no assurances that new attacks will not be discov-
ered in the future. These drawbacks make a notion of provable security desirable.
This would entail specification of a formal model of computing which accurately
captures the characteristics of the participating entities and a real-life powerful
adversary, a formal definition of the security goals within this model, a clear
statement of any assumptions made, and, finally, a rigorous proof that the pro-
tocol meets these goals within the model.

While provable security may appear to be the highest possible level of secu-
rity for a key agreement protocol, the approach does have some limitations. Most
significantly, it is difficult to judge whether or not real-life threats and security
goals are adequately reflected in a given model. That is, the provable security
of a protocol is meaningful only if one finds the model, definitions, and underly-
ing assumptions to be appropriate for one’s purposes. Nevertheless, significant
progress has been made in recent years, and authenticated key agreement pro-
tocols which are both provably secure and efficient have been devised and are
being used in practice.

This paper focuses on asymmetric authenticated key agreement protocols
whose security is based on the intractability of the Diffie–Hellman problem. We
discuss the practical and provable security aspects of some protocols which are
being standardized by accredited standards organizations such as ANSI (Ameri-
can National Standards Institute), IEEE (Institute of Electrical and Electronics
Engineers), ISO/IEC (International Standards Organization/International Elec-
trotechnical Commission), and the U.S. government’s NIST (National Institute
of Standards and Technology). Such cryptographic standards have significant
practical impact because they facilitate the widespread use of sound techniques,
and promote interoperability between different implementations.

The remainder of this paper is organized as follows. §2 summarizes the desir-
able security and performance attributes of a key agreement protocol. In §3, we
review the basic ephemeral (short-term) and static (long-term) Diffie–Hellman
key agreement protocols and point out their limitations. §4 presents the KEA,
Unified Model, and MQV authenticated key agreement protocols, while in §5
we discuss protocols for authenticated key agreement with key confirmation.
The protocols are compared in §6. Recent progress in defining and proving the
security of key agreement protocols is reviewed in §7. §8 concludes with some
directions for future research.

2 Goals of key agreement

This section discusses in more detail the goals of asymmetric authenticated key
establishment protocols. The complexity and variety of these goals explains in
part the difficulties involved in designing secure protocols.

The fundamental goal of any authenticated key establishment protocol is to
distribute keying data. Ideally, the established key should have precisely the same



Authenticated Diffie–Hellman Key Agreement Protocols 341

attributes as a key established face-to-face — for example, it should be shared by
the (two) specified entities, it should be distributed uniformly at random from
the key space, and no unauthorized (and computationally bounded) entity should
learn anything about the key. A protocol achieving this idealistic goal could then
be used as a drop-in replacement for face-to-face key establishment without the
need to review system security in much the same way as pseudorandom bit
generators can replace random bit generators.

Unfortunately, such an abstract goal is not easily attained and it is not an
easy task to identify and enunciate the precise security requirements of authen-
ticated key establishment. Nonetheless over the years several concrete security
and performance attributes have been identified as desirable. These are infor-
mally described in the remainder of this section. Recent more formal attempts
at capturing concrete security definitions are discussed in §7.

The first step is to identify what types of attacks it is vital for a protocol
to withstand. Since protocols are used over open networks like the Internet,
a secure protocol should be able to withstand both passive attacks (where an
adversary attempts to prevent a protocol from achieving its goals by merely
observing honest entities carrying out the protocol) and active attacks (where
an adversary additionally subverts the communications by injecting, deleting,
altering or replaying messages).

The second step is to identify what concrete security goals it is vital for a pro-
tocol to provide. The fundamental security goals described below are considered
to be vital in any application. The other security and performance attributes are
important in some environments, but less important in others.

Fundamental security goals. Let A and B be two honest entities, i.e., legit-
imate entities who execute the steps of a protocol correctly.

1. implicit key authentication. A key agreement protocol is said to provide im-
plicit key authentication (of B to A) if entity A is assured that no other
entity aside from a specifically identified second entity B can possibly learn
the value of a particular secret key. Note that the property of implicit key
authentication does not necessarily mean that A is assured of B actually
possessing the key.

2. explicit key authentication. A key agreement protocol is said to provide ex-
plicit key confirmation (of B to A) if entity A is assured that the second
entity B has actually computed the agreed key. The protocol provides im-
plicit key confirmation if A is assured that B can compute the agreed key.
While explicit key confirmation appears to provide stronger assurances to
A than implicit key confirmation (in particular, the former implies the lat-
ter), it appears that, for all practical purposes, the assurances are in fact the
same. That is, the assurance that A requires in practice is merely that B can
compute the key rather than that B has actually computed the key. Indeed
in practice, even if a protocol does provide explicit key confirmation, it can-
not guarantee to A that B will not lose the key between key establishment
and key use. Thus it would indeed seem that implicit key confirmation and



342 Simon Blake-Wilson and Alfred Menezes

explicit key confirmation are in practice very similar, and the remainder of
this paper will not distinguish between the two.
Key confirmation by itself is not a useful service — it is only desirable when
accompanied with implicit key authentication. A key agreement protocol is
said to provide explicit key authentication (of B to A) if both implicit key
authentication and key confirmation (of B to A) are provided.

A key agreement protocol which provides implicit key authentication to both
participating entities is called an authenticated key agreement (AK) protocol,
while one providing explicit key authentication to both participating entities is
called an authenticated key agreement with key confirmation (AKC) protocol.

Key agreement protocols in which the services of implicit key authentication
or explicit key authentication are provided to only one (unilateral) rather than
both (mutual) participating entities are also useful in practice, for example in
encryption applications where only authentication of the intended recipient is
required. Such unilateral key agreement protocols (e.g., ElGamal key agreement
[33, Protocol 12.52]) are not considered in this paper.

Other desirable security attributes. A number of other desirable security
attributes have also been identified. Typically the importance of supplying these
attributes will depend on the application. In the following, A and B are two
honest entities.

1. known-key security. Each run of a key agreement protocol between A and
B should produce a unique secret key; such keys are called session keys.
Session keys are desirable in order to limit the amount of data available for
cryptanalytic attack (e.g., ciphertext generated using a fixed session key in
an encryption application), and to limit exposure in the event of (session)
key compromise. A protocol should still achieve its goal in the face of an
adversary who has learned some other session keys.

2. forward secrecy. If long-term private keys of one or more entities are compro-
mised, the secrecy of previous session keys established by honest entities is
not affected. A distinction is sometimes made between the scenario in which
a single entity’s private key entity is compromised (half forward secrecy)
and the scenario in which the private keys of both participating entities are
compromised (full forward secrecy).

3. key-compromise impersonation. Suppose A’s long-term private key is dis-
closed. Clearly an adversary that knows this value can now impersonate A,
since it is precisely this value that identifies A. However, it may be desir-
able in some circumstances that this loss does not enable the adversary to
impersonate other entities to A.

4. unknown key-share. Entity B cannot be coerced into sharing a key with
entity A without B’s knowledge, i.e., when B believes the key is shared with
some entity C 6= A, and A (correctly) believes the key is shared with B.
A hypothetical scenario where an unknown key-share attack can have dam-
aging consequences is the following; this scenario was first described by Diffie,
van Oorschot and Wiener [21]. Suppose that B is a bank branch and A is an



Authenticated Diffie–Hellman Key Agreement Protocols 343

account holder. Certificates are issued by the bank headquarters and within
each certificate is the account information of the holder. Suppose that the
protocol for electronic deposit of funds is to exchange a key with a bank
branch via a mutually authenticated key agreement. Once B has authenti-
cated the transmitting entity, encrypted funds are deposited to the account
number in the certificate. Suppose that no further authentication is done in
the encrypted deposit message (which might be the case to save bandwidth).
If the attack mentioned above is successfully launched then the deposit will
be made to C’s account instead of A’s account.

Desirable performance attributes. These include:

1. Minimal number of passes (the number of messages exchanged).
2. Low communication overhead (total number of bits transmitted).
3. Low computation overhead (total number of arithmetical operations required).
4. Possibility of precomputation (to minimize on-line computational overhead).

Other desirable attributes. These include:

1. Anonymity of the entities participating in a run of the protocol.
2. Role symmetry (the messages transmitted have the same structure).
3. Non-interactiveness (the messages transmitted between the two entities are

independent of each other).
4. Non-reliance on encryption in order to meet export restrictions.
5. Non-reliance on hash functions since these are notoriously hard to design.
6. Non-reliance on timestamping since it is difficult to implement securely in

practice.

3 Diffie–Hellman key agreement

This section describes the basis of Diffie–Hellman based key agreement protocols
and motivates the modern protocols we describe in §4 and §5 by illustrating some
of the deficiencies of early protocols.

The mathematical tool commonly used for devising key agreement protocols
is the Diffie–Hellman problem: given a cyclic group G of prime order n, a gen-
erator g of G, and elements gx, gy ∈ G (where x, y ∈R [1, n− 1]), find gxy. (We
use x ∈R S to denote that x is chosen uniformly at random from the set S.)
This problem is closely related to the widely-studied discrete logarithm problem
(given G, n, g, and gx where x ∈R [0, n−1], find x), and there is strong evidence
that the two problems are computationally equivalent (e.g., see [16] and [32]).

For concreteness, this paper deals with the case where G is a prime order
subgroup of Z∗p, the multiplicative group of the integers modulo a prime p. How-
ever, the discussion applies equally well to any group of prime order in which the
discrete logarithm problem is computationally intractable, for example prime or-
der subgroups of the group of points on an elliptic curve over a finite field. The
following notation is used throughout the paper.



344 Simon Blake-Wilson and Alfred Menezes

A, B Honest entities.
p 1024-bit prime.
q 160-bit prime divisor of p− 1.
g An element of order q in Z∗p.
a, b Static private keys of A and B; a, b ∈R [1, q− 1].
YA, YB Static public keys of A and B; YA = ga mod p, YB = gb mod p.
x, y Ephemeral private keys of A and B; x, y ∈R [1, q− 1].
RA, RB Ephemeral public keys of A and B; RA = gx mod p, RB = gy mod p.
H A cryptographic hash function (e.g., SHA-1 [35]).
MAC A message authentication code algorithm (e.g., [4,6,7]).

The operator mod p will henceforth be omitted.

The domain parameters (p, q, g) are common to all entities. For the remainder
of this paper, we will assume that static public keys are exchanged via certifi-
cates. CertA denotes A’s public-key certificate, containing a string of information
that uniquely identifies A (such as A’s name and address), her static public key
YA, and a certifying authority CA’s signature over this information. Other in-
formation may be included in the data portion of the certificate, including the
domain parameters if these are not known from context. Any other entity B can
use his authentic copy of the CA’s public key to verify A’s certificate, thereby
obtaining an authentic copy of A’s static public key.

We assume that the CA has verified that A possess the private key a corre-
sponding to her static public key YA. This is done in order to prevent potential
unknown key-share attacks whereby an adversary E registers A’s public key YA
as its own and subsequently deceives B into believing that A’s messages orig-
inated from E (see [15] for more details). Checking knowledge of private keys
is in general a sensible precaution and is often vital for theoretical analysis. We
also assume that the CA has verified the validity of A’s static public key YA,
i.e., the CA has verified that 1 < YA < p and that (YA)q ≡ 1 (mod p); this
process is called public key validation [26]. Rationale for performing public key
validation is provided in §4.1.

The first asymmetric key agreement protocol was proposed by Diffie and
Hellman in their seminal 1976 paper [20]. We present two versions of the basic
protocol, one where the entities exchange ephemeral (short-term) public keys,
and the other where the entities exchange static (long-term) public keys.

Protocol 1 (Ephemeral Diffie–Hellman)

1. A selects x ∈R [1, q− 1] and sends RA = gx to B.
2. B selects y ∈R [1, q− 1] and sends RB = gy to A.
3. A computes K = (RB)x = gxy.
4. B computes K = (RA)y = gxy.

While the ephemeral Diffie–Hellman protocol provides implicit key authen-
tication in the presence of passive adversaries, it does not on its own provide
any useful services in the presence of active adversaries since neither entity is
provided with any assurances regarding the identity of the entity it is communi-
cating with. (See also Table 1 in §6.) This drawback can be overcome by using
public keys that have been certified by a trusted CA.



Authenticated Diffie–Hellman Key Agreement Protocols 345

A, x

K = gxy

gx

B, y

K = gxy
gy

Fig. 1. Protocol 1 (Ephemeral Diffie–Hellman).

Protocol 2 (Static Diffie–Hellman)

1. A sends CertA to B.
2. B sends CertB to A.
3. A computes K = (YB)a = gab.
4. B computes K = (YA)b = gab.

K = gab

B, b

K = gab

A, a
ga ∈ CertA

gb ∈ CertB

Fig. 2. Protocol 2 (Static Diffie–Hellman).

Since each entity is assured that it possesses an authentic copy of the other
entity’s public key, the static Diffie–Hellman protocol offers implicit key authen-
tication. A major drawback, however, is that A and B compute the same shared
secret K = gab for each run of the protocol.

The drawbacks of the ephemeral and static Diffie–Hellman protocols can be
alleviated by using both static and ephemeral keying material in the formation
of shared secrets. An example of an early protocol designed in this manner is
the MTI/C0 protocol [31].

Protocol 3 (MTI/C0)

1. A selects x ∈R [1, q− 1] and sends TA = (YB)x to B.
2. B selects y ∈R [1, q− 1] and sends TB = (YA)y to A.
3. A computes K = (TB)a

−1x = gxy.
4. B computes K = (TA)b

−1y = gxy.

B, b, y

K = gxy

A, a, x

K = gxy

gbx

gay

Fig. 3. Protocol 3 (MTI/C0).



346 Simon Blake-Wilson and Alfred Menezes

This protocol appears secure at first glance. Unfortunately, it turns out that
this attempt to combine static and ephemeral Diffie–Hellman protocols has in-
troduced some subtle problems. As an example, consider the following instance
of the small subgroup attack [29] on the MTI/C0 protocol. An adversary E re-
places TA and TB with the identity element 1. Both A and B now form K = 1,
which is also known to E. This attack demonstrates that the MTI/C0 protocol
(as described above) does not offer implicit key authentication.

The 3 protocols described in this section demonstrate some of the subtleties
involved in designing secure authenticated key agreement protocols. Other kinds
of attacks that have been identified besides small subgroup attacks include:

1. intruder-in-the-middle attack [37]. In this classic attack on ephemeral Diffie–
Hellman, the adversary replaces A’s and B’s ephemeral keys gx and gy with
keys gx and gy of its choice. E can then compute the session keys formed
by A and B (gxy and gxy, respectively), and use these to translate messages
exchanged between A and B that are encrypted under the session keys.

2. reflection attack [34]. A’s challenges are replayed back to A as messages
purportedly from B.

3. interleaving attack [12,21]. The adversary reuses messages transmitted dur-
ing a run of the protocol in other runs of the protocol.

Such attacks are typically very subtle and require little computational over-
head. They highlight the necessity of some kind of formal analysis to avoid the
use of flawed protocols.

4 AK protocols

This section discusses some AK protocols currently proposed in standards. We
present the two-pass KEA, Unified Model, and MQV protocols, and their one-
pass variants.

Before we present the AK protocols it is worth reminding the reader that, as
discussed in §2, it is highly desirable for key establishment protocols to provide
explicit key authentication. Thus, when AK protocols are used in practice, key
confirmation should usually be added to the protocols. Nonetheless it is worth
presenting the raw AK protocols since key confirmation can be achieved in a
variety of ways and it is sometimes desirable to separate key confirmation from
implicit key authentication and move the burden of key confirmation from the
key establishment mechanism to the application. For example, if the key is to be
subsequently used to achieve confidentiality, then encryption with the key can
begin on some (carefully chosen) known data. Other systems may provide key
confirmation during a ‘real-time’ telephone conversation. We present a generic
method for securely incorporating key confirmation into AK protocols in §5.

4.1 KEA

The Key Exchange Algorithm (KEA) was designed by the National Security
Agency (NSA) and declassified in May 1998 [36]. It is the key agreement protocol



Authenticated Diffie–Hellman Key Agreement Protocols 347

in the FORTEZZA suite of cryptographic algorithms designed by NSA in 1994.
KEA is very similar to the Goss [23] and MTI/A0 [31] protocols.

Protocol 4 (KEA)

1. A and B obtain authentic copies of each other’s public keys YA and YB.
2. A selects x ∈R [1, q− 1] and sends RA = gx to B.
3. B selects y ∈R [1, q− 1] and sends RB = gy to A.
4. A verifies that 1 < RB < p and (RB)q ≡ 1 (mod p). If any check fails,

then A terminates the protocol run with failure. Otherwise, A computes the
shared secret K = (YB)x + (RB)a mod p. If K = 0, then A terminates the
protocol run with failure.

5. B verifies that 1 < RA < p and (RA)q ≡ 1 (mod p). If any check fails,
then B terminates the protocol run with failure. Otherwise, B computes the
shared secret K = (YA)y + (RA)b mod p. If K = 0, then B terminates the
protocol run with failure.

6. Both A and B compute the 80-bit session key k = kdf(K), where kdf is a
key derivation function derived from the symmetric-key encryption scheme
SKIPJACK (see [36] for further details).

B, b, y

K = gay + gbx

A, a, x

K = gay + gbx

gx

gy

Fig. 4. Protocol 4 (KEA).

To illustrate the need for the features of KEA, we demonstrate how the
protocol is weakened when certain modifications are made. This serves to further
illustrate that designing secure key agreement protocols is a delicate and difficult
task, and that subtle changes to a protocol can render it insecure.

Validation of public keys – verifying that they lie in the subgroup

of order q. Suppose that A does not verify that (RB)q ≡ 1 (mod p). Then,
as observed by Lim and Lee [30], it may be possible for a malicious B to learn
information about A’s static private key a as follows using a variant of the small
subgroup attack. Suppose that p − 1 has a prime factor l of small bitlength
(e.g., 40 bits). Let β ∈ Z∗p be of order l. If B sends RB = β to A, then A

computes K = gbx + βa mod p and k = kdf(K). Suppose now that A sends
B an encrypted message c = Ek(m), where E is a symmetric-key encryption
scheme and the plaintext m has some recognizable structure. For each d, 0 ≤
d ≤ l − 1, B computes K′ = gbx + βd mod p, k′ = kdf(K′), and m′ = E−1

k (c).
If m′ possesses the requisite structure, then B concludes that d = a mod l, thus
learning some partial information about a. This can be repeated for different
small prime factors l of p − 1.



348 Simon Blake-Wilson and Alfred Menezes

Validation of public keys – verifying that they lie in the interval

[2, p− 1]. Suppose that A does not verify that 1 < YB < p and 1 < RB < p.
Then an adversary E can launch the following unknown key-share attack. E
gets YE = 1 certified as its static public key. E then forwards A’s ephemeral
public key RA to B alleging it came from E. After B replies to E with RB, E
sends R′B = 1 to A alleging it came from B. A computes KAB = gbx + 1 and B
computes KBE = gbx + 1. Thus B is coerced into sharing a key with A without
B’s knowledge.

Use of a key derivation function. The key derivation function kdf is used
to derive a session key from the shared secret key K. One reason for doing this is
to mix together strong bits and potential weak bits of K — weak bits are certain
bits of information about K that can be correctly predicted with non-negligible
advantage.

Another reason is to destroy the algebraic relationships between the shared
secret K and the static and ephemeral public keys. This can help prevent against
some kinds of known-key attacks, such as Burmester’s triangle attack [17] which
we describe next. An adversary E, whose static key pair is (c, gc), observes a
run of protocol between A and B in which ephemeral public keys gx and gy are
exchanged; the resulting shared secret is KAB = gay+gbx. E then initiates a run
of the protocol with A, replaying gy as its ephemeral public key; the resulting
secret which only A can compute is KAE = gay +gcx, where gx is A’s ephemeral
public key. Similarly, E initiates a run of the protocol with B, replaying gx

as its ephemeral public key; the resulting secret which only B can compute is
KBE = gbx + gcy, where gy is B’s ephemeral public key. If E can somehow
learn KAE and KBE (this is the known-key portion of the attack), then E can
compute KAB = KAE +KBE − gcx − gcy.
The check that K 6= 0. This check is actually unnecessary as the following
argument shows. Since (gb)q ≡ (gy)q ≡ 1 (mod p), we have that (gbx)q ≡
(gay)q ≡ 1 (mod p). Now, K = 0 if and only if gbx ≡ −gay (mod p). But this
is impossible since otherwise (gbx)q ≡ (−gay)q ≡ (−1)q ≡ −1 (mod p).

Security notes. KEA does not provide (full) forward secrecy since an adver-
sary who learns a and b can compute all session keys established by A and B.
See also Table 1 in §6.

4.2 The Unified Model

The Unified Model, proposed by Ankney, Johnson and Matyas [1], is an AK
protocol that is in the draft standards ANSI X9.42 [2], ANSI X9.63 [3], and
IEEE P1363 [24]. One of its advantages is that it is conceptually simple and
consequently easier to analyze (see §7.1).

Protocol 5 (Unified Model)

1. A selects x ∈R [1, q− 1] and sends RA = gx and CertA to B.
2. B selects y ∈R [1, q− 1] and sends RB = gy and CertB to A.



Authenticated Diffie–Hellman Key Agreement Protocols 349

3. A verifies that 1 < RB < p and (RB)q ≡ 1 (mod p). If any check fails,
then A terminates the protocol run with failure. Otherwise, A computes the
session key k = H((YB)a‖(RB)x).

4. B verifies that 1 < RA < p and (RA)q ≡ 1 (mod p). If any check fails,
then B terminates the protocol run with failure. Otherwise, B computes the
session key k = H((YA)b‖(RA)y).

gx

gy
B, b, y

k = H(gab‖gxy)
A, a, x

k = H(gab‖gxy)

Fig. 5. Protocol 5 (Unified model).

Security notes. The Unified Model does not provide the service of key com-
promise impersonation, since an adversary who learns a can impersonate any
other entity B to A. See also Table 1 in §6.

4.3 MQV

The so-called MQV protocol [29] is an AK protocol that is in the draft standards
ANSI X9.42 [2], ANSI X9.63 [3], and IEEE P1363 [24]. The following notation
is used. If X ∈ [1, p − 1], then X = (X mod 280) + 280; more generally, X =
(X mod 2df/2e)+2df/2e, where f is the bitlength of q. Note that (X mod q) 6= 0.

Protocol 6 (MQV)

1. A selects x ∈R [1, q− 1] and sends RA = gx and CertA to B.
2. B selects y ∈R [1, q− 1] and sends RB = gy and CertB to A.
3. A verifies that 1 < RB < p and (RB)q ≡ 1 (mod p). If any check fails,

then A terminates the protocol run with failure. Otherwise, A computes
sA = (x+aRA) mod q and the shared secret K = (RB(YB)RB )sA. If K = 1,
then A terminates the protocol run with failure.

4. B verifies that 1 < RA < p and (RA)q ≡ 1 (mod p). If any check fails,
then B terminates the protocol run with failure. Otherwise, B computes
sB = (y+ bRB) mod q and the shared secret K = (RA(YA)RA)sB . If K = 1,
then B terminates the protocol run with failure.

5. The session key is k = H(K).

Security notes. The expression for RA uses only half the bits of RA. This was
done in order to increase the efficiency of computing K because the modular
exponentiation (YA)RA can be done in half the time of a full exponentiation.
The modification does not appear to affect the security of the protocol. The
definition of RA implies that RA 6= 0; this ensures that the contribution of the
static private key a is not being cancelled in the formation of sA.



350 Simon Blake-Wilson and Alfred Menezes

gy

gx
B, b, yA, a, x
sB = (y + bgy) mod q

K = gsAsBK = gsAsB
sA = (x+ agx) mod q

Fig. 6. Protocol 6 (MQV).

The check K = 1 ensures that K has order q.
Kaliski [27] has recently observed that Protocol 6 does not possess the un-

known key-share attribute. This is demonstrated by the following on-line attack.
An adversary E intercepts A’s ephemeral public key RA intended for B, and
computes RE = RA(YA)RAg−1, e = (RE)−1 mod q, and YE = ge. E then gets
YE certified as her static public key (note that E knows the corresponding pri-
vate key e), and transmits RE to B. B responds by sending RB to E, which
E forwards to A. Both A and B compute the same session key k, however B
mistakenly believes that he shares k with E. We emphasize that lack of the un-
known key-share attribute does not contradict the fundamental goal of mutual
implicit key authentication — by definition the provision of implicit key authen-
tication is only considered in the case where B engages in the protocol with an
honest entity (which E isn’t). If an application using Protocol 6 is concerned
with the lack of the unknown key-share attribute under such on-line attacks,
then appropriate key confirmation should be added, for example as specified in
Protocol 8 in §5.

4.4 One-pass variants

The purpose of a one-pass AK protocol is for entities A and B to agree upon
a session key by only having to transmit one message from A to B — this
assumes that A a priori has an authentic copy of B’s static public key. One-pass
protocols can be useful in applications where only one entity is on-line, such as
secure email. Their main security drawbacks are that they do not offer known-
key security (since an adversary can replay A’s ephemeral public key to B)
and forward secrecy (since entity B does not contribute a random per-message
component).

The 3 two-pass AK protocols (KEA, Unified Model, MQV) presented in
this section can be converted to one-pass AK protocols by simply setting B’s
ephemeral public key equal to his static public key. We illustrate this next for
the one-pass variant of the MQV protocol. A summary of the security services
of the 3 one-pass variants is provided in Table 1 in §6.

Protocol 7 (One-pass MQV)

1. A selects x ∈R [1, q− 1] and sends RA = gx and CertA to B.
2. A computes sA = (x+aRA) mod q and the shared secret K = (YB(YB)Y B )sA.

If K = 1, then A terminates the protocol run with failure.



Authenticated Diffie–Hellman Key Agreement Protocols 351

3. B verifies that 1 < RA < p and (RA)q ≡ 1 (mod p). If any check fails,
then B terminates the protocol run with failure. Otherwise, B computes
sB = (b+ bY B) mod q and the shared secret K = (RA(YA)RA)sB . If K = 1,
then B terminates the protocol run with failure.

4. The session key is k = H(K).

A, a, x B, b

sB = (b+ bgb) mod q
K = gsAsB

gx

K = gsAsB
sA = (x + agx) mod q

Fig. 7. Protocol 7 (One-pass MQV).

5 AKC protocols

This section discusses AKC protocols and describes a method to derive AKC
protocols from AK protocols.

The following three-pass AKC protocol [13] is derived from the Unified Model
AK protocol (Protocol 5) by adding the MACs of the flow number, identities, and
the ephemeral public keys. Here, H1 and H2 are ‘independent’ hash functions.
In practice, one may choose H1(m) = H(10, m) and H2(m) = H(01, m), where
H is a cryptographic hash function.

The MACs are computed under the shared key k′, which is different from
the session key k; Protocol 8 thus offers implicit key confirmation. If explicit
key confirmation were to be provided by using the session key k as the MAC
key, then a passive adversary would learn some information about k — the
MAC of a known message under k. The adversary can use this to distinguish
k from a key selected uniformly at random from the key space. This variant
therefore sacrifices the desired goal that a protocol establish a computationally
indistinguishable key. The maxim that a key establishment protocol can be used
as a drop-in replacement for face-to-face key establishment therefore no longer
applies and in theory security must be analyzed on a case-by-case basis. We
therefore prefer Protocol 8.

Protocol 8 (Unified Model with key confirmation)

1. A selects x ∈R [1, q− 1] and sends RA = gx and CertA to B.
2. (a) B verifies that 1 < RA < p and (RA)q ≡ 1 (mod p). If any check fails,

then B terminates the protocol run with failure.
(b) B selects y ∈R [1, q−1], and computes RB = gy, k′ = H1((YA)b‖(RA)y),

k = H2((YA)b‖(RA)y), and mB = MACk′(2, B, A, RB, RA).
(c) B sends RB, CertB, and mB to A.

3. (a) A verifies that 1 < RB < p and (RB)q ≡ 1 (mod p). If any check fails,
then A terminates the protocol run with failure.



352 Simon Blake-Wilson and Alfred Menezes

(b) A computes k′ = H1((YB)a‖(RB)x) and m′B = MACk′(2, B, A, RB, RA),
and verifies m′B = mB .

(c) A computes mA = MACk′(3, A, B,RA, RB) and k = H2((YB)a‖(RB)x),
and sends RA and mA to B.

4. B computes m′A = MACk′(3, A, B,RA, RB) and verifies that m′A = mA.
5. The session key is k.

MACk′(3, A,B, g
x, gy)

gx

gy ,MACk′ (2, B,A, g
y, gx)

B, b, yA, a, x

k′ = H1(g
ab‖gxy)

k = H2(g
ab‖gxy)

k′ = H1(g
ab‖gxy)

k = H2(g
ab‖gxy)

Fig. 8. Protocol 8 (Unified model with key confirmation).

In a similar manner, one can derive three-pass AKC protocols from the KEA
(KEA with key confirmation) and MQV (MQV with key confirmation) AK pro-
tocols. The AKC variants of the Unified Model and MQV protocols are being
considered for inclusion in ANSI X9.63 [3].

A summary of the security services provided by the 3 AKC variants is given
in Table 1 in §6. This table illustrates why AKC protocols may be preferred
over AK protocols in practice. First, the incorporation of key confirmation may
provide additional security attributes which are not present in the AK proto-
col. For example, addition of key confirmation in the manner described above
makes the MQV protocol resistant to unknown key-share attacks. Second, the
security properties of AKC protocols appear to be better understood; see also
the discussion in §7.1. Note that since the MACs can be computed efficiently,
this method of adding key confirmation to an AK protocol does not place a
significant computational burden on the key establishment mechanism.

6 Comparison

This section compares the security and efficiency of the protocols presented in
§4 and §5.

Security services. Table 1 contains a summary of the services that are believed
to be provided by the AK and AKC protocols discussed in §4 and §5. Although
only implicit and explicit key authentication are considered vital properties of
key establishment, any new results related to other information in this table
would be interesting.

The services are discussed in the context of an entity A who has successfully
executed the key agreement protocol over an open network wishing to establish
keying data with entity B. In the table:



Authenticated Diffie–Hellman Key Agreement Protocols 353

Scheme IKA EKA K-KS FS K-CI UK-S

Ephemeral Diffie–Hellman × ×
√

?a n/a n/a ×
Ephemeral Diffie–Hellman (against pas-
sive attack)

√√ × √√
n/a n/a

√√

Static Diffie–Hellman
√√ × × × × √√

One-pass KEA
√√

× × ×
√
I
√√

KEA
√√ × √√ × √√ √√

KEA with Key Confirmation
√√ √√ √√ × √√ √√

One-pass Unified Model
√√ × × × √

I
√√

Unified Model
√√

×
√

?a
√

?b ×
√√

Unified Model with Key Confirmation
√√ √√ √√ √√ × √√

One-pass MQV
√√

× × ×
√
I ×

MQV
√√ × √√ √

?b
√√ ×

MQV with Key Confirmation
√√ √√ √√ √√ √√ √√

a Here the technicality hinges on the definition of what contributes ‘another session
key’. The service of known-key security is certainly provided if the protocol is ex-
tended so that explicit authentication of all session keys is supplied.

b Again the technicality concerns key confirmation. Both protocols provide forward
secrecy if explicit authentication is supplied for all session keys. If not supplied, then
the service of forward secrecy cannot be guaranteed.

Table 1. Security services offered by authenticated key agreement protocols.

–
√√

indicates that the assurance is provided to A no matter whether A
initiated the protocol or not.

–
√

? indicates that the assurance is provided modulo a theoretical technicality.
–
√

I indicates that the assurance is provided to A only if A is the protocol’s
initiator.

– × indicates that the assurance is not provided to A by the protocol.

The names of the services have been abbreviated to save space: IKA denotes
implicit key authentication, EKA explicit key authentication, K-KS known-key
security, FS forward secrecy, K-CI key-compromise impersonation, and UK-S
unknown key-share.

The provision of these assurances is considered in the case that both A and
B are honest and have always executed the protocol correctly. The requirement
that A and B are honest is certainly necessary for the provision of any service by
a key establishment protocol: no key establishment protocol can protect against
a dishonest entity who chooses to reveal the session key... just as no encryption
scheme can guard against an entity who chooses to reveal confidential data.

Efficiency. The work done by each entity is dominated by the time to perform
the modular exponentiations. The total number of modular exponentiations per
entity for the KEA, Unified Model, and MQV AK protocols is 4, 4, and 3.5,



354 Simon Blake-Wilson and Alfred Menezes

respectively. If precomputations (of quantities involving the entity’s static and
ephemeral keys and the other entity’s static keys) are discounted, then the total
number of on-line modular exponentiations per entity reduces to 2, 2, and 2.5,
respectively.

As noted in §5, MACs can be computed efficiently and hence the AKC vari-
ants have essentially the same computational overhead as their AK counterparts.
They do, however, require an extra flow.

7 Provable security

This section discusses methods that have been used to formally analyze key
agreement protocols. The goal of these methods is to facilitate the design of
secure protocols that avoid subtle flaws like those described in §3. We examine
two approaches, provable security and formal methods, focusing on the former.

Provable security was invented in the 1980’s and applied to encryption schemes
and signature schemes. The process of proving security of a protocol comes in
five stages:

1. Specification of model.
2. Definition of goals within this model.
3. Statement of assumptions.
4. Description of protocols.
5. Proof that the protocol meets its goals within the model.

As discussed in §1, the emphasis of work in provable security of a protocol
should be how appropriate the model, definitions, and underlying assumptions
are, rather than the mere statement that a protocol attains provable security —
after all, all protocols are provably secure in some model, under some definitions,
or under some assumptions.

History of provable security. Building on earlier informal work of Bird et al.
[12] for the symmetric setting and Diffie, van Oorschot and Wiener [21] for the
asymmetric setting, Bellare and Rogaway [9] provided a model of distributed
computing and rigorous security definitions, proposed concrete two-party au-
thenticated key transport protocols in the symmetric setting, and proved them
secure under the assumption that a pseudorandom function family exists. They
then extended the model to handle the three-party (Kerberos) case [10]; see also
Shoup and Rubin [39] for an extension of this work to the smart card world.
Blake-Wilson and Menezes [14] and Blake-Wilson, Johnson and Menezes [13]
extended the Bellare-Rogaway model to the asymmetric setting, and proposed
and proved the security of some authenticated key transport, AK, and AKC
protocols (see §7.1). More recently, Bellare, Canetti and Krawczyk [5] provided
a systematic method for transforming authentication protocols that are secure
in a model of idealized authenticated communications into protocols that are
secure against active attacks; their work is discussed further in §7.2.



Authenticated Diffie–Hellman Key Agreement Protocols 355

Formal methods. These are methods for analyzing cryptographic protocols
in which the communications system is described using a formal specification
language which has some mathematical basis, from which security properties of
the protocol can be inferred. (See [38] and [28] for surveys on formal methods.)
The most widely used of these methods are those related to the BAN logic of
Burrows, Abadi and Needham [18], which was extended by van Oorschot [40]
to enable the formal analysis of authenticated key agreement protocols in the
asymmetric setting. Such methods begin with a set of beliefs for the participants
and use logical inference rules to derive a belief that the protocol goals have been
obtained.

Such formal methods have been useful in uncovering flaws and redundan-
cies in protocols. However, they suffer from a number of shortcomings when
considered as tools for designing high-assurance protocols. First, a proof that a
protocol is logically correct does not imply that it is secure. This is especially
the case because the process of converting a protocol into a formal specification
may itself be subject to subtle flaws. Second, there is no clear security model
associated with the formal systems used and thus it is hard to assess whether
the implied threat model corresponds with the requirements of an application.
Therefore, we believe that provable security techniques offer greater assurance
than formal methods and we focus on provable security for the remainder of this
section.

7.1 Bellare-Rogaway model of distributed computing

Work on the design of provably secure authenticated key agreement has largely
focused on the Bellare-Rogaway model of distributed computing [9,10].

The Bellare-Rogaway model, depicted in Figure 9, is a formal model of com-
munication over an open network in which the adversary E is afforded enormous
power. She controls all communication between entities, and can at any time ask
an entity to reveal its static private key. Furthermore, she may at any time ini-
tiate sessions between any two entities, engage in multiple sessions with the
same entity at the same time, and ask an entity to enter a session with itself. We
provide an informal description of the Bellare-Rogaway model, and informal def-
initions of the goals of secure AK and AKC protocols. For complete descriptions,
see [9,10,13].

In the model, E is equipped with a collection of Πs
A,B oracles. Πs

A,B models
entity A who believe she is communicating with entity B for the sth time. E is
allowed to make three types of queries of its oracles:

Send(ΠA,B, x): E gives a particular oracle x as input and learns the
oracle’s response.

Reveal(ΠA,B): E learns the session key (if any) the oracle currently holds.
Corrupt(A): E learns A’s static private key.

When E asks an oracle a query, the oracle computes its response using the de-
scription of the protocol. Security goals are defined in the context of running E
in the presence of these oracles.



356 Simon Blake-Wilson and Alfred Menezes

Secure key agreement is now captured by a test involving an additional Test
query. At the end of its experiment, E selects a fresh oracle Πs

A,B — this is
an oracle which has accepted a session key k, and where the adversary has not
learned k by trivial means (either by corrupting A or B, or by issuing a Reveal
query to Πs

A,B or to any Πt
B,A oracle which has had a matching conversation

with Πs
A,B) — and asks it Test query. The oracle replies with either its session

key k or a random key, and the adversary’s job is to decide which key it has
been given.

Πs
A,B

Entity A

E

Entity B

ΠA,B

Fig. 9. The Bellare-Rogaway model of distributed computing.

Definition 1 ([13]). (Informal) An AK protocol is secure if:

(i) The protocol successfully distributes keys in the absence of an adversary.
(ii) No adversary E can distinguish a session key held by a fresh Πs

A,B oracle
from a key selected uniformly at random.

A secure AKC protocol is defined by amalgamating the notion of entity
authentication with the notion of a secure AK protocol.

Definition 2 ([13]). (Informal) An AKC protocol is secure if in addition to
conditions (i) and (ii) of Definition 1:

(iii) The only way an adversary E can induce a Πs
A,B oracle to accept a session

key is by honestly transmitting messages between Πs
A,B and some Πt

B,A.

The security of the Unified Model (Protocol 5) and the Unified Model with
key confirmation (Protocol 8) in the Bellare-Rogaway model was proven under
certain assumptions in [13].

Theorem 1 ([13]). Protocol 5 is a secure AK protocol in the Bellare-Rogaway
model provided that:

(i) the adversary makes no Reveal queries;



Authenticated Diffie–Hellman Key Agreement Protocols 357

(ii) the Diffie–Hellman problem is hard; and
(iii) H is a random oracle.

Theorem 2 ([13]). Protocol 8 is a secure AKC protocol in the Bellare-Rogaway
model provided that:

(i) the Diffie–Hellman problem is hard;
(ii) the MAC is secure; and
(iii) H1 and H2 are independent random oracles.

A random oracle is a ‘black-box’ random function which is supplied to all en-
tities, including the adversary. The assumption that H, H1 and H2 are random
oracles is a very powerful one and facilitates security analysis. This so-called
random oracle model was introduced and popularized by Bellare and Rogaway
[8]. In practice, the random oracles can be instantiated with hash functions —
therefore the security proofs in the random model are no longer valid in the prac-
tical implementation. Nonetheless, and despite recent results demonstrating the
limitations of the random oracle model [19], it is a thesis that protocols proven
secure in the random oracle provide higher security assurances than protocols
deemed secure by ad-hoc means.

To see that Protocol 5 is not a secure AK protocol in the Bellare-Rogaway
model if the adversary is allowed to make Reveal queries, consider the following
interleaving/reflection attack. Suppose that A initiates 2 runs of the protocol; let
A’s ephemeral public keys be gx and gx in the first and second runs, respectively.
The adversary E then replays gx and gx to A in the first and second rounds
respectively, purportedly as B’s ephemeral public keys. A computes both session
keys as k = H(gab‖gxx). E can now Reveal one session key, and thus also learn
the other.

It is conjectured in [13] that the modification of Protocol 5 in which the
session key is formed as k = H(gay‖gbx) is a secure AK protocol assuming only
that the Diffie–Hellman problem is hard and that H is a random oracle.

7.2 A modular approach

Recently, Bellare, Canetti and Krawczyk [5] have suggested an approach to the
design of provably secure key agreement protocols that differs from the Bellare-
Rogaway model. Their approach is a modular approach and starts with protocols
that are secure in a model of idealized authenticated communication and then
systematically transforms them into protocols which are secure in the realistic
unauthenticated setting. This approach has the advantage that a new proof
of security is not required for each protocol — instead once the approach is
justified it can be applied to any protocol that works in the ideal model. On
the other hand, it is less clear what practical guarantees are provided so the
evaluation of whether the guarantees are appropriate in an application is perhaps
less understood. The following is an informal overview of their approach.



358 Simon Blake-Wilson and Alfred Menezes

Authenticators. Authenticators are key to the systematic transformations at
the heart of the modular approach. They are compilers that take as input a pro-
tocol designed for authenticated networks, and transforms it into an ‘equivalent’
protocol for unauthenticated networks. The notion of equivalence or emulation
is formalized as follows. A protocol P ′ designed for unauthenticated networks
is said to emulate a protocol P designed for authenticated networks, if for each
adversary E′ of P ′ there exists an adversary E of P such that for all inputs
x, the views VP,E(x) and VP ′,E′(x) are computationally indistinguishable. (The
view VP,E(x) of a protocol P which is run on input x in the presence of an
adversary E is the random variable describing the cumulative outputs of E and
all the legitimate entities.)

MT-Authenticators. In [5], authenticators are realized using the simpler idea
of an MT-authenticator which emulates the most straightforward message trans-
mission (MT) protocol in which a single message is passed from A to B as de-
picted in Figure 10. Figure 11 illustrates the protocol λsig which is proven in [5]
to be an MT-authenticator. In the figure, signA() denotes A’s signature using
a signature scheme that is secure against chosen message attacks (e.g., [11,22]).
Now an MT-authenticator λ can be used to construct a compiler Cλ as follows:
given a protocol P , P ′ = Cλ(P ) is the protocol obtained by applying λ to each
message transmitted by P . It is proven in [5] that Cλ is indeed an authenticator.

A B
A,B,m

Fig. 10. Message transmission protocol (MT).

A

signA(m,NB, B) NB ∈R {0, 1}k
B

m

NB

Fig. 11. MT-authenticator λsig.

Key establishment. Finally, this MT-authenticator is used to build a secure
authenticated key agreement protocol. It is first shown in [5] that ephemeral
Diffie–Hellman EDH (Protocol 1) is a secure key establishment protocol for au-
thenticated networks by showing that it emulates traditional face-to-face key
establishment as described in §2. Then, EDH is emulated using Cλsig . The result
Cλsig(EDH) is a secure six-pass authenticated key agreement protocol. Combin-
ing messages from different flows, and replacing the challenges NA and NB with



Authenticated Diffie–Hellman Key Agreement Protocols 359

the ephemeral public keys gx and gy, respectively, yields the three-pass BCK
protocol, depicted in Figure 12.

The BCK protocol is similar to Key Agreement Mechanism 7 in ISO/IEC
11770-3 [25]. In the latter, the MACs of the signatures under the shared se-
cret K = gxy are also included in flows 2 and 3, thus providing explicit key
confirmation, instead of just implicit key confirmation as provided by the BCK
protocol.

signA(gx, gy, B)

gy, signB(gy, gx, A)
BA

gx

K = gxy K = gxy

Fig. 12. BCK protocol.

8 Conclusions and future work

This paper surveyed practical and provable security aspects of some authen-
ticated Diffie–Hellman key agreement protocols that are being considered for
standardization.

A number of questions can be asked. Can the MQV protocol be proven secure
in a reasonable model of computing? Are the definitions of secure AK and AKC
protocols in §7.1 the right ones? How do the models and security definitions pre-
sented in §7.1 and §7.2 compare? Are the security proofs meaningful in practice?
That is, can the reductions used in the proofs be untilized to obtain meaning-
ful measures of exact security [11]? (Exact security is a concrete quantification
of the security guaranteed by a protocol in terms of the perceived security of
the underlying cryptographic primitives, e.g., the Diffie–Hellman problem or a
secure MAC algorithm.)

Two important tasks that remain are to devise a provably secure two-pass
AK protocol, and to provide formal definitions for secure one-pass key agreement
protocols.

References

1. R. Ankney, D. Johnson and M. Matyas, “The Unified Model”, contribution to
X9F1, October 1995.

2. ANSI X9.42, Agreement of Symmetric Algorithm Keys Using Diffie–Hellman, work-
ing draft, May 1998.

3. ANSI X9.63, Elliptic Curve Key Agreement and Key Transport Protocols, working
draft, July 1998.

4. M. Bellare, R. Canetti and H. Krawczyk, “Keying hash functions for message
authentication”, Advances in Cryptology – Crypto ’96, LNCS 1109, 1996, 1-15.



360 Simon Blake-Wilson and Alfred Menezes

5. M. Bellare, R. Canetti and H. Krawczyk, “A modular approach to the design and
analysis of authentication and key exchange protocols”, Proceedings of the 30th
Annual ACM Symposium on the Theory of Computing, 1998. A full version of this
paper is available at http://www-cse.ucsd.edu/users/mihir

6. M. Bellare, R. Guerin and P. Rogaway, “XOR MACs: New methods for message
authentication using finite pseudorandom functions”, Advances in Cryptology –
Crypto ’95, LNCS 963, 1995, 15-28.

7. M. Bellare, J. Kilian and P. Rogaway, “The security of cipher block chaining”,
Advances in Cryptology – Crypto ’94, LNCS 839, Springer-Verlag, 1994, 341-358.

8. M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for
designing efficient protocols”, 1st ACM Conference on Computer and Commu-
nications Security, 1993, 62-73. A full version of this paper is available at
http://www-cse.ucsd.edu/users/mihir

9. M. Bellare and P. Rogaway, “Entity authentication and key distribution”, Advances
in Cryptology – Crypto ’93, LNCS 773, 1994, 232-249. A full version of this paper
is available at http://www-cse.ucsd.edu/users/mihir

10. M. Bellare and P. Rogaway, “Provably secure session key distribution — the three
party case”, Proceedings of the 27th Annual ACM Symposium on the Theory of
Computing, 1995, 57-66.

11. M. Bellare and P. Rogaway, “The exact security of digital signatures —
how to sign with RSA and Rabin”, Advances in Cryptology – Eurocrypt
’96, LNCS 1070, 1996, 399-416. A full version of this paper is available at
http://www-cse.ucsd.edu/users/mihir

12. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung,
“Systematic design of two-party authentication protocols”, Advances in Cryptology
– Crypto ’91, LNCS 576, 1992, 44-61.

13. S. Blake-Wilson, D. Johnson and A. Menezes, “Key agreement protocols and their
security analysis”, Proceedings of the sixth IMA International Conference on Cryp-
tography and Coding, LNCS 1355, 1997, 30-45. A full version of this paper is
available at http://www.cacr.math.uwaterloo.ca

14. S. Blake-Wilson and A. Menezes, “Entity authentication and authenticated key
transport protocols employing asymmetric techniques”, Proceedings of the 5th In-
ternational Workshop on Security Protocols, LNCS 1361, 1997, 137-158.

15. S. Blake-Wilson and A. Menezes, “Unknown key-share attacks on the station-to-
station (STS) protocol”, Technical report CORR 98-42, University of Waterloo,
1998. Also available at http://www.cacr.math.uwaterloo.ca/

16. D. Boneh and R. Lipton, “Algorithms for black-box fields and their application to
cryptography”, Advances in Cryptology – Crypto ’96, LNCS 1109, 1996, 283-297.

17. M. Burmester, “On the risk of opening distributed keys”, Advances in Cryptology
– Crypto ’94, LNCS 839, 1994, 308-317.

18. M. Burrows, M. Abadi and R. Needham, “A logic of authentication”, ACM Trans-
actions on Computer Systems, 8 (1990), 18-36.

19. R. Canetti, O. Goldreich and S. Halevi, “The random oracle methodology, revisit-
ed”, Proceedings of the 30th Annual ACM Symposium on the Theory of Computing,
1998.

20. W. Diffie and M. Hellman, “New directions in cryptography”, IEEE Transactions
on Information Theory, 22 (1976), 644-654.

21. W. Diffie, P. van Oorschot and M. Wiener, “Authentication and authenticated key
exchanges”, Designs, Codes and Cryptography, 2 (1992), 107-125.

22. C. Dwork and M. Naor, “An efficient existentially unforgeable signature scheme
and its applications”, Journal of Cryptology, 11 (1998), 187-208.



Authenticated Diffie–Hellman Key Agreement Protocols 361

23. K.C. Goss, “Cryptographic method and apparatus for public key exchange with
authentication”, U.S. patent 4,956,865, September 11 1990.

24. IEEE P1363, Standard Specifications for Public-Key Cryptography, working draft,
July 1998.

25. ISO/IEC 11770-3, Information Technology – Security Techniques – Key Manage-
ment – Part 3: Mechanisms Using Asymmetric Techniques, draft, (DIS), 1996.

26. D. Johnson, Contribution to ANSI X9F1 working group, 1997.
27. B. Kaliski, Contribution to ANSI X9F1 and IEEE P1363 working groups, June

1998.
28. R. Kemmerer, C. Meadows and J. Millen, “Three systems for cryptographic pro-

tocol analysis”, Journal of Cryptology, 7 (1994), 79-130.
29. L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, “An efficient protocol

for authenticated key agreement”, Technical report CORR 98-05, University of
Waterloo, 1998. Also available at http://www.cacr.math.uwaterloo.ca/

30. C. Lim and P. Lee, “A key recovery attack on discrete log-based schemes using a
prime order subgroup”, Advances in Cryptology – Crypto ’97, LNCS 1294, 1997,
249-263.

31. T. Matsumoto, Y. Takashima and H. Imai, “On seeking smart public-key distri-
bution systems”, The Transactions of the IECE of Japan, E69 (1986), 99-106.

32. U. Maurer and S. Wolf, “Diffie–Hellman oracles”, Advances in Cryptology – Crypto
’96, LNCS 1109, 1996, 283-297.

33. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

34. C. Mitchell, “Limitations of challenge-response entity authentication”, Electronics
Letters, 25 (August 17, 1989), 1195-1196.

35. National Institute of Standards and Technology, “Secure Hash Standard (SHS)”,
FIPS Publication 180-1, April 1995.

36. National Security Agency, “SKIPJACK and KEA algorithm specification”, Ver-
sion 2.0, May 29 1998. Also available at http://csrc.nist.gov/encryption/

skipjack-kea.htm

37. R. Rivest and A. Shamir, “How to expose an eavesdropper”, Communications of
the ACM, 27 (1984), 393-395.

38. A. Rubin and P. Honeyman, “Formal methods for the analysis of authentication
protocols”, CITI Technical Report 93-7, Information Technology Division, Univer-
sity of Michigan, 1993. Also available at http://cs.nyu.edu/∼rubin/

39. V. Shoup and A. Rubin, “Session key distribution using smart cards”, Advances
in Cryptology – Eurocrypt ’96, LNCS 1070, 1996, 321-331.

40. P. van Oorschot, “Extending cryptographic logics of belief to key agreement pro-
tocols”, 1st ACM Conference on Computer and Communications Security, 1993,
232-243.


	Introduction
	Goals of key agreement
	Diffie--Hellman key agreement
	AK protocols
	KEA
	The Unified Model
	MQV
	One-pass variants

	AKC protocols
	Comparison
	Provable security
	Bellare-Rogaway model of distributed computing
	A modular approach

	Conclusions and future work

