Verifying Safety Properties of a PowerPCTM"
Microprocessor Using Symbolic Model Checking
without BDDs**

Armin Biere'?3, Edmund Clarke?3, Richard Raimi*®, and Yunshan Zhu??

! ILKD, University of Karlsruhe, Postfach 6980, 76128 Karlsruhe, Germany
Armin.Biere@Qira.uka.de
2 Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213
Edmund.Clarke@cs.cmu.edu, Yunshan.Zhu@cs.cmu.edu
3 Verysys Design Automation, Inc.
42707 Lawrence Place, Fremont, CA 94538
4 Motorola, Inc., Somerset PowerPC Design Center
6200 Bridgepoint Pkwy., Bldg. 4, Austin, TX 78759
Richard Raimi@email.mot.sps.com
® Computer Engineering Research Center, University of Texas at Austin
Austin, TX 78730

Abstract. In [1] Bounded Model Checking with the aid of satisfiability
solving (SAT) was introduced as an alternative to symbolic model check-
ing with BDDs. In this paper we show how bounded model checking can
take advantage of specialized optimizations. We present a bounded ver-
sion of the cone of influence reduction. We have successfully applied this
idea in checking safety properties of a PowerPC microprocessor at Mo-
torola’s Somerset PowerPC design center. Based on that experience, we
propose a verification methodology that we feel can bring model checking
into the mainstream of industrial chip design.

1 Introduction

Model checking has only been partially accepted by industry as a supplement to
traditional verification techniques. The reason is that model checking, which, to
date, has been based on BDDs or on explicit state graph exploration, has not
been robust enough for industry.

Model checking [3,12] was first proposed as a verification technique eighteen
years ago. However, it was not until the discovery of symbolic model checking

* PowerPC is a trademark of the International Business Machines Corporation, used
under license therefrom.

** This research is sponsored by the Semiconductor Research Corporation (SRC) under
Contract No. 97-DJ-294 and the National Science Foundation (NSF) under Grant No.
CCR-9505472. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of
the SRC, NSF or the United States Government.

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 60-71, 1999.
(© Springer-Verlag Berlin Heidelberg 1999

CTI\/I

Verifying Safety Properties of a PowerP Microprocessor 61

techniques based on BDDs [2,5,10] around 1990 that it was taken seriously by
industry. Unfortunately, BDD based model checkers have suffered from the fact
that ordered binary decision diagrams can require exponential space. Recently
a new technique called bounded model checking [1] has been proposed that uses
fast satisfiability solvers instead of BDDs. The advantage of satisfiability solvers
like SATO [15], GRASP [13], and Stalmarck’s algorithm [14] is that they never
require exponential space. In [1], it was shown that this new technique sometimes
performed much better than BDD based symbolic model checking. However, the
performance was obtained on academic examples, and doubt remained about
whether bounded model checking would work well on industrial examples.

In this paper we consider the performance of a bounded model checker, BMC
[1], in verifying twenty safety properties on five complex circuits from a PowerPC
microprocessor. By any reasonable measure, BMC consistently outperformed the
BDD based symbolic model checker, SMV [9]. In part, this performance gain was
obtained by utilizing a new bounded cone of influence reduction technique which
reduces the size of the CNF (conjunctive normal form) formula given to the
satisfiability solver.

We believe our new experimental results confirm that bounded model check-
ing can handle industrial examples. Since we, ourselves, are convinced of this, we
propose, here, a methodology for using bounded model checking as a supplement
to traditional validation techniques in industry. We feel that this represents a
significant milestone for formal verification.

2 DModels, Kripke Structures and Safety Properties

For brevity, we focus on the application of bounded model checking to safety
properties. The reader is referred to [1] for a more complete treatment of bounded
model checking.

We first consider models that can be represented by a set of initial and next
state functions.

Definition 1 (Model). Let X = {x1,...,Zn,Tni1,---,Tm} be a set of m
Boolean variables, and let F' = {f1,..., fn} be a set of n < m Boolean transition
functions, each a function over variables in X. Finally, let R = {ry,...,mn}

be a set of initialization functions, each a function over variables in X. Then
M = (X, F,R) is called a model.

From a model M we can construct a Kripke structure K = (S,T,1) in the
following way. The set of states, .S, is an encoding of the variables in X, i.e.,
S = {0,1}™. A state may also be considered a vector of these m variables,
T = (x1,...,Tn,Tnt+1,-..,Tm). Note that we use italic identifiers s, s, ... for
states (elements of S = {0,1}"™) and overhead bar identifiers 3, §o for vectors
of Boolean variables. We define present and next state versions of the variables
in X, denoting the latter with primes, e.g., a:; The variables in X serve as
atomic propositions, and obviate the need for a labeling function. We define

62 A. Biere et al.

the transition relation, T C S x S and the set of initial states I C S via their
characteristic functions:

T(s,s) = /\ zl < fi(x) and I(s):= /\ z; < rj(x)

Here, f; and r; are the transition and initialization functions, respectively, of
the j*" element of the variable vector, Z. Note that transition and initialization
functions are not specified for elements n + 1 through m of Z. These represent
primary inputs (PIs) to an underlying sequential circuit.

In practice, we will often consider a set of propositional constraints imposed
on a system. Given a model, M = (X, F, R), a constraint function, ¢, over X,
and a Kripke structure, K = (5,7, 1), derived from M, a constrained Kripke
structure, K. = (S, T, I.), in which ¢ is an invariant, can be obtained as follows:

T.(s,8") :=T(s,8) Ae(s) Ae(s') and I.(s):=I(s) Ac(s)

As a specification logic we use Linear Temporal Logic (LTL). In this paper
we consider only the unary temporal operators: eventually, F, and globally, G.

A path 7 = (sg,81,...) in a model M is an infinite sequence of states in
the corresponding Kripke structure K such that T'(s;, s;4+1) holds for all i € IN.
We call 7 initialized if I(so) holds. It is often convenient to discuss the value of
a component variable from the underlying vector, Z, in a certain state along a
path. The assignment to element z; of Z in state s; along path 7 is written as
si(J)-

We are interested in determining whether M = AGp holds, i.e., whether p,
a propositional formula, holds in every state along every initialized path is some
model, M. We approach this in two ways: (a) by searching for a finite length
counterexample showing M | EF-p, or (b) by proving that p is an inductive
invariant for M. These have in common that, in both cases, it is not necessary
to search unto the diameter of the structure, the diameter being that minimal
number of transitions sufficient for reaching any state from an initial state.

3 Bounded Model Checking for Safety Properties

In bounded model checking [1] the user specifies a number of time steps, k,
for searching from initial states. A propositional formula is then generated by
introducing k£ + 1 vectors of state variables, each representing a state in the
prefix of length k, g, ..., S;. Then the transition relation is unrolled k times,
substituting for states the appropriately labeled state variable vectors:

[M, := I(s0) AT (50,81) A--- AT (Sk-1, 5k) (1)

Every initialized path of the model M corresponds to an assignment that satisfies
(1). When checking a safety property, Gp, where p is a propositional formula,
we search for a witness to f = Fq, where ¢ = —p. A satisfying assignment to

CTI\/I

Verifying Safety Properties of a PowerP Microprocessor 63

(1) can be extended to a path that is a witness for f (and a counterexample for
Gp), iff ¢ holds at one of the k + 1 states or equivalently the assignment also
satisfies:

[f1g:=als0)Va(si)V---q(sk) (2)

The final step is to translate the conjunction of (1) and (2) into CNF and check
it with SAT tools such as [13,15,14]. Translation into CNF is described in [11].

4 Classical and Bounded Cone of Influence Reduction

The Cone of Influence Reduction is a well known technique!. For bounded model
checking this technique can be specialized to the Bounded Cone of Influence
Reduction, described below.

The basic idea of COI reduction is to construct a dependency graph of the
state variables, rooted at the variables in the specification. The set of state
variables in the graph is called the COI of the specification. In this paper, we
call this the “classical” COI reduction. Variables not in the classical COI can
not influence the validity of the specification and can therefore be removed from
the model.

Let dep(z) be the set of successors to variable x in the state variable depen-
dency graph, i.e., the set of variables in the support of the transition function
for . The Bounded Cone of Influence Reduction is based on the observation
that, for any state s along a path, the value of an arbitrary state variable, x,
in the associated state variable vector, si, can depend only on state variables
in state variable vector s;, with j < k. Thus, it is only the copies, in 51, of
the variables that are in dep(z) that can determine the value of = in sj. Other
state variables, and their corresponding transition functions can be removed. If
we are looking for violations of a safety property at state si, this argument can
be repeated, working backwards, until the initial state is reached.

For instance, consider the following model with five state variables x1, ..., x5
and transition functions

fi=1, fa=z1, fa=z2, fa=x3, fo=m4

Assume the state variables are initialized to constants:

This model has only one execution sequence in which the 0 value is moved from
x1 to x5. After the 0 has reached x5 it vanishes, and all state variables stay at
1.

01111 — 10111 — 11011 — 11101 — 11110 — 11111 — .-

! Cone of influence reduction seems to have been discovered and utilized by a number
of people, independently. We note that it can be seen as a special case, of Kurshan’s
localization reduction [8].

64 A. Biere et al.

If the property to check is the safety property that x4 is always true, i.e., Gy,
classical COI reduction would remove just z5. Now, a counterexample for this
property can be found by unrolling the transition relation three times. Let us
assume that we only want to check for a counterexample in the last state, ss.
To apply bounded COI we observe that x4 in s3 only depends on z3 in $3 which
in turn depends on zs in $;, which only depends on the initial value of xj.
Therefore we can remove all other variables and their corresponding transitions.
This application of bounded COI reduction results in the following formula:

50(1) < 0N $1(2) <« So(1) A $2(3) < 50(2) A $3(4) < $0(3) A —s3(4)

This formula is satisfiable, and its only satisfying assignment can be extended
to a counterexample for the original formula, Gx4. Without bounded COI, 12
more equalities would have been necessary.

For a formal treatment of the bounded COI reduction we define the bounded
dependency set, bdep(5;(7)), of a component, §;(j), of state variable vector, §;,
as follows. Here, §; represents a state s; along a path prefix:

bdep(si(j)) := ifi=0 then 0 else {5,_1(1) | z; € dep(z;)}

The bounded COI, bcoi(§;(j)), of component §;(j) is defined, recursively, as
the least set of variables that includes $;(j), and includes, for each 5;,_1(l) €
bdep(si(j)), if any, the variables in bcoi(5;—1(1)).

For a fixed k, the length of the considered prefix, we define the bounded COI
of an LTL formula, f, as:

beoi(k, f) := {z € beoi(5:(4)) | 5i(5) € var([£ 1)}

where var([[f]|) is the set of variables of [f]|,.
In (1) we can now remove all factors of the form §;(j) < ... where 5;(j) &
beoi(f), and derive (for simplicity, we do not remove initial state assignments):

[M %D = 1(50) ATo(50,81) A -+ AT 1 (551, 55

where
Tifl(gifl,s_i) = /\ S_i(j)Hfj(gifl) fori=1...k
si(j)€bcoi(k, f)

The correctness of the bounded COI reduction is formulated in the following
theorem.

Theorem 1. Let f = Fq be an LTL formula with q a propositional formula.
Then [f], A M], is satisfiable iff []|, A[[M 2" is satisfiable.

5 Experiments

We used the bounded model checker, BMC, on subcircuits from a PowerPC
microprocessor under design at Motorola’s Somerset design center, in Austin,

CTI\/I

Verifying Safety Properties of a PowerP Microprocessor 65

Texas. BMC accepts a subset of the input format used by the widely known
SMV model checker [9].

When a processor is under design at Somerset, designers insert assertions
into the RTL simulation model. These Boolean expressions are important safety
properties. The simulator flags an error if these are ever false. We checked, with
BMC, 20 assertions chosen from 5 different processor design blocks. For each
assertion, p, we:

1. Checked whether p was a combinational tautology.
2. Checked whether p was otherwise an inductive invariant.
3. Checked whether AGp held for various time bounds, k, from 0 to 20.

Each circuit latch was represented by a state variable having individual next
state and initial state assignments. For the latter, we assigned the 0 or 1 value
the latch would have after a designated power-on-reset sequence known to the
designer. Primary inputs were modeled as unconstrained state variables, having
neither next state nor initial state assignments.

For combinational tautology checking we deleted all initialization statements
and ran BMC with k = 0, giving the propositional formula, p, as the specifica-
tion. Under these conditions, the specification could hold only if p held for all
assignments to the variables in its support.

We then checked whether p was an inductive invariant. A formula is an
inductive invariant if it holds in all initial states and is preserved by the transition
relation. Leaving all initialization assignments intact, for each design block and
each formula p, we gave p as the specification and set & = 0. This determined
whether each p held in the single, valid initial state of each design. Then, for each
design block and for each formula, p, we removed all initialization assignments
and specified p as an initial state predicate. We set k = 1 and checked the
specification AGp. If the specification held, this meant the successors of every
state satisfying p, also satisfied p. Note that AGp could fail to hold exclusively
due to transitions out of unreachable states. Therefore, this technique can only
show that p is an invariant, it cannot show that it is not.

The output of BMC is a Boolean formula in CNF that is given to a satisfiabil-
ity solver. In these experiments, we used both the GRASP [13] and SATO [15]
satisfiability solvers. When giving results, we give the best result from the two.

We also ran a recent version of the SMV model checker on each of the 20 AGp
specifications. We used command line options that enabled the early detection,
during reachability analysis, of false AGp properties, so that SMV did not need
to compute a fixpoint. This made the comparison to BMC more appropriate.
We also enabled dynamic variable ordering when running SMV, and used a
partitioned transition relation.

All experiments were run with wall clock time limits. The satisfiability solvers
had 15 minutes for each run, while SMV had an hour. BMC was not timed, as
the task of translating to CNF is usually done quite quickly. The satisfiability
solving and SMV runs were done on RS6000 model 390 workstations, having 256
megabytes of local memory.

66 A. Biere et al.

We did not model the interfaces between the 5 design blocks and the rest
of the microprocessor or the external computer system in which the processor
would be placed. This is commonly referred to as “environment modeling”. One
would ideally like to do environment modeling, since subcircuits usually work cor-
rectly only under certain input constraints. However, one will get true positives
for safety properties with a totally unconstrained environment. Given Kripke
structures M’ and M, M’ representing a design block with an unconstrained
environment and M the same block with its real, constrained environment, it is
obvious that M’ simulates M, i.e. M < M’ in the simulation preorder. It has
been shown in [4,6] that if f is an ACTL formula, as are all the properties in
these experiments, then M’ = f implies M = f.

Our experiments did result in false negatives. Upon inspection, and after
checking with circuit designers, it seems all the counterexamples generated were
due to impossible input behaviors. However, our purpose in these experiments
was to show the capacity and speed of bounded model checking, and the false
negatives did not obscure these results. We discuss, in Section 6, a methodology
wherein false negatives could be lessened or eliminated, by incorporating input
constraints into the bounded model checking. We certainly feel this would be
the way to use bounded model checking in a non-experimental, industrial ap-
plication. The reader may also want to refer to [7], where input constraints are
considered in a BDD based verification environment.

5.1 Experimental Results

The 5 design blocks we chose all came from a single PowerPC microprocessor,
and were all control circuits, having little or no datapath elements. Their sizes
were as follows:

|Circuit | Spec|Latches | PIS|

|Circuit|Latches|PIs|Gates| bbe |1-4] 150 [242
bbe 209 |479| 4852 cce |1-2] 77 1207
cee 371 |336| 4529 cde |1-4| 119 (190
cde 278 |319| 5474 dlc |1-6| 119 |[170
dlc 282 |297| 2205 dic 7 119 {153
sdc 265 |199| 2544 sde |1-2 113 |121

sdc 3 23 |15

Before COI

After (classical) COI

On the left, we report the original size of each circuit, and on the right,
the sizes after classical COI reduction. Each specification is given an arbitrary
numeric label. These do not relate across design blocks, e.g., specification 2 of
dlc is in no way related to specification 2 of sdc. Many properties involved much
the same circuitry on a design block, as can be seen by the large number of
cones of influence having identical numbers of latches and PIs. However, these
reduced circuits were not identical, though they may have differed only in how

Verifying Safety Properties of a PowerP

the variables in the specification depended, combinationally, upon latches and

C TM

Microprocessor

Pls.

| k | Bounded COI | Classic COI | No COI

0 137 / 449 234 / 546 376 / 688

1| 1023 / 3762 1801 / 6790 | 3402 / 12749

2| 2330 /8946 | 3367 / 13025 | 6426 / 24801

3| 3755 / 14631 | 4931 / 19259 | 9450 / 36851

4| 5259 / 20608 | 6496 / 25492 | 12473 / 48901
5] 6820 / 26821 | 8060 / 31725 | 15496 / 60951
10| 14643 / 57987 | 15883 / 62891 |30613 / 121202
15(22466 / 89153 | 23706 / 94057 |45730 / 181452
20(30288 / 12031931529 / 125223|60846 / 241702

Average Bounded COI Reduction

|Circuit|Spec|Taut010gy|Tran Rel’n|1nit State|

bbc 1
bbc
bbc
bbc
cce
cce
cdce
cde
cdce
cde
dlc
dlc
dlc
dlc
dle
dlc
dlc
sdc
sdc
sdc

Tautology and Invariance Checking

N[O = W DO] | W DN | DN] W

Z|2|z|z|Z2|2| 2| 2| 2| 2| <|<|<| 22| 2| 2| 2| 2| 2
Ziz|<Z2| 22|22 2| 2| <| << 2| 2| Z2|Z2|Z2|<| =2
Z| | | <]]] R R]]] L |]] 2] <

w

We ran BMC for values of k of 0,1, 2,3,4,5,10, 15 and 20, on each specifica-
tion. For each of these, we had BMC create CNF files having no COI reduction,
only classical COI, and both classical and bounded COI. In the table labeled
“Average Bounded COI Reduction”, we give average sizes of all these CNF files.
We averaged the number of literals and clauses (a clause is a disjunct of literals)
in all the CNF files for each k, i.e., for all specifications, for all design blocks,

68 A. Biere et al.

for that k. We checked, by hand, that this averaging did not obscure the median
case. In the table, we give to the left of a slash, the average number of literals for
a k value, and to the right, the average number of clauses. It can be seen that
the advantage of bounded COI decreases with increasing k. Intuitively, this is
because, going out in time, eventually values are computed for all state variables
in the classical cone of influence. However, at k up to 10, bounded COI gives
distinct benefit. Since bounded model checking seems to be most effective at
finding short counterexamples, and, since tautology and invariance checking are
run at low k, we feel bounded COI augments the system’s strengths.

The table labeled “Tautology and Invariance Checking” has columns for tau-
tology checking, for preservation by the transition relation and for preservation
in initial states. The last two must both hold for a formula to be an inductive
invariant. These runs were done with bounded COI enabled. A“Y” in a column
indicates a condition holding, an “N” that it does not. Time and memory usage
are not listed, since these were < 1 second < 5 megabytes in all but three cases.
In the worst case, sdc specification 2, 60 seconds of CPU time and 6.5 megabytes
of memory were required, for checking preservation by the transition relation.
Clearly, tautology and invariance checking can be remarkably inexpensive. In
contrast, these can be quite costly with BDD based methods.

||circuit|spec|long k| vars |c1auses|time|mem|holds|fail k|

bbe | 1 4 |7873|30174 (354 NR| Y
bbc | 2 15 |34585/93922|5.5| 84 | N 0
bbe | 3 10 |16814/63300| 58 | NR | Y
bbe | 4 5 948735658 | 18 |[NR | Y
cce |1 5 1939640450 13| 36 | N 1
ccc | 2 5]9148(38841|14| 39 | N 1
cde | 1 20 |49167|207764|128| 77 | N 2
cdec | 2 20 [50825|213137| 4.7 | NR | Y
cde | 3 20 |50571|213614| 4.7 |[NR | Y
cde | 4 20 [50491|212406| 4.8 | NR | Y
dle | 1 20 (1837871291 129| 64 | N 2
dlc | 2 20 [18024]69830|2,8 | 63 | N 2
dle | 3 20 {17603|68333|2.6| 60 | N 2
dic | 4 20 [18085| 69942 |2.73| 61 | N 1
dle | 5 20 {18378 71291 129| 60 | N 2
dlc | 6 20 (17712{68714|2.7 | NR | N 2
dle | 7 20 |16217|63781 24| 64 | N 0
sde | 1 4 |55564(20893| 72 | 14 | Y
sdc | 2 4 | 5545]20841|548| 21 | Y
sde | 3 20 |4119|15168| - 3 N 0

Highest k& Values

The table labeled “Highest k& Values” shows the results of increasing k. These
runs, again, were with bounded COI. We ran to large k regardless of whether

CTI\/I

Verifying Safety Properties of a PowerP Microprocessor 69

we found counterexamples, or determined a property was an invariant, at lower
k. It was sometimes difficult to obtain memory usage statistics during satisfia-
bility solving; but, this usually does not exceed that needed to store the CNF
formula. In the table, NR means not recorded (data unavailable). Time is given
in seconds, memory usage in megabytes, with dashes appearing where these were
insignificant. The “vars” and “clauses” columns give the number of literals and
clauses in the CNF file for the highest value of k on which satisfiability solving
completed, the k in the “long k” column. The time and memory usage listings
are for satisfiability solving at this highest k& value. A “Y” in the “holds” column
indicates the property held through all values of k tested, and an “N” indicates
a counterexample was found. When these were found, the “fail k” column gives
the the first k£ at which a counterexample appeared. Time and memory consump-
tion are not listed for the runs giving counterexamples, because the satisfiability
solving took less than a second, and no more than 5 megabytes of memory, in
each case!

Lastly, the BDD-based model checker, SMV, completed only one of the 20
verifications it was given. The 19 others all timed out at one hour of wall clock
time, with SMV unable to build the BDDs for the partitioned transition relation.
SMV was only able to complete the verification of sdc, specification 3. Classical
COI for this specification gave a very small circuit, having only 23 latches and
15 PIs. SMV found the specification false in the initial state, in approximately
2 minutes. Even this, however, can be contrasted to BMC needing 2 seconds to
translate the specification to CNF, and the satisfiability solver needing less than
1 second to check it!

6 A Verification Methodology

Our experimental results lead us to propose an automated methodology for
checking safety properties on industrial designs. In what follows, we assume a
design divided up into separate blocks, as is the norm with hierarchical VLSI
designs. Our methodology is as follows:

1. Annotate each design block with Boolean formulae required to hold at all
time points. Call these the block’s inner assertions.

2. Annotate each design block with Boolean formulae describing constraints on
that block’s inputs. Call these the block’s input constraints.

3. Use the procedure outlined in Section 6.1 to check each block’s inner as-
sertions under its input constraints, using bounded model checking with
satisfiability solving.

This methodology could be extended to include monitors for satisfaction of
sequential constraints, in the manner described in [7], where input constraints
were considered in the context of BDD based model checking.

6.1 Safety Property Checking Procedure

Let us consider a Kripke structure, K, for a design block having input con-
straints, c. A constrained Kripke structure, K., can be derived from K as in

70 A. Biere et al.

Section 2. To check whether an inner block assertion, p, is an invariant in K,
we need not work with K. directly. Unrolling the transition relation of K., as
per formula (1) of Section 3, is entirely equivalent to unrolling the transition
relation of K, and conjoining each term with the constraint function, c:

[M1, :=1I(s0) Ac($0) NT(S0,81) Ae(S1) A+ AT (Sk—1, k) A c(Sk) (3)

The steps for checking whether a block’s inner assertion, p, is an invariant
under input constraints, c, are:

Check whether p is a combinational tautology in K. If it is, exit.

Check whether p is an inductive invariant for K. If it is, exit.

Check whether p is a combinational tautology in K. If it is, go to step 6.
Check whether p is an inductive invariant for K.. It it is, go to step 6.
Check if a bounded length counterexample exists to AGp in K. If one is
found, there is no need to examine ¢, since the counterexample would exist
without input constraints®. If a counterexample is not found, go to step
6. The input constraints may need to be reformulated and this procedure
repeated from step 3.

6. Check the input constraints, ¢, on pertinent design blocks, as explained be-
low.

Gt o=

Inputs that are constrained in one design block, A, will, in general, be outputs
of another design block, B. To check A’s input constraints, we turn them into
inner assertions for B, and check them with the above procedure. One must
take precautions, however, against circular reasoning. Circular reasoning can be
detected automatically, however, and should not, therefore, be a barrier to this
methodology.

The ease with which we carried out tautology and invariance checking indi-
cates the above is entirely feasible. Searching for a counterexample, step 5, may
become costly at high k values; however, this can be arbitrarily limited. It is
expected that design teams would set limits for formal verification, and would
complement its use with simulation, for the remainder of available resources.

7 Conclusion

In this paper, we have outlined a specialized version of cone of influence reduc-
tion for bounded model checking. The present set of experiments, on a large and
complex PowerPC microprocessor, are compelling. They tell us that, for some
applications, the efficiency of model checking has increased by orders of magni-
tude. The fact that the BDD-based SMV model checker failed to complete on all
but one of 20 examples, underscores this point. We still believe, however, that
BDD-based model checking fills important needs. Certainly, it seems to be the

% This is implied by the theorems for ACTL formulae in [4,6], which we referred to in
Section 5

Verifying Safety Properties of a PowerPC™ Microprocessor 71

only technique that can presently find long counterexamples, though, of course,
this can be done only for designs that fall within its capacity limitations.

We feel that new verification methodologies can now be introduced in indus-
try, to take advantage of bounded model checking. We have outlined one such
procedure here, for checking safety properties. Our hope is that the widened use
of model checking will illuminate further possibilities for optimization.

References

1. A. Biere, A. Cimatti, Edmund M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In TACAS’99, 1999. to appear. 60, 61, 61, 61, 61, 62
2. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10?° states and beyond. Information and Computation, 98(2):142—
170, June 1992. Originally presented at the 1990 Symposium on Logic in Computer
Science (LICS90). 61
3. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Logic of Programs: Workshop, Yorktown
Heights, NY, volume 131 of Lecture Notes in Computer Science. Springer-Verlag,
May 1981. 60
4. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In
Proc. 19th Ann. ACM Symp. on Principles of Prog. Lang., Jan., 1992. 66, 70
5. O. Coudert, J. C. Madre, and C. Berthet. Verifying temporal properties of sequen-
tial machines without building their state diagrams. In Proc. 10th Int’l Computer
Aided Verification Converence, pages 23-32, 1990. 61
6. O. Grumberg and D. E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16:843-872, May, 1994. 66,
70
7. M. Kaufmann, A. Martin, and C. Pixley. Design constraints in symbolic model
checking. In Proc. 10th Int’l Computer Aided Verification Converence, June, 1998.
66, 69
8. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach, pages 170-172. Princeton University Press, Prince-
ton, New Jersey, 1994. 63
9. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, 1993. 61, 65
10. C. Pixley. Verifying temporal properties of sequential machines without building
their state diagrams. In Proc. 10th Int’l Computer Aided Verification Converence,
pages 54-64, 1990. 61
11. D. Plaisted and S. Greenbaum. A structure-preserving clause form translation.
Journal of Symbolic Computation, 2:293-304, 1986. 63
12. J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. 5th Int. Symp. in Programming, 1981. 60
13. J. P. M. Silva. Search algorithms for satisfiability problems in combinational switch-
ing circuits. Ph.D. Dissertation, EECS Department, University of Michigan, May
1995. 61, 63, 65
14. G. Stalmarck and M. Sédflund. Modeling and verifying systems and software in
propositional logic. In B. K. Daniels, editor, Safety of Computer Control Systems
(SAFECOMP’90), pages 31-36. Pergamon Press, 1990. 61, 63
15. H. Zhang. A decision procedure for propositional logic. Assoc. for Automated
Reasoning Newsletter, 22:1-3, 1993. 61, 63, 65

	Introduction
	Models, Kripke Structures and Safety Properties
	Bounded Model Checking for Safety Properties
	Classical and Bounded Cone of Influence Reduction
	Experiments
	Experimental Results

	A Verification Methodology
	Safety Property Checking Procedure

	Conclusion

