
Stepwise CTL Model Checking of
State/Event Systems

Jørn Lind-Nielsen and Henrik Reif Andersen

Department of Information Technology, Technical University of Denmark
e-mail: {jl,hra}@it.dtu.dk

Abstract. In this paper we present an efficient technique for symbolic
model checking of any CTL formula with respect to a state/event system.
Such a system is a concurrent version of a Mealy machine and is used
to describe embedded reactive systems. The technique uses compositio-
nality to find increasingly better upper and lower bounds of the solution
to a CTL formula until an exact answer is found. Experiments show
this approach to succeed on examples larger than the standard back-
wards traversal can handle, and even in many cases where both methods
succeed it is shown to be faster.

1 Introduction

The range of systems that can be formally verified has improved drastically
since the introduction of symbolic model checking [7,8] with the use of reduced
and ordered binary decision diagrams (ROBDD) in the eighties [3,2]. Since then
many people have improved on the basic algorithms by introducing more efficient
techniques, more compact representations and new methods for simplifying the
models.

One way to do simplifications on the model is by abstraction, where sub-
components of the system considered are removed to yield a smaller and simpler
model on which the verification can be done. The technique described here is
based on one such incremental abstraction of the system, where first an initially
small subset of the system is used as an abstraction. If this set is not enough to
prove or disprove the requirements then the set is incrementally extended until
a point where it is possible to give an exact positive or negative answer.

The experimental results are promising and show that the iterative approach
can be used with success on larger systems than the usual backwards traversal
can handle, and it is still faster even when the usual method is feasible.

This work is a direct extension of the work presented at TACAS’98 [11]. Now
the technique covers full CTL model checking and calculates simultaneously both
an upper and a lower approximation to the solution of the CTL formula.

We apply this technique to the state/event model used in the commercial
tool visualSTATEtm [13]. This model is a concurrent version of Mealy machines,
that is, it consists of a fixed number of concurrent finite state machines that
have pairs of input events and output actions associated with the transitions of

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 316–327, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Stepwise CTL Model Checking of State/Event Systems 317

the machines. The model is synchronous: each input event is reacted upon by
all machines in lock-step; the total output is the multi-set union of the output
actions of the individual machines. Further synchronization between the machi-
nes is achieved by associating a guard with the transitions. Guards are Boolean
combinations of conditions on the local states of the other machines.

Both the state space and the transition relation of the state/event system
is represented using ROBDDs with a partitioned transition relation, exactly as
described in [11].

1.1 Related Work

Another similar technique for exploiting the structure of the system to be verified
is described in [9]. This technique also computes increasingly better approxima-
tions to the exact solution of a CTL formula, but it differs from our approach
in several ways. Instead of reusing the previously found states as shown in sec-
tion 6, this technique has to recalculate the approximation from scratch each
time a new component is added to the system. It may also have to include all
components in the system, whereas we restrict our inclusion to only the depen-
dency closure (cone of influence) of the formula used. Finally the technique is
restricted to ACTL(ECTL) formulae, whereas our technique can be used with
any CTL formula.

Pardo and Hachtel describes an abstraction technique in [14] where the ap-
proximations are done using ROBDD reduction techniques. This technique is
based on the µ-calculus (and so includes CTL). It utilizes the structure of a
given formula to find appropriate abstractions, whereas our technique depends
on the structure of the model.

The technique for showing language containment of L-processes described
in [1], also maintains a subset of processes used in the verification and analyzes
error traces from the verifier to find new processes in order to extend this set.
Although the overall goal of finding the result through an abstract, simplified
model is the same as our, the properties verified are different and the L-processes
have properties quite different from ours.

Abstraction as in [5] is similar to ours when the full dependency closure
is included from the beginning, and thus it discards the idea of an iterative
approach.

The idea of abstraction and compositionality is explored in more detail in
David Longs’ thesis [12].

2 State/Event Systems

A state/event system S consists of n machines M1, . . . , Mn, an alphabet E
of input events and an alphabet O of outputs. Each machine Mi is a triple
(Si, s0

i , Ti) of local states Si, an initial state s0
i ∈ Si, and a set of transitions Ti.

The set of transitions is a relation

Ti ⊆ Si × E × Gi × M(O) × Si,

318 J. Lind-Nielsen and H.R. Andersen

e2

e1
p1p0

M1

l2 = q1

e2

e1
q1q0

M2

p0, q0 p1, q0

p1, q1p0, q1

e2

e1

e2

e1

Fig. 1. Two state/event machines and the corresponding parallel combination. The
small arrows indicate the initial states.

where M(O) is a multi-set of outputs, and Gi is the set of guards not containing
references to machine i. These guards are generated from the following simple
grammar for Boolean expressions:

g ::= lj = p | ¬g | g ∧ g | tt .

The atomic predicate lj = p is read as “machine j is at local state p” and
tt denotes a true guard. The global state set S of the state/event system is the
product of the local state sets: S = S1 ×S2 ×· · ·×Sn. The guards are interpreted
straightforwardly over S as given by a satisfaction relation s |= g. The expression
lj = p holds for any s ∈ S exactly when the j’th component of s is p, i.e., sj = p.
The interpretation of the other cases is as usual. The transition relation is total,
by assuming that the system stays in its current state when no transitions are
enabled for a given input event.

Considering a global state s, all guards in the transition relation can be
evaluated. We define a version of the transition relation in which the guards
have been evaluated. This relation is denoted s

e o−−→i s′
i expressing that machine

i when receiving input event e makes a transition from si to s′
i and generates

output o (here si is the i’th component of s). Formally,

s
e o−−→i s′

i ⇔def ∃g. (si, e, g, o, s′
i) ∈ Ti and s |= g .

The transition relation of the whole system is defined as:

s
e o−−→ s′ ⇔def ∀i. s

e oi−−→i s′
i where s′ = (s′

1, . . . , s′
n) and o = o1] . . .] on

Where] denotes multi set union. The example in figure 1 shows a system with
two state/event machines and the corresponding parallel combination. Machine
M2 starts in state q0 and goes to state q1 on the receipt of event e1. Machine M1
can not move on e1 because of the guard. After this M2 may go back on event
e2 or M1 may enter state p1 on event e1. At last both M1 and M2 can return to
their initial states on event e2.

3 CTL Specifications

CTL [6] is a temporal logic used to specify formal requirements to finite state
machines like the state/event systems presented here. Such specifications consist

Stepwise CTL Model Checking of State/Event Systems 319

of the Boolean constant true tt, conjunction ∧, negation ¬, state predicates and
temporal operators. We use a state predicate variant where the location of a
machine is stated: li = s meaning that machine i should be in state s, similar to
the guards.

The temporal operators are the next operator X(φ), the future operator F(φ),
the globally operator G(φ) and the until operator (φ1U φ2). Each of these ope-
rators must be directly preceded with a path quantifier to state whether the
formula should hold for all possible execution paths of the system (A) or only
for at least one execution path (E).

The solution to a CTL formula φ is the set of states [[φ]] that satisfy the
formula φ. A state/event system S is said to satisfy the property φ, S |= φ if the
initial state s0 is in the solution to φ, s0 ∈ [[φ]].

To describe the exact semantics of the operators we use an additional function
[[EX]] that operates on a set of states P . This function returns all the states that
may reach at least one of the states in P in exactly one step and is defined as
[[EX]] P = {s ∈ S | ∃e, o, s′. s

e o−−→ s′ ∧ s′ ∈ P}. The operators are then defined,
for a State/Event system with the transition relation s

e o−−→ s′, as:

[[tt]] = S [[li = s]] = {s′ ∈ S | s′
i = s}

[[¬φ]] = S\[[φ]] [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]
[[EX φ]] = [[EX]][[φ]] [[EG φ]] = νU ⊆ S. [[φ]] ∩ [[EX]]U

[[E(φ1 U φ2)]] = µU ⊆ S. [[φ2]] ∪ ([[φ1]] ∩ [[EX]]U)

Here we use νx.f(x) and µx.f(x) as the maximal and minimal fixed points of a
monotone function f on a complete lattice, as given by Tarski’s fixed point theo-
rem [16]. The rest of the operators can be defined using the above operators [8].

4 Bounded CTL Solutions

In this section we introduce the bounded CTL solution. A bounded CTL solution
consists of two sets of states, namely L[[φ]]I and U [[φ]]I which are lower- and upper
approximations to the solution of the formula. The idea is to test for inclusion
of the initial state in L[[φ]]I and exclusion from U [[φ]]I . In the first case we know
that the formula holds and in the second that it does not.

To describe bounded CTL solutions we need to formalize the concept of
dependency between machines in a state/event system. We choose the notion
that one machine Mi depends on another machine Mj if there exists at least one
guard in Mi that has a syntactic reference to a state in Mj . These dependencies
form a directed graph, which we call the dependency graph. In this graph each
vertex represent a machine and an edge from a vertex i to a vertex j represents
a dependency in machine Mi on a state in machine Mj . Note that we can ignore
any dependencies introduced by the global synchronization of the input events.

A formula φ depends on a machine Mi if φ contains a sub-formula of the
form li = s, and the sort of φ is all the machines φ depends on. The dependency
closure of a machine Mi is all the machines that are reachable from Mi in the

320 J. Lind-Nielsen and H.R. Andersen

dependency graph, including Mi. This is also sometimes refered to as the cone
of influence. The dependency closure of a formula φ is the union of all the
dependency closures of the machines in the sort of φ.

Assume (for the time being) that we have an efficient way to calculate a
bounded solution to a CTL formula φ using only the machines in an index set
I. The result should be two sets of states L[[φ]]I and U [[φ]]I with the following
properties:

L[[φ]]I ⊆ [[φ]] ⊆ U [[φ]]I . (1)
L[[φ]]I1 ⊆ L[[φ]]I2 if I1 ⊆ I2. (2)
U [[φ]]I1 ⊇ U [[φ]]I2 if I1 ⊆ I2. (3)
L[[φ]]I = [[φ]] = U [[φ]]I if I is dependency closed. (4)

Both L[[φ]]I and U [[φ]]I are only defined for sets I that include the sort of φ.
Property (1) means that L[[φ]]I is a lower approximation of [[φ]] and U [[φ]]I is an
upper approximation of [[φ]]. Property (2) and (3) mean that the approximations
converge monotonically towards the correct solution of φ and property (4) states
that we get the correct solution to φ when I contains all the machines found in
the dependency closure of φ.

In section 5 we will show an algorithm that efficiently computes the bounded
solution to any CTL formulae. With this, it is possible to make a serious impro-
vement to the usual algorithm for finding CTL solutions. The algorithm utilizes
the fact that we may be able to prove or disprove the property φ using only a
(hopefully) small subset of all the machines in the system.

Our algorithm for verifying a CTL property is as follows

Algorithm CTL verifier
Input: A CTL formula φ and a state/event system S and it’s depen-

dency graph G
Output: true if s0 ∈ [[φ]] and false otherwise
1. I = sort(φ); result = unknown
2. repeat
3. calculate L[[φ]]I and U [[φ]]I
4. if s0 ∈ L[[φ]]I then result = true
5. if s0 6∈ U [[φ]]I then result = false
6. I = I ∪ extend(I, G)
7. until result 6= unknown

First we set I to be the sort of φ and use this to calculate L[[φ]]I and U [[φ]]I . If
s0 ∈ L[[φ]]I , then we know, from property (2), that φ holds for the system, and if
s0 6∈ U [[φ]]I then we know, from property (3), that φ does not hold. If neither is
the case then we add more machines to I and try again. This continues until φ
is either proved or disproved. The algorithm is guaranteed to stop with either a
false or a true result when I is the dependency closure of φ, in which case we have
L[[φ]]I = U [[φ]]I , from property (4), and thus either s0 ∈ L[[φ]]I or s0 6∈ U [[φ]]I .

Stepwise CTL Model Checking of State/Event Systems 321

The function extend selects a new set of machines to be included in I. We
have chosen to include new machines in a breadth-first manner, so that extend
returns all machines reachable in G from I in one step.

5 Bounded CTL Calculation

In section 4 we showed how to verify a CTL formula φ, by using only a minimal
set of machines I from a state/event system and using an efficient algorithm for
the calculation of lower and upper approximations of [[φ]]. In this section we will
show one such algorithm, and for this we need some more definitions. Relating
to an index set I of machines, two states s, s′ ∈ S are I-equivalent, written as
s =I s′, if for all i ∈ I, si = s′

i. A set of states P is I-sorted if the following
predicate is true

I-sorted(P) ⇔def ∀s, s′ ∈ S. (s ∈ P ∧ s =I s′) ⇒ s′ ∈ P.

This means that if a state s is in P then all other states s′, which are I-equivalent
to s, must also be in the set P . This is equivalent to say that a set P is I-sorted
if it is independent of the machines in the complement I = {1, . . . , n} \ I.

Consider as an example two machines with the sets of states S0 = {p0, p1},
S1 = {q0, q1, q2} and a sort I = {0}. Now the two pairs of states (p0, q1)
and (p0, q2) are I-equivalent because their first states match. The set P =
{(p0, q0), (p0, q1), (p0, q2)} is I-sorted because it is independent of the states in
S1.

The bounded calculation of the constants tt and li = s, negation and con-
junction is straight forward as shown in figure 2. The results are clearly I-sorted
and satisfies the properties in section 4, if the sub-expressions φ, φ1 and φ2 does
so.

Next State Operator: To show how to find L[[EX φ]]I and U [[EX φ]]I we
introduce two new operators: [[E∀X]]I and [[E∃X]]I . The lower approximation
[[E∀X]]I P is a conservative approximation to [[EX]] that only includes states that
are guaranteed to reach P in one step, regardless of the states of the machines
in I. The upper approximation [[E∃X]]I P is an optimistic approximation that
includes all states that just might reach P . These two operators are defined as:

[[E∀X]]I P = {s ∈ S | ∀s′ ∈ S. s =I s′ ⇒ s′ ∈ [[EX]]I P}
[[E∃X]]I P = {s ∈ S | ∃s′ ∈ S. s =I s′ ∧ s′ ∈ [[EX]]I P}

where the results of both operators are I-sorted when [[EX]]I P is I-sorted, as a
result of the extra quantifiers. The calculation of [[EX]]I P can be done efficiently
when P is I-sorted, using a partitioned transition relation [4]. The definition of
[[EX]]I is

[[EX]]I P = {s ∈ S | ∃e, o, s′. s
e o−−→ s′ ∧ s′ ∈ P}.

322 J. Lind-Nielsen and H.R. Andersen

This seems to depend on all n machines in S, but as a result of P being I-sorted,
it can be reduced to

[[EX]]I P = {s ∈ S | ∃e, o. ∃s′
I
. ∃s′

I . s
e o−−→I s′

I ∧ (s′
1, . . . , s′

N) ∈ P}

where ∃s′
I . s

e o−−→I s′
I means

∧
i∈I ∃s′

i. s
e o−−→i s′

i. This clearly depends on only
the transition relations for the machines in I.

Now we can define L[[EX φ]]I and U [[EX φ]]I as

L[[EX φ]]I = [[E∀X]]I L[[φ]]I
U [[EX φ]]I = [[E∃X]]I U [[φ]]I .

Both L[[EX φ]]I and U [[EX φ]]I are clearly I-sorted because both [[E∀X]]I and
[[E∃X]]I are so, and if φ satisfies the properties in section 4 then so does L[[EX φ]]I
and U [[EX φ]]I .

Globally and Until operators: The semantics for EG φ is defined in the
same manner as EX φ, with an added fixed point calculation:

L[[EG φ]]I = νU. L[[φ]]I ∩ [[E∀X]]IU
U [[EG φ]]I = νU. U [[φ]]I ∩ [[E∃X]]IU.

The result is also I-sorted and satisfies the properties in section 4 if φ does. For
E(φ1 U φ2) we take

L[[E(φ1 U φ2)]]I = µU. L[[φ2]]I ∪ (L[[φ1]]I ∩ [[E∀X]]I U)
U [[E(φ1 U φ2)]]I = µU. U [[φ2]]I ∪ (U [[φ1]]I ∩ [[E∃X]]I U).

6 Reusing Bounded CTL Calculations

One problem with the operators L[[φ]]I and U [[φ]]I from section 5, when used
in the bounded CTL verifier, is that all previously found states have to be
rediscovered whenever a new set of machines I is introduced. In this section
we will show how to avoid this problem for the EG operator and sketch how to
do it for the E(φ1U φ2) operator. The final algorithm is shown in figure 2.

First we show how the calculation of U [[EG φ]]I2 can be improved by reusing
the previous calculation of U [[EG φ]]I1 when I1 ⊆ I2. From the definition of
U [[EG φ]]I we get the following:

U [[EG φ]]I2 ⊆ U [[EG φ]]I1 ⊆ U [[φ]]I1 and
U [[EG φ]]I2 ⊆ U [[φ]]I2 ⊆ U [[φ]]I1

and from this we know that

U [[EG φ]]I2 ⊆ U [[EG φ]]I1 ∩ U [[φ]]I2 .

We also know, from Tarski’s fixed point theorem, that νf ⊆ x ⇒ νf =
⋂
i f

i(x),
which means the maximum fixed point calculation of f can be started from any

Stepwise CTL Model Checking of State/Event Systems 323

B[[tt]]Ik = (S , S)

B[[li = s]]Ik = let L = {s′ ∈ S | s′
i = s}

U = {s′ ∈ S | s′
i = s}

in (L, U)

B[[¬φ]]Ik = let (L, U) = B[[φ]]Ik
in (S \ U , S \ L)

B[[φ1 ∧ φ2]]Ik = let (L1, U1) = B[[φ1]]Ik
(L2, U2) = B[[φ2]]Ik

in (L1 ∩ L2 , U1 ∩ U2)

B[[EX φ]]Ik = let (L, U) = B[[φ]]Ik
in ([[E∀X]]Ik L , [[E∃X]]Ik U)

B[[EG φ]]Ik = let (L1, U1) = B[[φ]]Ik
(, U2) = B[[EG φ]]Ik−1

U = νV. (U1 ∩ U2) ∩ [[E∃X]]IkV (a)
L = νV. (L1 ∩ U) ∩ [[E∀X]]IkV (b)

in (L , U)

B[[E (φ1U φ2)]]Ik = let (L1, U1) = B[[φ1]]Ik
(L2, U2) = B[[φ2]]Ik
(L3,) = B[[E (φ1U φ2)]]Ik−1

L = µV. (L2 ∪ L3) ∪ (L1 ∩ [[E∃X]]IkV) (c)
U = µV. (U2 ∪ L) ∪ (U1 ∩ [[E∃X]]IkV) (d)

in (L , U)

Fig. 2. Full description of how the lower and upper approximations (L[[φ]]I , U [[φ]]I) =
B[[φ]]I are calculated for a state/event system S. The sorts are Ik for the current sort
and Ik−1 for the previous sort. Initially we have B[[φ]]I0 = (∅, S) and I0 is the sort of
the expression. We use L for a lower approximation and U for an upper approximation.
The lines (a)–(d) show where we reuse previously found states.

x as long as x includes the maximal fixed point of f . Here we use f i(x) as the
i’th application of f on itself. From this it is clear that the fixed point calculation
of U [[EG φ]]I2 can be started from the intersection of the two sets U [[EG φ]]I1
and U [[φ]]I2 . Normally this fixed point calculation would have been started from
U [[φ]]I2 , but in this way we reuse the calculation of U [[EG φ]]I1 to speed up the
calculation of U [[EG φ]]I2 .

The same idea can be used for the lower approximation L[[EG φ]]I2 , where
the fixed point iteration can be started from the intersection of L[[φ]]I2 and
U [[EG φ]]I2 , so that we reuse the calculation of the upper approximation. The
algorithm in figure 2 utilizes this in line (a) for the upper approximation and in
line (b) for the lower approximation.

Exactly the same can be done for L[[E(φ1U φ2)]]I and U [[E(φ1U φ2)]]I , except
that the previous lower approximations should be used to restart the calculation,
as shown in line c and d in figure 2.

324 J. Lind-Nielsen and H.R. Andersen

System Machines Local states Declared Reachable
intervm 6 182 106 15144
vcr 7 46 105 1279
dkvm 9 55 106 377568
hi-fi 9 59 107 1416384
flow 10 232 105 17040
motor 12 41 106 34560
avs 12 66 107 1438416
video 13 74 108 1219440
atc 14 194 1010 6399552
oil 24 96 1013 237230192
train1 373 931 10136 −
train2 1421 3204 10476 −

Table 1. The state/event systems used in the experiments. The last two columns
show the size of the declared and reachable state space. The size of the declared state
space is the product of the number of local states of each machine. The reachable state
space is only known for those systems where a forward iteration of the state space can
complete.

7 Examples

The technique presented here has been tested on ten industrial state/event sy-
stems and two systems constructed by students in a course on embedded systems.
The examples are all constructed using visualSTATEtm [13] and cover a large
range of different applications. The examples are hi-fi, avs, atc, flow, mo-
tor, intervm, dkvm, oil, train1 and train2 which are industrial examples
and vcr and video which are constructed by students. In table 1 we have listed
some characteristics for these examples.

The experiments were carried out on a pentium 166MHz PC with 32Mb of
memory, running Linux. For the ROBDD encoding we used BuDDy [10], a locally
produced ROBDD package which is comparable in efficiency to other state of
the art ROBDD packages, such as CUDD [15].

For each example we tested three different sets of CTL formulae. One set
of formulae for detecting non-determinism in the system, one set for detecting
local deadlocks and one for finding homestates.

Non-determinism occurs when two transitions leading out of a state depends
on the same event and has guards that are enabled at the same time in a reach-
able global state. That is, the intersection of the two guards g = g1 ∧ g2 should
be non-empty and reachable. Every combination of guards were then checked
for reachability using the formula EF g.

Locally deadlocked states are local states from which there can never be
enabled any outgoing transition, no matter how the rest of the system behaves.
So for each local state s in the system we check for absence of local deadlocks
using the formula AG (s ⇒ EF ¬s)

Stepwise CTL Model Checking of State/Event Systems 325

Homestates are states that can be reached from any point in the reachable
state space. So for each local state s of the system we get the formula AG (EF s).

We have unfortunately only access to the examples in an anonymous form,
so we have no way of generating more specialized properties.

In table 2 we have listed the time it takes to complete checking a whole set of
CTL formulae using the standard backwards traversal with either all machines
in the system or only the machines in the dependency closure, and the time used
with stepwise traversal. For the largest system it is only the stepwise traversal
that succeeds and with the exception of one system (atc) the stepwise traversal
is also faster or comparable in speed to the standard backwards traversal.

We have also shown the number of tests that can be verified using fewer
machines than in the dependency closure, how much of the dependency closure
there was needed to do it, how many tests that had to include the full depen-
dency closure and the average size of that dependency closure. From this we
can see that in the train2 example we can verify most of the formulae using
only a small fraction (3 − 15%) of the dependency closure and when the full
dependency closure has to be included then the average size of it is only as little
as 1 (although we know that some tests includes more than 200 machines in the
dependency closure). This indicates that train2 is a loosely coupled system i.e.
a system with few dependencies among the state machines.

We also see that atc and oil are more strongly coupled, as the average
dependency closure is larger than for the other examples. This property is also
mirrored in the time needed to verify the two examples.

8 Conclusion

We have extended the successful model checking technique presented in [11]
with the ability to do full CTL model checking and not only reachability and
deadlock detection. We have also added the calculation of both upper and lower
approximations to the result and in this way making it possible to stop earlier
in the verification process with either a negative or a positive answer.

Test examples have shown the stepwise traversal of the state space to be
more efficient, than the normal backwards traversal, in terms of both time and
space for a range of industrial examples. We have also shown that the stepwise
technique may succeed in cases where the standard techniques fails.

The examples also indicates that the stepwise traversal works best on loosely
coupled systems, that is; systems with few dependencies among the involved
state machines.

Acknowledgement

Thanks to the colleagues of the VVS project for numerous fruitful discussions
on the verification of state/event models.

326 J. Lind-Nielsen and H.R. Andersen

Test Data Run times Dependencies
Example Test Num Full DC. Step Red. Part. DC. Full DC.

Ok Err Ok Err Size
intervm D 182 6.7 6.2 6.8 150 41% 0 0% 32 0 4.5
(6) H 182 50.3 47.3 40.6 +19% 96 57% 0 0% 86 0 4.8
vcr C 1 0.3 0.2 0.2 0 0% 0 0% 1 0 6.0
(7) D 46 0.6 0.4 0.8 2 40% 0 0% 44 0 5.4

H 46 2.2 1.3 1.5 2 40% 0 0% 44 0 5.4
dkvm D 55 0.5 0.4 0.4 46 20% 0 0% 9 0 1.0
(9) H 55 8.7 8.7 6.7 27 45% 1 11% 27 0 1.7
hi-fi D 59 0.8 0.7 0.5 56 18% 0 0% 3 0 3.0
(9) H 59 3.5 3.1 2.3 52 56% 0 0% 7 0 5.3
flow C 2 0.6 0.6 0.6 2 75% 0 0% 0 0 -
(10) D 232 1.4 1.1 1.1 224 49% 0 0% 8 0 1.0

H 232 3.6 2.4 2.1 223 49% 0 0% 9 0 1.2
motor D 41 0.9 0.9 0.6 32 21% 0 0% 9 0 1.0
(12) H 41 1.2 1.2 0.7 32 24% 0 0% 9 0 1.0
avs C 5 1.2 1.2 1.1 4 27% 0 0% 1 0 3.0
(12) D 66 2.0 1.7 1.5 57 34% 0 0% 8 1 1.3

H 66 6.0 5.2 4.0 42 64% 3 76% 20 1 3.2
video D 74 0.9 0.7 0.6 70 30% 0 0% 4 0 2.0
(13) H 74 2.6 1.3 1.3 57 54% 0 0% 17 0 4.3
atc C 122 153.5 140.4 138.6 +10% 11 92% 0 0% 111 0 12.0
(14) D 194 119.0 110.2 135.3 -14% 3 8% 63 75% 6 122 11.6

H 194 495.3 461.2 443.7 +10% 3 8% 63 75% 6 122 11.6
oil C 114 242.8 177.4 163.8 +33% 2 25% 29 25% 83 0 12.0
(24) D 96 15.0 9.6 7.3 +51% 58 19% 6 17% 26 6 6.6

H 96 35.5 23.8 15.5 +56% 22 22% 33 9% 31 10 7.8
train1 C 99 76.1 3.7 3.6 +95% 82 57% 0 0% 17 0 4.5
(373) D 931 449.7 5.0 5.3 +99% 388 41% 9 58% 502 32 1.0

H 931 478.8 4.9 4.9 +99% 354 41% 42 50% 500 35 1.0
train2 C 1245 - - 265.4 +100% 912 8% 30 6% 303 0 1.1
(1421) D 3204 - - 199.0 +100% 1569 3% 16 8% 1583 36 1.0

H 3204 - - 197.1 +100% 1521 3% 58 15% 1585 40 1.0

Table 2. Test examples for runtime and dependency analysis. All times are in seconds.
The tests are C-Conflicts, D-Deadlock and H-Homestates. The Num column shows the
number of tests, the Full column is the time used with all machines included from
the beginning (and still using a partitioned transition relation), the DC. column is
the time used with only the dependency closure included from the beginning and the
Step column is the time used with stepwise traversal. A dash means timeout after
one hour or spaceout around 20Mb, all other tests were done with less than 250k
ROBDD nodes in memory at one time. The Red column is the reduction in runtime
= (Full − Step)/Full. Some systems have no conflicts and we have left out the data
for these. The Part.DC. column shows the number of tests that could be verified using
fewer state machines than in the full dependency closure, whether the result was true
(Ok) or false (Err) and how much of the dependency closure was included. The Full
DC. column shows the number of tests that needed the full dependency closure to be
proven true (Ok) or false (Err) and the average size of the dependency closure (Size).

Stepwise CTL Model Checking of State/Event Systems 327

References

1. F. Balarin and A.L. Sangiovanni-Vincentelli. An iterative approach to language
containment. In C. Courcoubetis, editor, CAV’93. 5th International Conference
on Computer Aided Verification, volume 697 of LNCS, pages 29–40, Berlin, 1993.
Springer-Verlag.

2. Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

3. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary decision
diagrams. ACM Computing Surveys, 24(3):293–318, September 1992.

4. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with parti-
tioned transition relations. In A. Halaas and P. B. Denyer, editors, Proc. 1991 Int.
Conf. on VLSI, August 1991.

5. William Chan, Richard J. Anderson, Paul Beame, and David Notkin. Improving
efficiency of symbolic model checking for state-based system requirements. In
Proceedings of the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA-98), volume 23,2 of ACM Software Engineering Notes, pages
102–112, New York, March2–5 1998. ACM Press.

6. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, April 1986.

7. J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill. Symbolic
model checking for sequential circuit verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(4):401–424, April 1994.

8. J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Sequential Circuit Veri-
fication Using Symbolic Model Checking. In Proceedings of the 27th ACM/IEEE
Design Automation Conference, pages 46–51, Los Alamitos, CA, June 1990.
ACM/IEEE, IEEE Society Press.

9. W. Lee, A. Pardo, J.-Y. Jang, G. Hachtel, and F. Somenzi. Tearing based au-
tomatic abstraction for CTL model checking. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pages 76–81, Washington,
November10–14 1996. IEEE Computer Society Press.

10. Jørn Lind-Nielsen. BuDDy - A Binary Decision Diagram Package. Technical
University of Denmark, 1997. http://britta.it.dtu.dk/˜jl/buddy.

11. Jørn Lind-Nielsen, Henrik Reif Andersen, Gerd Behrmann, Henrik Hulgaard, K̊are
Kristoffersen, and Kim G. Larsen. Verification of Large State/Event Systems using
Compositionality and Dependency Analysis. In TACAS’98 Tools and Algorithms
for the Construction and Analysis of Systems. Lecture Notes in Computer Science,
1998.

12. David E. Long. Model Checking, Abstraction and Compositional Verification. PhD
thesis, Carnegie Mellon, 1993.

13. Beologicr A/S. visualSTATEtm 3.0 User’s Guide, 1996.
14. Abelardo Pardo and Gary D. Hachtel. Automatic abstraction techniques for pro-

positional µ-calculus model checking. In Computer Aided Verification, CAV’97.
Springer Verlag, 1997.

15. Fabio Somenzi. CUDD: CU Decision Diagram Package. University of Colorado at
Boulder, 1997.

16. A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific
J.Math., 5:285–309, 1955.

	Introduction
	Related Work

	State/Event Systems
	CTL Specifications
	Bounded CTL Solutions
	Bounded CTL Calculation
	Reusing Bounded CTL Calculations
	Examples
	Conclusion

