Applying Graph Reduction Techniques
for Identifying Structural Conflicts
in Process Models E|

Wasim Sadiq and Maria E. Orlowska

Distributed Systems Technology Centre
Department of Computer Science & Electrical Engineering
The University of Queensland
Qld 4072, Australia
email: {wasim,maria}@dstc.edu.au

Abstract. The foundation of a process model lies in its control flow specifica-
tions. Using a generic process modeling language for workflows, we show how
a control flow specification may contain certain structural conflicts that could
compromise its correct execution. In general, identification of such conflicts is a
computationally complex problem and requires development of effective algo-
rithms specific for target system language. We present a visual verification ap-
proach and algorithm that employs a set of graph reduction rules to identify
structural conflicts in process models for a generic workflow modeling lan-
guage. We also provide insights into the correctness and complexity of the re-
duction process. The main contribution of the paper is a new technique for sat-
isfying well-defined correctness criteria in process models.

1 Introduction

The workflow technology provides a flexible and appropriate environment to develop
and maintain next generation of component-oriented enterprise-wide information
systems. The production workflows, a subclass of workflows, support well-defined
procedures for repetitive processes and provide means for automated coordination of
activities that may span over several heterogeneous and mission-critical information
systems of the organization. The production workflow applications are built upon
business processes that are generally quite complex and involve a large number of
activities and associated coordination constraints.

The objective of process modeling is to provide high-level specification of proc-
esses that are independent of target workflow management system. It is essential that
a process model is properly defined, analyzed, verified, and refined before being de-
ployed in a workflows management system.

A workflow is a set of tasks and associated execution constraints. A workflow
management system coordinates the execution of these tasks to achieve some business

* The work reported in this paper has been funded in part by the Cooperative Research Centres
Program through the Department of the Prime Minister and Cabinet of the Commonwealth
Government of Australia.

M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 195-209, 1999.

© Springer-Verlag Berlin Heidelberg 1999

196 Wasim Sadiq and Maria E. Orlowska

objectives. Generally, tasks in a workflow are inter-related in such a way that initia-
tion of one task is dependent on successful completion of a set of other tasks. There-
fore, the order in which tasks are executed is very important. The control flow aspect
of a process model captures the flow of execution from one task to another. This in-
formation is used by a workflow management system to properly order and schedule
workflow tasks. Arguably, the control flow is the primary and the most important
aspect of a process model. It builds a foundation to capture other workflow require-
ments.

The research presented in this paper addresses modeling and verification of pro-
duction workflows. The Workflow Management Coalition [15] is developing a stan-
dard process definition language and an interface specification that could be used to
transfer process models between products. The verification issues discussed in this
paper are presented using a graphical process modeling language that is based on this
standard.

The use of Petri Nets for workflow modeling has been explored in [1] and [7].
However, Petri Nets are not used in any of the major products. A few conceptual
modeling languages and methodologies have also been proposed specifically for
workflow technology [4] [5] [6] [10] [12] [13].

It is possible to introduce error situations while building large workflow specifica-
tions. Such modeling inconsistencies and errors may lead to undesirable execution of
some or all possible instances of a workflow. It is essential to rectify such problems at
design phase rather than after deploying the workflow application. We have found
limited work in literature on workflows verification. In [9] a few verification issues of
workflow structures have been examined and complexity of certain verification
problems has been shown. In [12] some correctness issues in workflows modeling
have been identified. In [1] the application of analysis techniques in Petri Nets do-
main has been explored for workflow verification.

The work presented in this paper differs from other approaches. It provides an ef-
fective approach and algorithm to gradually reduce a workflow graph through a set of
reduction rules and allows visual identification of structural conflicts.

2 Process Modeling

To be able to present our reduction technique, we introduce a basic process modeling
language that is based on generic modeling concepts as described in [15]. In this lan-
guage, the process models are modeled using two types of objects: node and control
flow.

Node is classified into two subclasses: task and condition. A task, graphically rep-
resented by a rectangle, represents the work to be done to achieve some objectives. It
is also used to build sequential, and-split, and and-join structures. A condition,
graphically represented by a circle, is used to construct or-split and or-join structures.
A control flow links two nodes in the graph and is graphically represented by a di-
rected edge.

By connecting nodes with control flows through five modeling structures, as
shown in Figure 1, we build directed acyclic graphs (DAG) called workflow graphs
where nodes represent vertices and control flows represent directed edges. From now
on, we will refer to vertices as nodes and edges as flows.

Applying Graph Reduction Techniques for Identifying Structural Conflicts 197

And-join Final
[Synchronization)

Initial And-=plit
(Concurrency)

Cir-zplit
(Choice)

Cir-jain
(Merge)

Fig. 1. Process modeling constructs

Sequence is the most basic modeling structure and defines the ordering of task exe-
cution. It is constructed by connecting at the most one incoming and one outgoing
flow to a task. An and-split structure is used to represent concurrent paths within a
workflow graph and is modeled by connecting two or more outgoing flows to a task.
At certain points in workflows, it is essential to wait for the completion of more than
one execution path to proceed further. An and-join, represented by more than one
incoming flow to a task, is applied to synchronize such concurrent paths. An and-join
task waits until all the incoming flows have been triggered.

An or-split structure is used to model mutually exclusive alternative paths and is
constructed by attaching two or more outgoing flows to a condition object. At run-
time, the workflow selects one of the alternative execution paths for a given instance
of the business process by activating one of the outgoing flows originating from the
or-split condition object. The or-split is exclusive and complete. The exclusive char-
acteristic ensures that only one of the alternative paths is selected. The completeness
characteristic guarantees that, if a condition object is activated, one of its outgoing
flows will always be triggered. An or-join structure is “opposite” to the or-split
structure. It is applied to join mutually exclusive alternative paths into one path by
attaching two or more incoming flows to a condition object.

Since a workflow model is represented by a directed acyclic graph (DAG), it has at
least one node that has no incoming flows (source) and at least one node that has no
outgoing flows (sink). We call these initial and final nodes respectively. To uniquely
identify a final node for a workflow graph, we join all split structures. Therefore, a
workflow graph contains only one initial and one final node. A workflow instance
completes its execution after its final node has completed its execution.

The generic process modeling language [15] also contains additional modeling
structures to support nesting, blocks, and iteration. However, these are not discussed
in this paper since the modeling approach used for these structures does not impact on
the verification algorithm presented here. We recognize the importance of modeling
and verifying other aspects like data flow, temporal constraints, execution, roles, and
task classifications. However, this paper concentrates only on the verification of
structural conflicts.

198 Wasim Sadiq and Maria E. Orlowska

3 Structural Conflicts in Process Models

We identify two structural conflicts in process models: deadlock and lack of synchro-
nization. As mentioned earlier, all split structures introduced after the initial node are
closed through join structures before reaching the final node. That means an and-join
is applied for joining and-split paths and an or-join for or-split paths. Joining exclu-
sive or-split paths with an and-join results into a deadlock conflict. A deadlock at an
and-join blocks the continuation of a workflow path since one or more of the preced-
ing flows of the and-join are not triggered. Similarly, joining and-split concurrent
paths with an or-join introduces lack of synchronization conflict. A lack of synchroni-
zation at an or-join node results into unintentional multiple activation of nodes that
follow the or-join node.

Figure 2 shows a correct workflow graph and two graphs with deadlock and lack of
synchronization structural conflicts. The conflict nodes are highlighted in the incor-
rect graphs.

= 4, 'r' s 4
¥ . | i .1 ~ T E ¥ ¥ 4
';' j 4 L ';' I‘;_J'-I- L L
o a1 A a.t L
T 'r ;
C::-rr-r::ct Deadiock Lack af S',rr;l.:hr:;-ni.:al:i:-n

Fig. 2. Structural conflicts in workflow graphs

It is important to point out here that structural conflicts are not the only types of er-
rors possible in process models. However, they do represent the primary source of
errors in control flow specifications. Other modeling aspects may also affect the cor-
rect execution of workflows. For example, data flow modeling captures the data de-
pendencies between activities. A dependent activity may not get the required data
from the source activity at run-time because of incorrect modeling. The incorrect data
mapping between activities and underlying application components may also cause
incorrect execution of workflows. Similarly, control flow specification of a workflow
model may not satisfy certain specified temporal constraints.

The existence of other errors in a workflow model does not introduce or remove
structural conflicts. Therefore, the identification of structural conflicts in a workflow
model can be performed independently from other types of verification analysis. The
correctness of a complete workflow specification cannot be guaranteed just by re-
moving structural conflicts from the workflow graph. However, the non-existence of
structural conflicts in a workflow model guarantees that control flow specifications
conform to a certain correctness criteria.

Applying Graph Reduction Techniques for Identifying Structural Conflicts 199

We partition the verification process for workflow structures into two phases. In
first phase, basic syntax checking is performed to ensure that the model conforms to
the modeling language syntax and that all necessary properties of its components have
been defined. The verification of basic syntax is easy to facilitate and requires local
analysis of workflow modeling objects and structures. An example of such verifica-
tion is checking whether the workflow model is a DAG and is properly connected.

The second phase of verification requires a rigorous analysis of the workflow
model. It attempts to identify inconsistencies in the model that could arise due to
conflicting use of modeling structures. It is possible that such conflicting structures
are placed at distant locations in the workflow graph. In such cases, it is difficult to
identify the inconsistencies manually.

We need to define the concept of instance subgraphs before presenting the correct-
ness criteria for workflow graphs. An instance subgraph represents a subset of
workflow tasks that may be executed for a particular instance of a workflow. It can be
generated by visiting its nodes on the semantic basis of underlying modeling struc-
tures. The subgraph representing the visited nodes and flows forms an instance sub-
graph. Figure 3 shows a workflow graph and its instance subgraphs.

Workflow Graph Instance Subgraphs

Fig. 3. A Workflow graph and its instance subgraphs

Correctness criteria 1 — deadlock free workflow graphs: A workflow graph is free
of deadlock structural conflicts if it does not generate an instance subgraph that con-
tains only a proper subset of the incoming nodes of an and-join node.

Correctness criteria 2 — lack of synchronization free workflow graphs: A workflow
graph is free of lack of synchronization structural conflicts if it does not generate an
instance subgraph that contains more than one incoming nodes of an or-join node.

The common point in both cases of verification is that in principle, we need to ex-
amine all possible instance subgraphs of a workflow. The or-split is the only structure
in a workflow graph that introduces more than one possible instance subgraphs. A
workflow graph without or-split structures would produce exactly the same instance
subgraph as of the workflow graph. A workflow graph with a single or-split structure
produces as many possible instance subgraphs as the number of outgoing flows from
the or-split structure. However, the number of possible instance subgraphs could grow

200 Wasim Sadiq and Maria E. Orlowska

exponentially as the number of or-split and or-join structures increases in a workflow
specification. Therefore, a brute force method to generate all possible instance sub-
graphs of a workflow graph to ensure correctness is not computationally effective.

We present a formal notation of the workflow graphs that will be used in the veri-
fication algorithm as follows.

The workflow graph G = (N, F) is a simple directed acyclic graph (DAG) where

— N is a finite set of nodes
— Fis a finite set of control flows representing directed edges between two nodes

For each flow f € F:

— head[f] = n where n € N represents head node of f
— tail[f] = n where n € N represents tail node of f

For eachnode n € N:

— type[n] € { TASK, CONDITION } represents type of n

— dout[n] = out degree of n, i.e., number of outgoing flows from n

— din[n] = in degree of n, i.e., number of incoming flows to n

— Outflow[n] = {f:f € F and head[f] = n }, i.e., a set of outgoing flows from n

— Inflow[n] = {f: f e F and tail[f] =n }, i.e., a set of incoming flows to n

— Outnode[n] = { m : m € N and 3 f € F where head[f] = n and tail[f]=m }, i.e., a
set of succeeding nodes that are adjacent to n

— Innode[n] = { m: m € N and 3 f € F where tail[f] = n and head[f] =m }, i.e., a set
of preceding nodes that are adjacent to n

The graph G meets following syntactical correctness properties:

— Condition nodes are not used in sequential structures, i.e., -9 n € N where type[n]
= CONDITION and din[n] < 1 and dout[n] < 1

— G does not contain more than one initial node, i.e., 3 n € N where din[n] = 0 and

— (—d m e Nwheredinfm]=0and n#m)

— G does not contain more than one final node: i.e., 3 n € N where dout[n] = 0 and

— (—d m € N where dout{fm]=0and n = m)

3.1 Reduction Rules

In principle, the concept behind the verification approach and algorithm presented in
this paper is simple. We remove all such structures from the workflow graph that are
definitely correct. This is achieved by iteratively applying a conflict-preserving re-
duction process. The reduction process eventually reduces a structurally correct
workflow graph to an empty graph. However, a workflow graph with structural con-
flicts is not completely reduced.

The reduction process makes use of three reduction rules — adjacent, closed, and
overlapped — as long as they are able to reduce the graph.

Applying Graph Reduction Techniques for Identifying Structural Conflicts 201

Adjacent Reduction Rule
The adjacent reduction rule targets four types of components. We visit all nodes of the
graph and check if applying adjacent reduction rule can reduce any of them.

Let us call the node being visited as the current node. We remove the current node
from the graph if the number of flows attached to it is less than or equal to one. We
also assume that when a node is removed from the graph, all flows attached to it are
automatically removed. If the current node is forming a sequential structure, i.e., it
has exactly one incoming and one outgoing flow, we change the tail of its incoming
flow to the tail of its outgoing flow and remove it from the graph.

If the current node is not removed by first two criteria, it means that it is forming
either a split or join structure since it would either have out degree or in degree or
both that is more than one. We check if the current node has a single incoming flow
and is introducing a split structure by having more than one outgoing flow. If the type
of the current node is same as its preceding node, we move outgoing flows of the
current node to the preceding node and remove the current node. Finally, if the last
criterion is not met, we check if the current node has a single outgoing flow and is
introducing a join structure through more than one incoming flow. If the type of the
current node is same as its succeeding node, we move incoming flows of the current
node to the succeeding node and delete the current node. This step is similar to the
previous one except for the fact that it merges join structures whereas the previous
step merges split structures. Figure 4 (a) shows examples of applying the adjacent
reduction rule.

Level 1
B y; Level 2

Level 3

Level 4

(a) (b) (c)

Fig. 4. Examples of reduction rules

Closed Reduction Rule

The application of adjacent reduction rule generally introduces closed components in
workflow graphs. A closed component comprises two nodes of the same type that
have more than one flow between them. The closed reduction rule deletes all but one
flow between such nodes. Figure 4 (b) shows an example of the closed reduction rule.
A graph may contain closed components only if some adjacent components are re-
duced.

202 Wasim Sadiq and Maria E. Orlowska

Overlapped Reduction Rule

The overlapped reduction rule targets a specific class of components in workflow
graphs that has an infrequent occurrence. Therefore, we invoke it only if the adjacent
and closed reduction rules are unable to reduce the graph. An overlapped component
of a workflow graph meets several properties that ensure non-existence of structural
conflicts in it. Such a component has four levels as shown in Figure 4 (c). The source
of the component at level 1 is always a condition and sink at level 4 is always a task.
It has only task objects at level 2 and only condition objects at level 3. Each of the
tasks at level 2 has outgoing flows to each of the conditions at level 3 and has exactly
one incoming flow from the source at level 1. Each of the conditions at level 3 has
incoming flows only from each of the tasks level 2 and has exactly one outgoing flow
to the sink at level 4. The nodes at level 3 and 4 do not have any other control flows
attached to them than the ones mentioned above. The overlapped reduction rule iden-
tifies components that meet all these properties and reduces them to a single control
flow between source and sink of the component.

The workflow graph before reduction is assumed to meet syntactical correctness
properties as described in previous section. However, during the reduction process, a
reduced graph may not satisfy some of these properties. The adjacent reduction may
introduce multiple flows between two nodes, hence transforming the simple graph
into a multi-graph. In reduced graphs, multiple flows between two nodes represent
existence of more than one reduced path between them. Similarly, the closed and
overlapped reduction may introduce sequential condition nodes. Such a sequential
condition node represent reduction of more than one or-split or or-join paths of the
condition node into one. We allow the existence of these two syntactical errors in
reduced workflow graphs.

3.2 Verification Algorithm

The three reduction rules have been combined in the following REDUCE(G) algorithm
that takes a workflow graph G as input.

procedure REDUCE(G)
lastsize < size[G] + 1
while lastsize > size[G] do
lastsize < size[G]
for each node n € N[G] do /* Adjacent components */
if din[n] + dout[n] < 1 then
delete n
else if din[n] = 1 and dout[n] = 1 then
tail[top[Inflow[n]]] < top[Outnode[n]]]
delete n
else if din[n] = 1 and dout[n] > 1 and type[n] = type[top[Innode[n]]] then
for each flow outflow € Outflow[n] do
head[outflow] < top[Innode[n]]
delete n

Applying Graph Reduction Techniques for Identifying Structural Conflicts 203

else if dout[n] = 1 and din[n] > 1 and
type[n] = type[head[Outnode[n]]] then
for each flow inflow € Inflow[n] do
tail[inflow] < top[Outnode[n]]
delete n
if lastsize < size[G] then /* Closed components */
for each node n € N[G] do
if dout[n] > 1 then
Nodeset < {}
for each flow outflow € Outflow[n] do
if type[n] = type[tail[outflow]] then
if tail[outflow] ¢ Nodeset then
Nodeset < Nodeset U { tail[outflow] }
else
delete outflow
if lastsize = size[G] then /* Overlapped components */
for each node n € N[G] do
if rype[n] = CONDITION and dout[n] = 1 and din[n] > 1 then
level4 < top[Outnode[n]]
fn « head[Innode[n]]
if type[level4] = TASK and din[level4] > 1 and
type[fn] = TASK and dout[fn] > 1 and din[fn] = 1 then
levell < head[Innode[fn]]
if rype[top] = CONDITION and dout[top] > 1 then
Level2 < Innode[n]
Level3 < Outnode|[fn]
if V node € Level2 (type[node] = TASK and
Innode[node] = { levell } and
Outnode[node] = Level3) then
if V node € Level3 (type[node] = CONDITION and
Outnode[node] = { level4 } and
Innode[node] = Level2) then
head[top[Outflow[n]]] < levell
delete all node € Level2
delete all node € Level3

A workflow graph is shown in Figure 5 (a). The first application of adjacent rule
reduces the workflow graph from (a) to (b). The closed rule removes multiple flows
from closed components and transforms the graph to (c). The adjacent and closed
rules are applied two more times to get (d). At this point, the adjacent and closed rules
cannot reduce the graph any further. Therefore, the overlapped rule is applied to get
(e). We get (f) by applying adjacent and closed rules two more times on (e). Finally, a
single application of adjacent rule reduces the graph from (f) to an empty graph and
hence showing that the workflow graph in (a) does not contain any structural con-
flicts.

204 Wasim Sadiq and Maria E. Orlowska

(d ©) ®

Fig. 5. Reducing a workflow graph containing structural conflicts

Figure 6 (a) shows a workflow graph where we have added an additional control
flow to the workflow graph in 5 (a) that introduces a deadlock structural conflict. The
reduction procedure is applied on (a) to get (b) that is not reducible any further. The
non-reducible graph in (b) shows that a structural conflict exists in (a).

Fig. 6. Reducing a workflow graph with structural conflicts

Applying Graph Reduction Techniques for Identifying Structural Conflicts 205

3.3 Correctness and Complexity

In this section, we look at the correctness and complexity of the REDUCE(G) algo-
rithm. Let the workflow graph G, is the reduced graph after i iterations of the algo-
rithm on G. We shall prove that:

— the adjacent, closed, and overlapped reduction rules do not generate structural
conflicts, i.e., if G, is correct then G, is correct;

— the adjacent, closed, and overlapped reduction rules do not remove structural con-
flicts, i.e., if G, is incorrect then G,,, is incorrect; and,

— if G is correct, then reduction algorithm will always reduce G to an empty graph,
equivalently, if reduction algorithm can not reduce G to an empty graph then G
must contain at least one structural conflict.

First, we will look at individual reduction rules to prove that they meet the first two
properties 1 and 2. The adjacent reduction rule targets four types of components as
described in section 3.1. The nodes removed by the first two types represent sequen-
tial structures that do not introduce any split or join structures in workflow graph.
Therefore, they cannot possibly contribute towards a structural conflict. At the same
time, they cannot remove any existing structural conflict. The third type of adjacent
reduction does not generate new structural conflicts since it only merges the split
structure from the current node to the preceding node. The split structures are merged
only if the type of the current node and the preceding node is same. If the current
node’s split structure contributes to a structural conflict that occurs in its succeeding
paths, it would not be removed since the split structure is simply moved to the pre-
ceding node without any structural differences. At the same time, the current node has
only a single preceding node and hence does not take part in a join structure. There-
fore, the current node cannot be a part of a structural conflict with a split structure that
is in its preceding paths. The fourth type of adjacent reduction is similar to the third
one except that it merges join structures rather than split structures. Therefore, it also
meets the first two correctness properties on similar basis.

We do not allow multiple flows between two nodes in a workflow graph. However,
the adjacent reduction generally introduces components in reduced workflow graph
that contain two nodes and more than one flow between them. Such multiple flows
imply the existence of more than one path from the head node of the flows to their tail
node. If the type of such two nodes is different, then the component represents a case
of structural conflict and is not reduced by the algorithm. However, if the type is
same, we remove all but one of the multiple flows since they cannot generate struc-
tural conflicts or remove existing ones. Multiple flows between two tasks represent
concurrent paths and between two conditions represent alternative paths.

The basic property of an overlapped component is that none of the nodes between
source and sink of the component are connected to any other nodes of the graph. At
the same time, no structural conflict exists between source and sink. Therefore, re-
ducing the whole overlapped component between sink and source of an overlapped
component to a single control flow does not generate structural conflicts or remove
existing ones.

So far, we have shown that all reduction rules of the algorithm meet first two cor-
rectness properties. To prove that algorithm meets the third property, we will show
that if the algorithm does not reduce a workflow graph to an empty graph, then it
contains at least one structural conflict.

206 Wasim Sadiq and Maria E. Orlowska

Let G, be a graph that is not reducible any further after applying k iterations of the
reduction algorithm. Non-reducibility of graph G, implies that it does not contain any
sequential structures, i.e., either in degree or out degree or both of each graph node is
more than one. It also implies that if a node has an in degree or out degree that is
equal to one then the adjacent node attached to the single incoming or outgoing flow
is of different type.

It is also possible that graph G, contains a node that has more than one flow to an-
other node. Non-reducibility of graph implies that such multiple flows could exist
only between nodes of different types. Multiple flows from a condition to a task rep-
resent deadlock conflict and from a task to a condition represent lack of synchroniza-
tion conflict. Therefore, if a non-reducible graph contains a node with multiple flows
to another node then it always contains a structural conflict.

AR

Fig. 7. Structures with single in / out degrees in non-reducible graphs

To proceed, we assume that G, does not contain a node with more than one flow to
another node, i.e., G, is a simple DAG. We also know that G, has a single source and
a single sink. We know that a simple DAG with a single source and a single sink
contains at least one node with a single in degree and another node with a single out
degree. This property holds even for complete graphs. Since G, is non-reducible, then
the node on the other side of such a single incoming or outgoing flow is always of a
different type, otherwise it would be reducible by adjacent reduction. There are only
four possible cases of such structures as shown in Figure 7. It is easy to show that it is
not possible to build a non-reducible correct graph with a single source and a single
sink that contains any of these four structures. Therefore, a non-reducible graph al-
ways contains at least one structural conflict.

Now we look at the time complexity of the algorithm. In each iteration of the algo-
rithm, we visit all nodes to identify and reduce graph objects that meet certain proper-
ties of the reduction rules. The checking of whether a graph object meets any of these
properties is done in constant time since it takes only those objects into account that
are adjacent to the current node. After each iteration, the algorithm continues only if
the graph has reduced.

The worst case complexity of the algorithm is O(n°) where n represents the number
of nodes and flows in the workflow graph. The worst case is for a workflow graph
that is completely reducible and each iteration of the algorithm is able to reduce at the
most one object. However, the average case complexity is much lower than O(r’),
since the first few iterations dramatically reduce the size of a workflow graph and
remaining iterations need to work on a much smaller workflow graph than the original
graph.

Applying Graph Reduction Techniques for Identifying Structural Conflicts 207

4 Implementation

The algorithm presented in this paper has been implemented in a workflow modeling
and verification tool. The tool, called FlowMake, provides workflow analysts and
designers a well-defined framework to model and reason about various aspects of
workflows. It has been designed to augment production workflow products with en-
hanced modeling capabilities and to provide a basis for expanding the scope of the
verification. Figure 8 shows a screen snapshot of FlowMake where the reduction
process is being applied to a process model.

T Mgl 2 - D Fipmeand fmh

e M g e Fpeal [k eie Sep
& E kAl 'voooaos+sa |RAGFEE DS |~ EoA ETEEE

raen
5 eyl
Pirpwa=l Jairirg
Aepeni A
) | s
P _.i "'-\. | gy i |
?-‘" O O T
J u, T o it
a4 g
L

-'h;l:lq:-:m Sa pried) .-'r 1:.
J .-] [b
¥ ¥ & : |"_|__|) -
Prepae (neme ST Ciesgis Fegact &
o4 AME B FOF TTIERaA [T B e]
: m
?‘ L.

T [! | . i |
! { L
b — e o
L II II
gy Tl BETOES [{
A G Sl ES - i
Crstabons Firorce Dinvcis I|' |I

ET&

Fig. 8. FlowMake: workflow modeling and verification tool

FlowMake is composed of four major components: the repository, the workflow
editor, the verification engine, and the interface. Repository maintains workflow mod-
els and has been implemented using relational technology. Workflow Editor provides
a user-friendly graphical environment to maintain large workflow graphs. It is also
used to visualize inconsistencies in design. Verification Engine implements the algo-
rithms to check the consistency of workflow models. Interface component provides
linkage to workflow products through import and export of workflow models. Pres-
ently, the tool allows importing of process models from IBM workflow product MQ

208 Wasim Sadiq and Maria E. Orlowska

Workflow (previously known as FlowMark), analyzing them for structural conflicts,
and exporting them back to the product. More information about FlowMake is avail-
able at http://www.dstc.edu.au/DDU/projects/FlowMake/.

5 Conclusions

We report on successful implementation of graph reduction techniques for detecting
structural conflicts in process models. The implementation provides interface to a
selected workflow product, IBM MQ Workflow, to demonstrate its applicability to a
leading workflow management system.

To present the verification approach and algorithm, we introduced a basic process
modeling language based on a process definition standard by Workflow Management
Coalition. The language makes use of five modeling structures — sequence, and-split,
and-join, or-split, and or-join — to build control flow specifications. We have identi-
fied two types of structural conflicts, deadlock and lack of synchronization, which
could compromise the correctness of process models. The identification of these
structural conflicts in workflow models is a complex problem. We have presented an
effective graph reduction algorithm that can detect the existence of structural conflicts
in workflow graphs. The basic idea behind verification approach is to remove all such
structures from the workflow graph that are definitely correct. The algorithm reduces
a workflow graph without structural conflicts to an empty graph. However, a
workflow graph with structural conflicts is not completely reduced and structural
conflicts are easily identifiable. The incremental reduction of workflow model also
allows analysis of workflow graph components.

The main contribution of the paper is a new technique for identifying structural
conflicts in process models. We believe that the ideas presented in this paper provide
a basis for expanding the scope of verification in workflow products. The visual ap-
proach for identifying structural conflicts is useful, intuitive, and natural.

References

1. Aalst. WMP van der (1997). Verification of Workflow Nets. In P. Azema and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in
Computer Science, pages 407-426. Springer-Verlag, Berlin, 1997.

2. Aalst. WMP van der (1998). The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8(1):21--66, 1998.

3. Butler Report. Workflow: Integrating the Enterprise. The Butler Group, 1996.

4. Reichert M and Dadam P (1997). ADEPTflex - Supporting Dynamic Changes of
Workflow without loosing control. Journal of Intelligent Information Systems (JIIS), Spe-
cial Issue on Workflow and Process Management.

5. Carlsen S (1997). Conceptual Modeling and Composition of Flexible Workflow Models.
PhD Thesis. Department of Computer Science and Information Science, Norwegian Uni-
versity of Science and Technology, Norway, 1997.

6. Casati F, Ceri S, Pernici B and Pozzi G (1995). Conceptual Modeling of Workflows. In
M.P. Papazoglou, editor, Proceedings of the 14th In-ternational Object-Oriented and En-
tity-Relationship Modeling Conference, vol-ume 1021 of Lecture Notes in Computer Sci-
ence, pages 341-354. Springer-Verlag.

10.

11.

12.

13.

14.

15.

Applying Graph Reduction Techniques for Identifying Structural Conflicts 209

Ellis CA and Nutt GJ (1993). Modelling and Enactment of Workflow Systems. In M.
Ajmone Marasan, editor, Application and Theory of Petri Nets, Lecture Notes in Computer
Science 691, pages 1-16, Springer-Verleg, Berlin, 1993.

Georgakopoulos D, Hornick M and Sheth A (1995) An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Journal on Distrib-
uted and Parallel Databases, 3(2):119-153.

Hofstede, AHM ter, Orlowska ME and Rajapakse J (1998). Verification Problems in Con-
ceptual Workflow Specifications. Data & Knowledge Engineering, 24(3):239-256, January
1998.

Kuo D, Lawley M, Liu C and Orlowska ME (1996). A General Model for Nested Trans-
actional Workflow. In Proceedings of the International Workshop on Advanced Transac-
tion Models and Architecture (ATMA'96), Bombay India, pp.18-35, 1996.

Rajapakse J (1996). On Conceptual Workflow Specification and Verification. MSc Thesis.
Department of Computer Science, The University of Queensland, Australia, 1996.

Sadiq W and Orlowska ME (1997). On Correctness Issues in Conceptual Modeling of
Workflows. In Proceedings of the 5" European Conference on Information Systems (ECIS
97), Cork, Ireland, June 19-21, 1997.

Sadiq W and Orlowska ME (1999). On Capturing Process Requirements of Workflow
Based Information Systems. In Proceedings of the 3rd International Conference on Busi-
ness Information Systems (BIS ‘99), Poznan, Poland, April 14-16, 1999.

Workflow Management Coalition (1996) The Workflow Management Coalition Specifi-
cations - Terminology and Glossary. Issue 2.0, Document Number WFMC-TC-1011.
Workflow Management Coalition (1998). Interface 1: Process Definition Interchange,
Process Model, Document Number WIMC TC-1016-P.

	1 Introduction
	2 Process Modeling
	3 Structural Conflicts in Process Models
	4 Implementation
	5 Conclusions
	References

