
Proof of Correctness of a Processor

with Reorder Buffer Using the
Completion Functions Approach �

Ravi Hosabettu1, Mandayam Srivas2, and Ganesh Gopalakrishnan1

1 Department of Computer Science, University of Utah, Salt Lake City, UT 84112,
hosabett,ganesh@cs.utah.edu

2 Computer Science Laboratory, SRI International, Menlo Park, CA 94025,
srivas@csl.sri.com

Abstract. The Completion Functions Approach was proposed in [HSG98]
as a systematic way to decompose the proof of correctness of pipelined
microprocessors. The central idea is to construct the abstraction function
using completion functions, one per unfinished instruction, each of which
specifies the effect (on the observables) of completing the instruction. In
this paper, we show that this “instruction-centric” view of the completion
functions approach leads to an elegant decomposition of the proof for an
out-of-order execution processor with a reorder buffer. The proof does not
involve the construction of an explicit intermediate abstraction, makes
heavy use of strategies based on decision procedures and rewriting, and
addresses both safety and liveness issues with a clean separation between
them.

1 Introduction

For formal verification to be successful in practice not only is it important to
raise the level of automation provided but is also essential to develop methodolo-
gies that scale verification to large state-of-the-art designs. One of the reasons for
the relative popularity of model checking in industry is that it is automatic when
readily applicable. A technology originating from the theorem proving domain
that can potentially provide a similarly high degree of automation is one that
makes heavy use of decision procedures for the combined theory of boolean ex-
pressions with uninterpreted functions and linear arithmetic [CRSS94,BDL96].
Just as model checking suffers from a state-explosion problem, a verification
strategy based on decision procedures suffers from a “case-explosion” problem.
That is, when applied naively, the sizes of the terms generated and the number of
examined cases during validity checking explodes. Just as compositional model
checking provides a way of decomposing the overall proof and reducing the ef-
fort for an individual model checker run, a practical methodology for decision
� This work was done in part when the first author was visiting SRI International in

summer 1998. The work done by the authors at University of Utah was supported
in part by NSF through Grant no. CCR-9800928. The work done by the authors at
SRI International was supported in part by NASA contract NAS1-20334 and ARPA
contract NASA-NAG-2-891 (ARPA Order A721).

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 47–59, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



48 R. Hosabettu, M. Srivas, and G. Gopalakrishnan

procedure-centered verification must prescribe a systematic way to decompose
the correctness assertion into smaller problems that the decision procedures can
handle.

In [HSG98], we proposed such a methodology for pipelined processor verifi-
cation called the Completion Functions Approach. The central idea behind this
approach is to define the abstraction function as a composition of a sequence
of completion functions, one for every unfinished instruction, in their program
order. A completion function specifies how a partially executed instruction is to
be completed in an atomic fashion, that is, desired effect on the observables of
completing that instruction. Given such a definition of the abstraction function
in terms of completion functions, the methodology prescribes a way of orga-
nizing the verification into proving a hierarchy of verification conditions. The
methodology has the following attributes:

• The verification proceeds incrementally making debugging and error tracing
easier.

• The verification conditions and most of the supporting lemmas needed to
support the incremental methodology can be generated systematically.

• Every generated verification condition and lemma can be proved, often au-
tomatically, using a strategy based on decision procedures and rewriting.

In summary, the completion functions approach strikes a balance between full
automation that (if at all possible) can potentially overwhelm the decision proce-
dures, and a potentially tedious manual proof. This methodology is implemented
using PVS [ORSvH95] and was applied (in [HSG98]) to three processor examples:
DLX [HP90], dual-issue DLX, and a processor that exhibited limited out-of-order
execution capability. An attribute common to all these processors was that the
maximum number of instructions pending at any time in the pipeline was small
and fixed, which made the completion functions approach readily amenable for
these examples. It was an open question if the approach would be practical, even
if applicable, to verify a truly out-of-order execution processor with a reorder
buffer. Such a processor can have scores of pending instructions in the reorder
buffer potentially making the task of defining completion functions tedious and
possibly exploding the number of generated verification conditions.

In this paper, we demonstrate that the completion functions approach is
well-suited to the verification of out-of-order execution processors by verifying
an example processor (a simplified model, based on the P6 design) with a reorder
buffer and generic execution units and without any data size bounds. We observe
that regardless of how many instructions are pending in the reorder buffer, the
instructions can only be in one of four distinct states. We exploit this fact to
provide a single compact parameterized completion function applicable to all
the pending instructions in the buffer. The abstraction function is then defined
as a simple recursive function that completes all the pending instructions in
the order in which they are stored in the reorder buffer. The proof is organized
as a single parameterized verification condition, which is proved using a simple
induction on the number of instructions in the buffer. The different cases of the
induction are generated on the basis of how an instruction makes a transition



Proof of Correctness of a Processor with Reorder Buffer 49

from its present state to its next state. We make heavy use of an automatic
case-analysis strategy and certain other strategies based on decision procedures
and rewriting in discharging these different cases. This same observation about
instruction state transitions is used in providing a proof of liveness too.

Related work: The problem of verifying the control logic of out-of-order
execution processors has received considerable attention in the last couple of
years using both theorem proving and model checking approaches. The following
yardsticks can be used to evaluate the various approaches: (1) the amount and
complexity of information required from the user, (2) the complexity of the
manual steps of the methodology (3) the level of automation with which the
obligations generated by the methodology can be verified.

Two theorem-proving based verifications of a similar design are described
in [JSD98] and [PA98]. The idea in [JSD98] is to first show that for every out-
of-order execution sequence that contains as many as n unretired instructions at
any time there exists an “equivalent” (max-1) execution containing at most 1 un-
retired instruction by constructing a suitable controller schedule. It then shows
the equivalence between a max-1 execution and the ISA level. The induction
required in the first step, which was not mechanized, is very complicated. The
verifier needs a much deeper insight into the control logic to exhibit a control
schedule and to discharge the generated obligations in the first step than that
is needed for constructing the completion functions and discharging the gener-
ated verification conditions. Whereas our verification makes no assumption on
the time taken by the execution units, the mechanized part of their first step
bounds the execution time. The proofs mix safety and liveness issues and the
verification of liveness issues is not addressed. And the complexity of the reach-
ability invariants needed in their approach and the effort required to discharge
them is not clear; few details are provided in the paper.

The verification in [PA98] is based on refinement by using “synchronization
on instruction retirement” to reduce the complexity of the refinement relations
to be proved. Although they do not need any flushing mechanism, there is no
systematic method to generate the invariants and obligations needed and hence
their mechanization is not as automatic as ours. And they do not address liveness
issues needed to complete the proof.

In [SH98], verification of a processor model with a reorder buffer, exceptions,
and speculative execution is carried out. Their approach relies on constructing
an explicit intermediate abstraction (called MAETT) and expressing invariant
properties over this. Our approach avoids the construction of an intermediate
abstraction and hence requires significantly less manual effort.

In [McM98], McMillan uses compositional model checking and aggressive
symmetry reductions to manually decompose the proof of a processor imple-
menting Tomasulo’s algorithm (without a reorder buffer) into smaller correct-
ness obligations via refinement maps. Setting up the refinement maps requires
information similar to that provided by the completion functions in addition to
some details of the design. An advantage of model checking is that it does not



50 R. Hosabettu, M. Srivas, and G. Gopalakrishnan

need any reachability invariants to check the refinement maps although the user
has to give hints about the environment assumptions to be used.

The rest of the paper is organized as follows: In Section 2, we describe our
processor model. Section 3 describes our correctness criteria and provides a brief
overview of our approach applied to examples mentioned earlier in [HSG98]. This
is followed by the proof of correctness in Section 4 and finally the conclusions.

2 Processor Model

Reorder Buffer

Buffer
Dispatch

Unit 1 Unit m
ExecutionExecution

Register
File

Table
Translation

Registerpc

Instruction 
Memory

rb_front rb_endno_op

New instruction

Scheduler
New_slot

Dispatch?

Execute?

Write_back?

Retire?

Dispatch_slot

Fig. 1. The block diagram model of our implementation

The implementation model of an out-of-order execution processor that we
consider in this paper is shown in Figure 1. A reorder buffer is used to main-
tain the program order of the instructions so that they can be committed in
that order to respect the ISA semantics. (rb end points to the earliest issued
instruction and rb front points to the first available free slot in the buffer).
A register translation table (RTT) is maintained to provide the identity of the
latest pending instruction writing a particular register. The model has a dis-
patch buffer (of size z; the dispatch buffer entries are also called “reservation
stations” in other literature) where instructions wait before being sent to the
execution units. There are m execution units represented by an uninterpreted
function (z and m are parameters to our implementation model). A scheduler
controls the movement of the instructions through the execution pipeline (such
as being dispatched, executed etc.) and its behavior is modeled by axioms (to al-
low us to concentrate on the processor “core”). Instructions are fetched from the
instruction memory (using a program counter which then is incremented); and
the implementation also takes a no op input, which suppresses an instruction
fetch when asserted.

An instruction is issued by allocating an entry for it at the front of the re-
order buffer and a free entry in the dispatch buffer (New slot). No instruction is
issued if the dispatch buffer is full or if no op is asserted. The RTT entry corre-
sponding to the destination of the instruction is updated to reflect the fact that



Proof of Correctness of a Processor with Reorder Buffer 51

the instruction being issued is the latest one to write that register. If the source
operand is not being written by a previously issued pending instruction (checked
using the RTT) then its value is obtained from the register file, otherwise the re-
order buffer index of the instruction providing the source operand is maintained
(in the dispatch buffer entry). Issued instructions wait in the dispatch buffer for
their source operand to become ready, monitoring the execution units if they
produce the value they are waiting for. An instruction can be dispatched when
its source operand is ready and a free execution unit is available. Dispatch? and
Dispatch slot outputs from the scheduler (each a m-wide vector) determine
whether or not to dispatch an instruction to a particular execution unit and the
dispatch buffer entry from where to dispatch. As soon as an instruction is dis-
patched, its dispatch buffer entry is freed. Dispatched instructions get executed
after a non-deterministic amount of time as determined by the scheduler output
Execute?. The result of executed instructions are written back to their respective
reorder buffer entries as well as forwarded to those instructions waiting for this
result (at a time determined by the Write back? output of the scheduler). If
the instruction at the end of the reorder buffer has written back its result, then
that instruction can be retired by copying the result value to the register file (at
a time determined by the Retire? output of the scheduler). Also, if the RTT
entry for the destination of the instruction being retired is pointing to the end,
then that entry is updated to reflect the fact that value of that register is in the
register file.

Our simplified model does not have memory or branch instructions and does
not handle exceptions. For simplicity, multiple instruction issue or retirement is
not allowed in a single cycle (but multiple instructions can be simultaneously
dispatched or written back). Also, the reorder buffer is implemented as an un-
bounded buffer as opposed to a circular queue.1

At the specification level, the state is represented by a register file, a program
counter and an instruction memory. Instructions are fetched from the instruc-
tion memory, executed, result written back to the register file and the program
counter incremented in one clock cycle.

3 Our Correctness Criteria

Intuitively, a pipelined processor is correct if the behavior of the processor start-
ing in a flushed state (i.e., no partially executed instructions), executing a pro-
gram and terminating in a flushed state is emulated by an ISA level specifica-
tion machine whose starting and terminating states are in direct correspondence
through projection. This criterion is shown in Figure 2(a) where I step is the
implementation transition function, A step is the specification transition func-
tion, and projection extracts those implementation state components visible
to the specification (i.e., observables). This criterion can be proved by an easy
induction on n once the commutative diagram condition shown in Figure 2(b)

1 Using a bounded reorder buffer will not complicate the methodology but makes
setting up the induction more involved.



52 R. Hosabettu, M. Srivas, and G. Gopalakrishnan

is proved on a single implementation machine transition (and a certain other
condition discussed in the next paragraph holds).

(a) (b)

projection

projection
flushed

impl_state

impl_state
flushed

m A_stepn I_step

impl_state
ABS

ABS

I_step A_step’

Fig. 2. Pipelined microprocessor correctness criteria

The criterion in Figure 2(b) states that if the implementation machine starts
in an arbitrary reachable state impl state and the specification machine starts
in a corresponding specification state (given by an abstraction function ABS),
then after executing a transition their new states correspond. Further ABS must
be chosen so that for all flushed states fs the projection condition ABS(fs) =
projection(fs) holds. The commutative diagram uses a modified transition
function A step’, which denotes zero or more applications of A step, because
an implementation transition from an arbitrary state might correspond to exe-
cuting in the specification machine zero instruction (e.g., if the implementation
machine stalls without fetching an instruction) or more than one instruction
(e.g., if multiple instructions are fetched in a cycle). The number of instructions
executed by the specification machine is provided by a user-defined synchroniza-
tion function on implementation states. One of the crucial proof obligations is to
show that this function does not always return zero (No indefinite stutter obliga-
tion). One also needs to prove that the implementation machine will eventually
reach a flushed state if no more instructions are inserted into the machine, to
make sure that the correctness criterion in Figure 2(a) is not vacuous (Even-
tual flush obligation). In addition, the user may need to discover invariants to
restrict the set of impl state considered in the proof of Figure 2(b) and prove
that it is closed under I step.

The completion functions approach suggests a way of constructing the ab-
straction function. We define a completion function for every unfinished instruc-
tion in the processor that directly specifies the intended effect of completing that
instruction. The abstraction function is defined as a composition of these com-
pletion functions in program order. In the examples in [HSG98], the program
order was determined from the structure of the pipeline. This construction of
the abstraction function decomposed the proof into proving a series of verifi-
cation conditions, each of which captured the effect of completing instructions
one at a time and that were reused in the proof of the subsequent verification



Proof of Correctness of a Processor with Reorder Buffer 53

conditions. Since there were a fixed (and small) number of instructions pending
in the pipeline, this scheme worked well and the proof was easily accomplished.

However, the number of instructions is unbounded in the present example
and the above scheme does not work. But we observe that a pending instruction
in the processor can only be in four possible states and provide a parameterized
completion function using this fact. The program order is easily determined since
the reorder buffer stores it. And we generate a single parameterized verification
condition which is proved by an induction on the number of pending instruc-
tions in the reorder buffer, where the induction hypothesis captures the effect of
completing all the earlier instructions.

4 Proof of Correctness

We introduce some notations which will be used throughout this section: q rep-
resents the implementation state, s the scheduler output, i the processor input,
rf(q) the register file contents in state q and I step(q,s,i) the “next state”
after an implementation transition. Also, we identify an instruction in the pro-
cessor by its reorder buffer entry index (i.e., instruction rbi means instruction
at index rbi). The complete PVS specifications and the proof scripts can be
found at [Hos99].

4.1 Specifying the completion functions

An instruction in the processor can be in one of the following four possible
states inside the processor—issued, dispatched, executed or written back. (A
retired instruction is no longer present in the processor). We formulate predicates
describing an instruction in each of these states and identify how to complete
such an instruction. To facilitate this formulation, we add two auxiliary variables
to a reorder buffer entry.2 The first one maintains the index of the dispatch
buffer entry allocated to the instruction while it is waiting to be dispatched. The
second one maintains the execution unit index where the instruction executes.
The definition of the completion function is shown in 1 .

1% state_I:impl. state type. rbindex:reorder buffer index type.

Complete_instr(q:state_I,rbi:rbindex):state_I =

IF written_back_predicate(q,rbi) THEN Action_written_back(q,rbi)

ELSIF executed_predicate(q,rbi) THEN Action_executed(q,rbi)

ELSIF dispatched_predicate(q,rbi) THEN Action_dispatched(q,rbi)

ELSIF issued_predicate(q,rbi) THEN Action_issued(q,rbi)

ELSE q ENDIF

In this implementation, when the instruction is in the written back state, the
result value as well as the destination register of the instruction are in its re-
order buffer entry. So Action written back above completes this instruction by
updating the register file by writing the result value to the destination register.
An instruction in the issued state is completed (Action issued) by reading the

2 The auxiliary variables are for specification purposes only. The third auxiliary vari-
able we needed maintained the identity of the source register for a given instruction.



54 R. Hosabettu, M. Srivas, and G. Gopalakrishnan

value of the source register from the register file, (this relies on the fact that
the completion functions will be composed in the program order in defining the
abstraction function; so q for a given instruction will be that state where the
instructions ahead of it are completed) computing the result value depending on
the instruction operation and then writing this value to the destination register.
Similarly Action executed and Action dispatched are specified. None of these
“actions” affect the program counter or the instruction memory. The completion
function definition is very compact, taking only 15 lines of PVS code.

4.2 Constructing the abstraction function

The abstraction function is constructed by flushing the reorder buffer, that is,
by completing all the unfinished instructions in the reorder buffer. We define a
recursive function Complete till to complete instructions till a given reorder
buffer index as shown in 2 and then construct the abstraction function by
instantiating this definition with the index of the latest instruction in the reorder
buffer (i.e., rb front(q)-1). The synchronization function returns zero if no op
input is asserted or there is no free dispatch buffer entry (hence no instruction
is issued) otherwise returns one.

2% If the given instr. index is less than the end pointer of the

% reorder buffer, do nothing. Else complete that instr. in a state

% where all the previous instructions are completed.

Complete_till(q:state_I,rbi:rbindex): RECURSIVE state_I =

IF rbi < rb_end(q) THEN q

ELSE Complete_instr(Complete_till(q,rbi-1),rbi) ENDIF

MEASURE rbi

% state_A is the specification state type.

ABS(q:state_I):state_A = projection(Complete_till(q,rb_front(q)-1))

4.3 Proof decomposition

We first prove a single parameterized verification condition that captures the
effect of completing all the instructions in the reorder buffer and then use it in the
proof of the commutative diagram. We decompose the proof of this verification
condition based on how an instruction makes a transition from its present state
to its next state.

Consider an arbitrary instruction rbi. We claim that the register file contents
will be the same whether the instructions till rbi are completed in state q or
in I step(q,s,i). This is shown as lemma same rf in 3 . We prove this by
induction on rbi.

3% The single parametrized verification condition.

% valid_rb_entry? predicate tests if rbi is within reorder buffer bounds.

same_rf: LEMMA

FORALL(rbi:rbindex): valid_rb_entry?(q,rbi) IMPLIES

rf(Complete_till(q,rbi)) = rf(Complete_till(I step(q,s,i),rbi))

We generate the different cases of the induction argument (as detailed later)
based on how an instruction makes a transition from its present state to its next



Proof of Correctness of a Processor with Reorder Buffer 55

state. This is shown in Figure 3 where we have identified the conditions under
which an instruction changes its state. For example, we identify the predicate
Dispatch trans?(q,s,i,rbi) that defines the condition under which the in-
struction rbi goes from issued state to dispatched state. In this implementation,
this predicate is true when there is an execution unit for which Dispatch? out-
put from the scheduler is true and the Dispatch slot output is equal to the
dispatch buffer entry index assigned to rbi. Similarly other “trans” predicates
are defined.

I D E W

NOT Dispatch_trans? NOT Execute_trans? NOT Writeback_trans? NOT Retire_trans?

Dispatch_trans? Execute_trans? Writeback_trans? Retire_trans?
ExitEntry

Fig. 3. The various states an instruction can be in and transitions between them, I:
issued, D: dispatched, E: executed, W: written back.

Having defined these predicates, we prove that they indeed cause instructions
to take the transitions shown. Consider a valid instruction rbi in the issued state,
that is, issued predicate(q,rbi) holds. If Dispatch trans?(q,s,i,rbi) is
true, then we show that after an implementation transition, rbi will be in the
dispatched state (i.e., dispatched predicate(I step(q,s,i),rbi) is true) and
remains valid. This is shown as a lemma in 4 . If Dispatch trans?(q,s,i,rbi)
is false, we show that rbi remains in the issued state in I step(q,s,i) and
remains valid. There are five other similar lemmas for the other transitions.
In the eighth case, that is, rbi in the written back state being retired, the
instruction will be invalid (out of reorder buffer bounds) in I step(q,s,i).

4issue_to_dispatch: LEMMA

FORALL(rbi:rbindex): (valid_rb_entry?(q,rbi) AND

issued_predicate(q,rbi) AND Dispatch_trans?(q,s,i,rbi)) IMPLIES

(dispatched_predicate(I step(q,s,i),rbi) AND

valid_rb_entry?(I step(q,s,i),rbi))

Now we come back to details of the induction argument for same rf lemma.
We do a case analysis on the possible state rbi is in and whether or not, it makes
a transition to its next state. Assume the instruction rbi is in the issued state.
We prove the induction claim in the two cases—Dispatch trans?(q,s,i,rbi)
is true or false—separately. (The proof obligation for the first case is shown in
5 .) We have similar proof obligations for rbi being in other states. In all, the

proof decomposes into eight very similar proof obligations.
5% One of the eight cases in the induction argument.

issue_to_dispatch_induction: LEMMA

FORALL(rbi:rbindex): (valid_rb_entry?(q,rbi) AND

issued_predicate(q,rbi) AND Dispatch_trans?(q,s,i,rbi) AND

Induction_hypothesis(q,s,i,rbi-1)) IMPLIES

rf(Complete_till(q,rbi)) = rf(Complete_till(I step(q,s,i),rbi))

We now sketch the proof of issue to dispatch induction lemma. (We re-
fer to the goal that we are proving—rf(...) = rf(...)—as the consequent.)
We expand the definition of the completion function corresponding to



56 R. Hosabettu, M. Srivas, and G. Gopalakrishnan

rbi on both sides of the consequent (after unrolling the recursive definition of
Complete till once). It follows from issue to dispatch lemma that since rbi
is in issued state in q, it is in dispatched state in I step(q,s,i). After rewrit-
ing and simplifications in PVS, the left hand side of the consequent simplifies
to rf(Action issued(Complete till(q,rbi-1),rbi)) 3 and the right hand
side to rf(Action dispatched(Complete till(I step(q,s,i),rbi-1),rbi))
(Illustrated in Figure 4). Proof now proceeds by expanding the definitions of
Action issued and Action dispatched, using the necessary invariants and sim-
plifying. We use many simple PVS strategies during the proof; in particular we
use (apply (then* (repeat (lift-if)) (bddsimp) (ground) (assert))) to
do the simplifications by automatic case-analysis. Observe that when we expand
Action dispatched, all implementation variables take their “next” values. Also
on the left hand side of the consequent, term rf(Complete till(q,rbi-1)) ap-
pears and on right hand side, term rf(Complete till(I step(q,s,i),rbi-1))
appears and these are same by the induction hypothesis.

=

D

E

EI

I W D

I W

W

==
rf rf rf

Action_issued
Action_issued

Action_dispatched

Arbitrary
state:q

Next state:
next(q,s,i)

rbi

Action_issued
Action_dispatched

Action_executed

Fig. 4. The reorder buffer and the state of the instructions in it before and after an
implementation transition (one possible configuration, empty slot means no instruction
present). Completing a particular instruction reduces to performing the action shown.

We now instantiate the lemma same rf above with the index of the latest
instruction in the processor (i.e., rb front(q)-1) and use it in the proof of the
commutative diagram for register file. Assume that no instruction is issued in the
current cycle, that is, the synchronization function returns zero. Then rb front
remains unchanged after an implementation transition and the proof is trivial. If
indeed a new instruction is issued, then it will be at index rb front(q) and will
be in issued state, so proving the commutative diagram reduces to establishing
that completing the new instruction (as per Action issued) has the same effect
3 Observe that issued predicate(Complete till(q,rbi-1),rbi) if and only if
issued predicate(q,rbi). This is because the completion functions affect only the
register file (observables in general) and issued predicate depends only on the
non-observables.



Proof of Correctness of a Processor with Reorder Buffer 57

on the register file as executing a specification machine transition. This proof is
similar to the proof of the lemma described above. The commutative diagram
proofs for pc and the instruction memory are trivial and are omitted.
Correctness of feedback logic: The proof presented above requires that the
correctness of the feedback logic be captured in the form of a lemma as shown in
6 . This lemma states that if the source operand of an instruction is ready, then

its value is equal to the value read from the register file after all the instruc-
tions ahead of it are completed. When an instruction rbi in the issued state
is being dispatched, it uses src value(q,rbi) as the source operand but the
Action issued that is used to complete it reads the source value from the reg-
ister file (see the description of Action issued in Section 4.1) and this lemma
establishes that these two values are the same. The proof of this lemma relies
on an invariant described later.

6% select reads from the register file. src_ready?, src_value and

% src_reg have their obvious definitions.

Feedback_logic_correct: LEMMA

FORALL(rbi:rbindex): (valid_rb_entry?(q,rbi) AND

issued_predicate(q,rbi) AND src_ready?(q,rbi)) IMPLIES

src_value(q,rbi) = select(rf(Complete_till(q,rbi-1)),src_reg(q,rbi))

Invariants needed: We now provide a classification of the invariants needed
by our approach and describe some of them.

• Exhaustiveness and Exclusiveness: Having identified the set of possible states
an instruction can be in, we require one to prove that an arbitrary instruction
is always in one of these states (exhaustiveness) and never simultaneously in
two states (exclusiveness).

• Instruction state properties: Whenever an instruction is in a particular state,
it satisfies some properties and these are established as invariants. One ex-
ample is: if an instruction is in issued state, then the dispatch buffer entry
assigned to it is valid and has the reorder buffer index of the instruction
stored in it.

• Feedback logic invariant: Let rbi be an arbitrary instruction and let ptr
be an instruction that is producing its source value. Then this invariant
essentially states that all the instructions “in between” rbi and ptr have
the destination different from the source of rbi, that ptr is in the written
back state if and only if the source value of rbi is ready and that the source
value of rbi (when ready) is equal to the result computed by ptr.

• Example specific invariants: Other invariants needed include characterization
about the reorder buffer bounds and the register translation table.

PVS proof details: The proofs of all the induction obligations follow the pat-
tern outlined in the sketch of issue to dispatch induction lemma. The proofs
of certain rewrite rules needed in the methodology [HSG98] and other simple
obligations can be accomplished fully automatically. But there is no uniform
strategy for proving the invariants. The manual effort involved one week of dis-
cussion and planning and then 12 person days of “first time” effort to construct
the proofs. The proofs got subsequently cleaned up and evolved as we wrote
the paper. The proofs rerun in about 1050 seconds on a 167 MHz Ultra Sparc
machine.



58 R. Hosabettu, M. Srivas, and G. Gopalakrishnan

4.4 Other obligations - liveness properties
We provide a sketch of the proof that the processor eventually gets flushed if
no more instructions are inserted into it. The proof that the synchronization
function eventually returns a nonzero value is similar. The proofs involve a set
of obligations on the implementation machine, a set of fairness assumptions on
the inputs to the implementation and a high level argument using these to prove
the two liveness properties. All the obligations on the implementation machine
are proved in PVS. We now provide a brief sketch (due to space constraints) of
the top level argument which is being formalized in PVS.
Proof sketch: The processor is flushed if rb front(q) = rb end(q).

• First observation: “any instruction in the dispatched state eventually goes
to the executed state and then eventually goes to the written back state. It
then remains in the written back state until retired”. Consider an instruction
rbi in the dispatched state. If Execute trans?(q,s,i,rbi) is true, then
rbi goes to the executed state in I step(q,s,i), otherwise it remains in
the dispatched state (refer to Figure 3). We show that when rbi is in the
dispatched state, the scheduler inputs that determine when an instruction
should be executed are enabled and these remain enabled as long as rbi is in
the dispatched state. By a fairness assumption on the scheduler, it eventually
decides to execute the instruction (i.e., Execute trans?(q,s,i,rbi)will be
true) and the instruction moves to the executed state. By a similar argument,
it moves to the written back state and then remains in that state until retired.

• Second observation: “every busy execution unit eventually becomes free and
stays free until an instruction is dispatched on it”.

• Third observation: “an instruction in the issued state will eventually go to
the dispatched state”. Here, the proof is by induction since an arbitrary in-
struction rbi could be waiting for a previously issued instruction to produce
its source value. This step also relies on the earlier two observations.

• Final observation: “the processor eventually gets flushed”. We know that
every instruction eventually goes to the written back state—third and first
observations. Also the instructions in the written back state are eventually
retired by a fairness assumption on the scheduler. Since rb front(q) re-
mains unchanged when no new instructions are inserted into the processor
and rb end(q) is incremented when an instruction is retired, eventually the
processor gets flushed.

5 Conclusions

We have demonstrated in this paper that the completion functions approach is
well-suited for the verification of out-of-order execution processors with a reorder
buffer. We have recently extended our approach to be applicable in a scenario
where instructions “commit” out-of-order and illustrated it on an example pro-
cessor implementing Tomasulo’s algorithm without a reorder buffer [HGS99].
The proof was constructed in seven person days, reusing lot of the ideas and
the machinery developed in this paper. We are currently working on verifying
a more detailed out-of-order execution processor involving branches, exceptions



Proof of Correctness of a Processor with Reorder Buffer 59

and speculative execution. Our approach has been used to handle processors with
branch and memory operations [HSG98] and we are investigating how those ideas
carry over to this example. We are also developing a PVS theory of the “eventu-
ally” temporal operator to mechanize the liveness proofs presented in this paper.
Finally, we are investigating how the ideas behind the completion functions ap-
proach can be adapted to verify certain “transaction processing systems”.
Acknowledgments: We would like to thank Abdel Mokkedem and John Rushby
for their feedbacks on the earlier drafts of this paper.
References

BDL96. Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combi-
nations of theories with equality. In Mandayam Srivas and Albert Camilleri,
editors, Formal Methods in Computer-Aided Design, FMCAD ’96, volume
1166 of LNCS, pages 187–201. Springer-Verlag, November 1996. 47

CRSS94. D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem
proving for hardware verification. In Ramayya Kumar and Thomas Kropf,
editors, Theorem Provers in Circuit Design, TPCD ’94, volume 910 of
LNCS, pages 203–222. Springer-Verlag, September 1994. 47

GW98. Ganesh Gopalakrishnan and Phillip Windley, editors. Formal Methods in
Computer-Aided Design, FMCAD ’98, volume 1522 of LNCS, Palo Alto,
CA, USA, November 1998. Springer-Verlag. 59, 59

HGS99. Ravi Hosabettu, Ganesh Gopalakrishnan, and Mandayam Srivas. A proof
of correctness of a processor implementing Tomasulo’s algorithm without
a reorder buffer. 1999. Submitted for publication. 58

Hos99. Ravi Hosabettu. PVS specification and proofs of all the examples
verified with the completion functions approach, 1999. Available at
http://www.cs.utah.edu/~hosabett/pvs/processor.html. 53

HP90. John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, San Mateo, CA, 1990. 48

HSG98. Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. Decom-
posing the proof of correctness of pipelined microprocessors. In Hu and
Vardi [HV98], pages 122–134. 47, 48, 48, 50, 52, 57, 59

HV98. Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Verification,
CAV ’98, volume 1427 of LNCS, Vancouver, BC, Canada, June/July 1998.
Springer-Verlag. 59, 59, 59

JSD98. Robert Jones, Jens Skakkebaek, and David Dill. Reducing manual abstrac-
tion in formal verification of out-of-order execution. In Gopalakrishnan and
Windley [GW98], pages 2–17. 49, 49

McM98. Ken McMillan. Verification of an implementation of Tomasulo’s algorithm by
compositional model checking. In Hu and Vardi [HV98], pages 110–121. 49

ORSvH95. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.
Formal verification for fault-tolerant architectures: Prolegomena to the de-
sign of PVS. IEEE Transactions on Software Engineering, 21(2):107–125,
February 1995. 48

PA98. Amir Pnueli and Tamarah Arons. Verification of data-insensitive cir-
cuits: An in-order-retirement case study. In Gopalakrishnan and Windley
[GW98], pages 351–368. 49, 49

SH98. J. Sawada and W. A. Hunt, Jr. Processor verification with precise excep-
tions and speculative execution. In Hu and Vardi [HV98], pages 135–146.
49


	Introduction
	Processor Model
	Our Correctness Criteria
	Proof of Correctness
	Specifying the completion functions
	Constructing the abstraction function
	Proof decomposition
	Other obligations - liveness properties

	Conclusions

