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Abstract. A common technique in high-performance hardware design is
to intersperse combinatorial logic freely between level-sensitive latch lay-
ers (wherein one layer is transparent during the “high” clock phase, and
the next during the “low”). Such logic poses a challenge to verification —
unless the two-phase netlist N may be abstracted to a full-cycle model N’
(wherein each memory element may sample every cycle), model checking
of N requires at least twice as many state variables as would be neces-
sary to obtain equivalent coverage for N’. We present an algorithm to
automatically obtain such an abstraction by selectively eliminating lat-
ches from both layers. The abstraction is valid for model checking CTL*
formulae which reason solely about latches of a single phase. This algo-
rithm has been implemented in IBM’s model checker, RuleBase, and has
been used to enable model checking of IBM’s Gigahertz Processor, which
may not have been feasible otherwise. This abstraction has furthermore
allowed verification engineers to write properties and environments more
efficiently.

1 Introduction

A latch is a hardware memory element with two Boolean inputs — data and clock
— and one Boolean output. A behavioral definition for latches is provided in [1].
High performance netlists often must use level-sensitive latches [2]. For such a
latch, when its clock input is a certain value (e.g., a logical “1”), the value at
its data input will be propagated to its data output (i.e., transparent mode);
otherwise, its last propagated value is held at its output.

The clock is modeled as a signal which alternates between 0 and 1 at every
time-step. A latch which samples when the clock is a 1 will be denoted as an
L1 latch; one which samples when the clock is a 0 will be denoted as an L2
latch. Hardware design rules, arising from timing constraints, require any logic
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path between two L1 latches to pass through an L2 latch, and vice-versa. An
elementary design style requires each L1 latch to feed directly to an L2 latch
(called a master-slave latch pair), and allow only L2 to drive combinatorial logic.
However, a common high-performance hardware development technique involves
utilizing combinatorial logic freely between L1 and L2 latches to better utilize
each half-cycle. It should be noted that such designs are typically explicitly
implemented in this manner; this topology is not the byproduct of a synthesis
tool.

There are two major problems with the verification of such netlists. First,
because of the larger number of latches, the verification tool requires much more
time and memory. Additionally, the manual modeling of environments and pro-
perties is more complicated in that they must be written in terms of the less
abstract half-cycle model, and an oscillating clock must be explicitly introduced.

Most hardware compilers will allow automatic translations of a master-slave
latch pair into a single flip-flop; retiming algorithms [3] may be used to retime
the netlist such that L1-L2 layers become adjacent and one-to-one. However,
retiming adds complexity in that the specification, the environment, and any
witnesses / counterexamples (all of which may “observe” the netlist), may need
to be retimed as well to match the retimed, full-cycle model.

We develop an efficient algorithm for abstracting a half-cycle netlist N to
a full-cycle model N’, which may be utilized for enhanced verification in any
FSM-based verification framework (e.g., simulation and model checking). We
will achieve this by selectively eliminating some latches. We will use a notion of
dual-phase-bisimulation equivalence between the abstracted and unabstracted
models. This equivalence ensures that specification and environment written in
terms of L2 latch outputs need not be modified other than a conversion to full-
cycle format (as will be discussed in Sect. 3). Our algorithm performs maximum
such reductions, and thus provides an important model reduction step which may
greatly augment existing techniques (such as retiming, cone-of-influence, etc.).
As we show, this reduction alone reduces the number of state variables by at
least one-half, and has greatly enhanced the model checking of IBM’s Gigahertz
Processor, which may not have been feasible otherwise (as demonstrated by
our experimental evidence). This abstraction is now part of the model checker
RuleBase [4]. Additionally, designers and verification engineers prefer to reason
about the full-cycle models.

The optimality of the algorithm results from the identification of minimal
dependent layers (MDL) of latches, and removing all L1s or all L2s per MDL.

Definition 1. A dependent layer is a set of L1 and L2 latches L1 and L2',
such that L2' is a superset of all latches in the transitive fanout of L1, and L1’
s a superset of all latches in the transitive fanin of L2'.

Definition 2. A dependent layer is termed minimal if and only if there does
not exist a nonempty set of L1 and L2 latches L' which may be removed from
that layer and still result in a nonempty dependent layer.



74 J. Baumgartner et al.

Consider the netlist in Fig. 1 (the triangles denote combinatorial logic, and
the rectangles denote latches). The L1 latches are shaded. The two unique MDLs
are marked with dotted boxes. Merely removing all L1s or all L2s will not yield
an optimum reduction in this case; the L1s of layer A, and the L2s of layer B
should be removed to yield an optimum solution for this netlist, which removes
four of the six latches.

iy TWD* T%A brimary

Outputs

Inputs —_—

Fig. 1. Sample Netlist with Two Minimal Dependent Layers

In Sect. 2 we introduce a half-cycle netlist, and two different abstracted full-
cycle models of this netlist. In Sect. 3 we study the state space of the netlist
and its two abstracted models to demonstrate the validity of the abstraction for
CTL* formulae which reason solely about latches of a single type (L1 or L2). In
Sect. 4 we introduce the algorithm used to perform the netlist reduction, and
demonstrate its optimality. In Sect. 5 we give some experimental results of the
use of this algorithm as implemented in RuleBase [4] for application to IBM’s
Gigahertz Processor.

2 Half-Cycle versus Full-Cycle Models

Consider the half-cycle netlist, denoting an MDL, shown in Fig. 2. All nets and
primitives may be vectors.

m m n n o
Kk f1 2

PI(0.. k-1) A(0.. m-1) B(0.. m-1) C(0..n-1) D(0.. n-1) PO(0.. o-1)

Fig. 2. Half-Cycle Netlist NV

Definition 3. A netlist is dual-phase (DP) if and only if:

1. All latches in the transitive fanouts of L1 latches are L2 latches, and
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2. All latches in the transitive fanin of L2 latches are L1 latches, and
3. No primary inputs exist in the transitive fanin of any L2 latch, and
4. No primary outputs exist in the transitive fanout of any L1 latch.

The first two rules are enforced by hardware timing constraints. Note that,
at the periphery of a design, there may be some inputs which have L2 latches
in their transitive fanout, and outputs which are in the transitive fanout of
L1 latches (thus violating rules 3 and 4). While the analysis presented in this
paper disallows such connectivity for simplicity, these cases are supported by our
implementation; for ease of reasoning, we have found it beneficial to preserve all
L2 latches which violate rule 3, and to remove all L1 latches which violate rule
4.

The notion of MDLs (Defn. 2) allows us to partition the design under test
into a maximum number of partitions such that each is DP. Next, we propose
two abstractions for DP netlists. For each DP partition of the original design, one
of these two abstractions may be applied independently of the other partitions,
thus yielding an overall abstraction which has a globally minimum number of
latches (refer to Theorem 5). This minimum would, in general, be less than
removing either all of the L1 or all of the L2 latches.

In this paper, we assume that properties may only refer to the L2 nets (which
we term L2 — visible properties). In our actual implementation, we also handle
the case where the properties refer only to L1 nets. Furthermore, by forcing our
tool to remove only L1 or only L2 latches (i.e., restricting its freedom to choose
which type to remove), each property may refer to both types of nets. However,
we skip these generalizations in this paper.

2.1 The Abstracted Models

The values of the nets in Fig. 2 are specified for time-steps ¢ > 0. The pre-
specified initial values of the latches are By(0..m — 1) and Dy(0..n — 1). Let ¢
denote the clock input, which initializes to 1, and alternates between 1 and 0
at every time step, indicating whether the L1 or L2 latches (respectively) are
presently transparent. The subscript ¢ means “at time ¢”.

For i > 0, if (¢; = 1), B;(0..m — 1) = A;_1(0..m — 1), else B;(0..m — 1) =
B;—1(0..m — 1). Similarly, for ¢ > 0, if (¢; = 1), D;(0.n — 1) = D;_1(0..n — 1),
else D;(0..n — 1) = C;_1(0..n — 1). For the combinatorial nets, A;(0..m — 1) =
f1(PI;(0..k —1),D;(0..n—1)); C;(0..n — 1) = f2(B;(0..m —1)); and PO;(0..0—
1) = f3(D;(0..n — 1)).

Either layer of latches may be removed (and the remaining layer transformed
to flip-flops which may be clocked every cycle — not by an alternating clock),
and the resulting abstracted model will be shown to be bisimilar to the original
netlist. Fig. 3 shows the first abstraction with layer L2 removed. We need a
new variable, labeled f, whose initial value is 1, and thereafter is 0. This latch
ensures that the initial value Dy from the original netlist N (which need not be
deterministic) is applied to the combinatorial nets D in N’. By(0..m — 1) is still
the initial value of the remaining latches. For i > 0, B;(0..m—1) = A;_1(0..m—1).
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PI(0.. k-1) A(0.. m-1) B(0.. m-1)

C(0..n-1)
f

D(O.. n-1) PO(0.. 0-1)

Fig. 3. Abstracted Model N’

If (f; = 1), Di(0.n — 1) = Dy(0..n — 1), else D;(0.n — 1) = C;(0..n — 1). For
the other combinatorial nets, A4;(0.m — 1) = f1(PI;(0..k — 1), D;(0..n — 1));
Ci(0.n — 1) = f2(B;(0..m — 1)); and PO;(0..0—1) = f3(D;(0..n — 1)).

FF
m n n ‘ o
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PI(0.. k-1) A0.. m-1) B(0.. m-1) C(0.. n-1) D(.. n-1) PO(0.. 0-1)

Fig. 4. Alternate Abstracted Model N”

Fig. 4 illustrates the second abstraction, which removes the L1s. Dy(0..n—1)
is the initial value of the remaining latches; D;(0..n—1) = C;_1(0..n—1). For the
combinatorial nets, A;(0.m—1) = f1(PI;(0..k—1), D;(0..n—1)); B;(0..m—1) =
Ai(0.m—1); C;(0.n—1) = f2(B;(0..m —1)); and PO;(0..0—1) = f3(D;(0..n—
1)). Note that the f variable is unnecessary for this abstraction; the initial value
of the removed latch does not propagate.

It is noteworthy that either one of the two abstractions may be chosen; since
the layers may be of differing width (m # n), the removal of one layer may result
in a smaller state space than the other. We term both of the above reductions
as dual-phase (DP) reductions.

3 Validity of Abstraction

We define a notion of dual-phase-bisimulation relation (inspired by Milner’s bisi-
mulation relations [5]); this notion is preserved for composition of Moore machi-
nes. Further, if two structures are related by a dual-phase-bisimulation relation,
we show that L2—wvisible CTL* properties are preserved (modulo a simple trans-
formation). We show the existence of a dual-phase-bisimulation relation for both
abstractions presented in the previous section.

We will relate our designs to Kripke structures, which are defined as follows.
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Definition 4. A Kripke structure K = (S, Sy, A4, L, R), where S is a set of
states, Sog C S is the set of initial states, A is the set of atomic propositions,
L:8S — 24 is the labeling function, and R : S x S is the transition relation.

Our designs are described as Moore machines (using Moore machines, instead
of the more general Mealy machines [6], simplifies the exposition for this paper,
though our implementation is able to handle Mealy machines). We use the fol-
lowing definitions for a Moore machine and its associated structure (similar to
Grumberg and Long [7]).

Definition 5. A Moore machine M = (L, S, Sy, I,0,V,d,v), where L is the set
of state variables (latches), S : 2¥ is the set of states, Sy C S is the set of initial
states, I is the set of input variables, O is the set of output variables, V. C L
is the set of property visible nets, § : S x 2! x S is the transition relation, and
v :8 — 29 is the output function.

Definition 6. The structure of a Moore machine M = (L, S, Sy, I,0,V,é,7) is
denoted by K(M) = (SE S A, L, R), where S& = 2L x 2 SK = §; x 2,
A=V, L=8K =2V and R((s,x),(t,y)) iff §(s,z,1).

In the sequel we will use M to denote the Moore machine as well as the
structure for the machine. We now define our notion of dual-phase-bisimilarity,
which characterizes our proposed abstraction.

Definition 7. Let M and M’ be two structures. A relation G C S x S’ is a
dual-phase-bisimulation relation if G(s,s’) implies:

1. L(s)=L'(5).

2. for every t,v € S, such that R(s,v) and R(v,t), we have L(s) = L(v), and
there exists t' € S’ such that R'(s',t') and G(t,t').

3. for every t' € S, such that R'(s',t'), there exist t,v € S such that L(v) =
L'(s"), R(s,v), R(v,t), and G(t,t').

We say that a dual-phase-bisimulation exists from M to M' (denoted by M <
M) iff there exists a dual-phase-bisimulation relation G such that for all s € S
and t' € S, there exist t € Sy and s € S| such that G(s,s’) and G(t,t').

Notice that, in the above definition, such a dual-phase-bisimulation relation
may exist only if M has a dual-phase nature — i.e., for all ¢, the visible labels of
states so; and s9;41 are equivalent.

An infinite path 7 = (sg, s1, $2, . . .) is a sequence of states (so € Sp) such that
any two successive states are related by the transition relation (i.e., R(s;, $i+1)).
Let 7* denote the suffix path (s;,8;¢1,8i12,...). We say that the dual-phase-
bisimulation relation exists between two infinite paths © = (sg, s1, S2,...) and
7' = (84,81, Sh, - - .), denoted by G(m, '), iff for every i, G(s2, s}).

The composition of Moore machines (M; || M) is defined in the standard
way [7], by allowing the outputs of one design to become inputs of the other.
The following result is shown similarly as the proof that simulation precedence
is preserved under composition [7].
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Theorem 1. If My < M{ and My < M}, then a dual-phase-bisimulation exists
from the Moore composition M, || My to the Moore composition M || M} (i.e.,
My || My < My || M3).

The set of dual-phase-reducible CTL* formulae is a subset of CTL* formu-
lae [8], and is a set of state and path formulae given by the following inductive
definition. We also define the dual-phase reduction for such formulae:

Definition 8. A dual-phase-reducible (DPR) CTL* formula ¢, and its dual-
phase reduction, denoted by 2(¢), are defined inductively as:

— every atomic proposition p is a DPR state formula ¢ = p; 2(¢) = p.

— if p is a DPR state formula, so is ¢ = —p; 2(¢) = —2(p).

— if p,q are DPR state formulae, so is ¢ =p A q; 2(¢p) = 2(p) A 2(q).

— if p is a DPR path formula, then ¢ = Ep is a DPR state formula; 2(¢) =
EL2(p).

— each DPR state formula ¢ is also a DPR path formula ¢.

— if p is a DPR path formula, so is ¢ = —p; £2(¢) = =2(p).

— if p,q are DPR path formulae, so is ¢ = p A q; 2(¢) = 2(p) A £2(q).

— if p is a DPR path formula, so is ¢ = XXp; £2(¢) = X02(p).

— if p,q are DPR path formulae, so is ¢ = pUq; 2(¢) = 2(p)UN2(q).

Note that X X is transformed to X through the reduction; intuitively, this is
due to the “doubling of the clock frequency”, or the replacement of the oscillating
clock with an “always active” clock, enabled by the abstraction. As an example,
if ¢ = AG(rdy — (AXAX(req — AF(ack)))), then 2(¢) = AG(rdy — (AX(req —
AF(ack)))) (note that AXAXp is equivalent to AXXp). L2 — visible properties
may be readily expressed utilizing DPR CTL*, since latches of any given type
may only toggle every second time-step; there is no need to express such a
property with a single X, which is the only restriction we impose upon full
CTL* expressibility.

Theorem 2. Let s and s’ be states of M and M', and © = (sg, $1, S2,...) and
7' = (s, 81,85, ..) be infinite paths of M and M', respectively. If G is a dual-
phase-bisimulation relation such that G(s,s’) and G(w,n'), then

1. for every dual-phase-reducible CTL* state formula ¢, s |= ¢ iff s' = 2(¢).
2. for every dual-phase-reducible CTL* path formula ¢, m = ¢ iff 7’ = 2(¢).

We describe the Moore specifications (Defn. 5) for the abstractions presented
in Sect. 2. Refer to Figs. 2-4. Let ¢ be the clock variable which alternates between
1 and 0, indicating whether the L1 or L2 latches are presently transparent,
respectively. The original netlist N = (LY SN SN PI PO, VN §N AN) has
LN = BUDU{c}, VN = D, and the transition and output functions, 5 and
AV, are given by the formulae in Sect. 2.1. The state space of N is denoted
by (b,d,v,z), comprising of the values of latches B, D, ¢, and the input PI,
respectively.
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As presented here, the properties cannot refer to inputs — V' does not con-
tain inputs. This restriction is due to the requirement that visible labels of states
s9; and Sg;41 are identical (Defn. 7), and is not necessary if the inputs to the
design do not change values between sy; and sg;41. This assumption is typically
sound; except for clock inputs (which no longer need to be modeled), synthesis
timing constraints enforce this requirement (since the partition will ultimately
be composed with other partitions, or occur at chip boundaries). After our ab-
straction, the environment is no longer constrained from toggling only once every
two time-steps, but may toggle every time-step — this reflects a conversion of the
environment from half-cycle to full-cycle, and (along with the synthesis require-
ments reflected in rules 1 and 2 of Defn. 3, and the synthesis requirement that the
design be free from combinatorial loops) allows applicability of this abstraction
to Mealy machines.

The first abstraction N’ = (LN, SN SN PI, PO, VN, 5N/ AN which we
denote the “remove-L2” abstraction, has LN = B U {f}, SO = (By,1), VN =
D. Again, the transition and output functions, 6N and AV, are given by the
formulae in Sect. 2.1. The state space of N’ is denoted by (b, w, ), comprising of
the values of latches B, f, and the input PI, respectively. The second abstraction
N", which we denote the “remove-L1” abstraction, has LN = =D, SO = Dy,
VN" = D. The state space of N” is denoted by (d, z), comprising of the values
of latches D and the input PI, respectively. Note that we define V in all cases
as D, the L2 latch outputs, as necessary for arbitrary L2 — wvisible properties,
and to enable the dual-phase-bisimulation.

Theorem 3. If N’ is a “remove-L2” abstraction of N, then N < N'.

Proof. The following relation G between states of N and N’ is a dual-phase-
bisimulation relation. G is defined so that it is 1 only for the following two cases:

— for any x, G(<BO7DOa 1,%), (BOa 1,33)) is 1
— for any (b,d,1,z) reachable from the initial state of N after at least one
transition, G((b,d, 1, z), (b,0,2)) is 1

Theorem 4. If N” is a “remove-L1” abstraction of N, then N < N”.

Proof. The following relation G between states of N and N” is a dual-phase-
bisimulation relation. G is defined so that it is 1 only for the following two cases:

— for any x, G((B()7D07 1,58), (Do,fﬂ)) is 1
— for any (b,d,1,z) reachable from the initial state of N after at least one
transition, G((b,d,1,z), (d,x)) is 1

Theorems 1, 2, 3 and 4 allow us to apply the two abstractions independently
on each dependent layer, and still show the validity of model checking L2—wvisible
CTL* formulae on the composition of the abstractions:

Corollary 1. If D' is obtained from D by applying either the “remove-L2” ab-
straction or the “remove-L1” abstraction, independently, on each of its minimal
dependent layers, D < D'.
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4 Algorithm for the Abstraction of DP Netlists

The algorithm picks a primary input at random — a while loop ensures that every
primary input is chosen. It then finds the latches in the transitive fanout of this
input — this set is called L1”, and must consist solely of L1 latches (except for
inputs connected to L2s, which are treated specially). It places these elements of
L1” one-at-a-time into the set L1’. For each latch in L1’ not previously conside-
red, it finds all L2 latches in the transitive fanout of L1’ — this set is denoted L2’.
It then looks for any latches in the transitive fanin of L2’ — these must be L1s —
and adds them to L1’. It then iteratively ping-pongs between the Lls and L2s
for this MDL until no new latches are found. These latches are now labeled with
their type and layer identifier (which is then incremented), and a record kept as
to the number of L1 and L2 latches in that layer. It then continues iteratively
with the next element of the set L1”.

The algorithm then looks for L1 latches in the transitive fanout of the L2s
encountered in the previous layers. If it finds any, these new MDLs are explored
iteratively as above until no new latches are encountered. The outer while loop
then begins traversing from the next primary input.

If the algorithm encounters a previously-marked L1 latch while looking for an
L2 latch (or vice-versa), it flags this violation. If no violation has been reported
during the analysis, the netlist is DP, and reduction may proceed.

After the above analysis, either the L1 or the L2 set may be removed per layer;
these layers are minimal by construction. A simple iteration over every MDL will
yield optimum reductions; if the given layer has more L2s than L1s, the L2s of
that layer should be replaced with multiplexors as discussed in Sect. 2.1. If not,
the L1s of that layer should be replaced with wires.

If the type of all latches is provided (L1 versus L2), an alternate algorithm
may simply iterate over each latch within the netlist, and calculate its MDL
given its type. When this abstraction was initially deployed, no such type data
was automatically available; the inputs provided a convenient point of reference.

Theorem 5. This algorithm performs optimum DP reductions.

Proof. By construction, each latch will be a member of exactly one MDL. Fur-
thermore, the MDLs are of minimum size, resulting in a maximum number of
dependent layers in the netlist. Since each MDL is independent of the others,
the locally optimal solutions yield a globally optimum result.

Note that along any input - output path within a single MDL, exactly one
flip-flop must exist after abstraction — if zero or two exist, the bisimulation is
clearly broken. Take any latch from any MDL which which was removed by the
abstraction — assume that it is an L1 latch L1’. All L2s L2’ in the fanout of L1’
must remain. All L1s in the fanin of L2’ must have been removed, and so on until
we are left with the case that (within this MDL) all of the L1s are removed, and
all of the L2s remain, if this is a correct abstraction (similar reasoning applies to
consideration of a removed L2 latch). This demonstrates optimality of reduction
of each MDL.
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The algorithm may be optimized to ensure that each combinatorial gate (or
net) is only considered once in fanout traversal, and once in fanin traversal, to
ensure that its complexity is O(netlist size?). However, in practice, we have
found that the complexity of this algorithm grows roughly linearly with model
size and takes a matter of seconds for even the largest designs we have considered
for model checking (more than 8,000 latches). This near-linearity is not surprising
for synthesizable high-performance netlists, since the depth of combinatorial
logic between latches and the number of sinks of a net are restricted to ensure
that the netlist meets timing constraints.

5 Experimental Results

The above algorithm was implemented into the model checker RuleBase [4],
developed in IBM Haifa Research Lab as an extension to SMV [9]. It is utilized
as a first-pass netlist reduction technique; the reduced full-cycle model is saved
and used as the basis for further optimizations before being passed to SMV for
model checking.

This algorithm was deployed for use on many components of IBM’s Giga-
hertz Processor. The reduction results obtained by this step are given in Table 1
below. These numbers do not reflect the results of any other reduction techni-
ques. We recommend, due to the speed of this algorithm (O(n?) in theory, but
roughly O(n) in practice) and its global preservation of L2 — visible properties,
that it be used as a first-pass reduction technique upon design compilation. The
resulting abstracted design may then be analyzed for formula-specific reductions
(e.g., cone-of-influence, constant propagations, retiming), which are likely to pro-
ceed faster upon the abstracted design due to the fewer number of latches and
simpler transition relation (the clock is no longer in the support of the transition
relation).

Table 1. DP Reduction Results

Logic Function State Bits State Bits
Before Reduction | After Reduction

Load Serialization Logic 8096 2586
L1 Reload Logic 3102 1418
Instruction Flushing Logic 138 69
Instruction-Fetch Address Generation Logic 4891 2196
Branch Logic 6918 3290
Instruction Issue Logic 6578 3249
Tag Management Logic 578 289
Instruction Decode Logic 1980 978
Load / Store Control 821 409

During the initial stages of model checking, this abstraction was not available.
Once the abstraction became available, properties which previously took many
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hours to complete would finish in several minutes. More encompassing properties
became feasible on the abstracted model which would not otherwise complete.

As a small example, a property run on the Load Serialization Logic which
took 25.6 seconds, 36 MB of memory on the abstracted model (with 81 variables)
took 450.2 seconds, 92 MB of memory for the unabstracted netlist (with 116
variables) on the same machine (an IBM RS/6000 Workstation Model 590 with 2
GB main memory), with no initial BDD order. This time includes that necessary
to perform the netlist analysis and reduction. As a larger example, a property
run on the Instruction Flushing Logic took 852 seconds of user time, 48 MB on
the abstracted model (with 96 variables). This same property did not complete
on the unabstracted netlist (with 162 variables) within 72 hours.

While it may seem surprising that the number of variables after abstraction
is more than half that before abstraction, this is due to two phenomena. First,
some of these variables are used for environment and specification; these are
modeled directly as flip-flops (rather than L1-L2 latches). Second, in some cases,
RuleBase was able to exploit some redundancy among these variables through
other model reduction techniques (e.g., constant simulation).

The benefits obtained by this algorithm extend beyond a mere reduction
in state depth, which reduces the time and memory consumed by reachability
calculations. BDD variable reordering time is often greatly reduced (since the
BDDs tend to be smaller, and since with less variables a “good ordering” tends
to be faster to compute). The reduction to full-cycle models also reduces the
number of image calculations necessary to reach a fixed-point or on-the-fly failure
— the diameter of the model is halved. Further, since fewer state variables require
evaluation, it is possible that the above reduction may be exploited to “collapse”
adjacent functions to a single function, which may be represented on the same
BDD. However, this risks blowing up the BDD size; the functions may thus
remain distinct and implicitly conjoined [10] to ensure proper evaluation.

With this abstraction available, as demonstrated above, model checking was
enabled to verify much “larger” and more meaningful properties in less time.
Users of our tool have found that writing specifications and environments for
the full-cycle abstracted models is much less complex than for the corresponding
half-cycle netlists (as is viewing traces). All RuleBase users quickly converted
to running exclusively with this abstraction. There have been many hundreds of
formulae written and model checked to date on this project, which collectively
have exposed on the order of 200 bugs at various design stages. We have not
encountered any properties we wished to specify which became impossible on
the abstracted model. This algorithm thus provided an efficient and necessary
means by which to free ourselves from the verification burdens imposed by the
low level of the implementation.

It is noteworthy that roughly 70 HDL bugs were isolated due to violations
of L1-L2 connectivity during this work. While algorithms for detecting such
problems are simple (and other tools implementing such checks became availa-
ble later in the design cycle), the many benefits resulting from this reduction
provided strong motivation for quickly correcting these errors. Due to the na-
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ture of logic interpretation in simulation and model checking frameworks, the
logic flawed in such a manner typically behaved “properly” for verification —
these platforms assume zero combinatorial delay, but no combinatorial “flow-
through” for two adjacent level-sensitive latches even if both are simultaneously
in the transparent phase.

6 Conclusions

We have developed an efficient algorithm for identifying and abstracting dual-
phase L1-L2 netlists. The algorithm performs netlist graph traversal, rather than
FSM analysis, hence is CPU-efficient — O(n?) in theory, but roughly O(n) in
practice due to timing constraints imposed upon synthesizable netlists. The be-
nefits obtained by the abstraction include much smaller verification time and
memory requirements (through “shallower” state depth — often less than one-
half that necessary without the abstraction — which reduces complexity of the
transition relation and simplifies BDD reordering, and a halving of the diameter
of the model), as well as more abstract specification and environment definitions.
A bisimulation relation is established between the unreduced and reduced mo-
dels. This reduction is optimum, and is valid for model checking CTL* formulae
which reason solely about latches of a given phase. Experimental results from
the deployment of this algorithm (as implemented in the model checker Rule-
Base) upon IBM’s Gigahertz Processor are provided, and illustrate its extreme
practical benefit.
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