
A Complete Finite Prefix for Process Algebra

Rom Langerak and Ed Brinksma

University of Twente, Department of Computer Science, PO Box 217, 7500 AE
Enschede, The Netherlands, {langerak,brinksma}@cs.utwente.nl

Abstract. In this paper we show how to use McMillan’s complete finite
prefix approach for process algebra. We present the model of component
event structures as a semantics for process algebra, and show how to
construct a complete finite prefix for this model. We present a simple
adequate order (using an order on process algebra expressions) as an
optimization to McMillan’s original algorithm.

1 Introduction

A major problem in the verification of distributed systems is the state explosion
problem. This problem results when the modelling a system consisting of parallel
subsystems causes the model to have a number of states that is of the same order
of magnitude as the product of the states of the subsystems.
In process algebra (e.g. [Hoa85,BB87,BW90] state explosion may occur when
using the standard interleaving semantics. In order to deal with this problem
one line of research has been to look for alternative semantic models based on
partial orders, of which event structures [Win89,BC94,Lan92] are a prominent
example. Event structures can be used as a semantics for process algebra and are
easily extended with timing, probabilistic and stochastic information [BKLL98,
KLL+98]. A problem though with event structures is that recursion leads to
infinite structures, whereas for techniques like model checking it is important to
have finite representations of infinite behaviour.
An interesting direction of research has been initiated by McMillan, originally for
finite state Petri nets [McM92,McM95a,McM95b]. He has presented an algorithm
for constructing an initial part of the occurrence net [NPW81,Eng91] of a Petri
net which contains all information on reachable states and transitions. This so-
called complete finite prefix can be used as the basis for model checking [Esp94,
Gra97,Wal98].
In this paper we explore how this McMillan complete finite prefix approach
can be used in giving an event structure semantics to process algebra. Using a
translation of process algebra into Petri nets (as has been done in [Old91]) would
pose severe complications when calculating a prefix. The translation there makes
use of a trick for dealing with the choice operator; this has as a side effect that
not all reachable markings correspond in a clear way to reachable process algebra
expressions. This would greatly complicate the computation of a finite prefix.
Therefore we directly translate a process algebra expression into a model similar
to an occurrence net in which choice can be modelled in a natural way.

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 184–195, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Complete Finite Prefix for Process Algebra 185

The paper is organized as follows. In section 2 we present a process algebra
and a model called component event structures which is to process algebra what
occurrence nets are to Petri nets. In section 3 we use this model as a semantics
for process algebra and in section 4 we show how to construct a complete finite
prefix for this model. In section 5 we present an optimization to the McMillan
algorithm which has the same advantages as a proposal in [ERV97] but profits
from the process algebra setting. Section 6 is for conclusions.
An extended version of this paper (containing all proofs) can be found in [LB99].

2 Process Algebra and Component Event Structures

This paper uses a simple process algebra with a parallel operator similar to the
one from CSP [Hoa85] or LOTOS [BB87]. The syntax is given by the following
grammar:

B ::= stop a; B B + B B |A B P

The inaction process stop cannot do anything. Action prefix is denoted by a; B
where a ∈ Act, with Act a set of actions (a distinction between observable and
invisible actions plays no role in this paper). The choice between B1 and B2 is
denoted by B1 + B2. Parallel composition is denoted by B1 |A B2 where A is
the set of synchronizing actions; B1 |∅ B2 is abbreviated to B1|B2. Finally, P
denotes process instantiation where a behaviour expression is assumed to be in
the context of a set of process definitions of the form P := B with B possibly
containing process instantiations of P .

A process algebra expression can be decomposed into so-called components,
which are action prefix expressions together with information about the synchro-
nization context. This approach has been inspired by the Petri net semantics for
process algebra presented in [Old91].

Definition 1. A component s is defined by
S ::= stop a; B S |A |AS with B a process algebra expression; the uni-
verse of all components is denoted by Comp.

Convention: let S = {S1, . . . , Sn} be a set of components, then we use the
notation S |A= {S1 |A, . . . , Sn |A}, and similarly for |AS.

Components can be in a choice relation which will be used to model the effect
of the process algebra choice operator.

Definition 2. A state is a tuple (S, R) with S a set of components, and R an
irreflexive and symmetric relation between components (so R ⊂ S × S) called
the choice relation.

Convention: let R = {(S1, S′
1), . . . , (Sn, S′

n)} be a choice relation, then we use
the notation R|A= {(S1 |A, S′

1 |A), . . . , (Sn |A, S′
n |A)} and similarly for |AR.

Components (and the choice relation between them) can be obtained by decom-
posing a process algebra expression.

186 R. Langerak and E. Brinksma

Definition 3. The decomposition function dec, which maps a process algebra
expression on a state, is recursively defined by dec(B) = (S(B), R(B)) with

dec(stop) = ({stop}, ∅)
dec(ax; B) = ({ax; B}, ∅)
dec(B |A B′) = (S(B) |A ∪ |AS(B′), R(B) |A ∪ |AR(B′))
dec(B + B′) = (S(B) ∪ S(B′), R(B) ∪ R(B′) ∪ (S(B) × S(B′)))
dec(PΦ) = dec(Φ(B)) if P := B

In order to avoid that the decomposition of a process instantiation leads to an
infinite chain of substitutions, we have to adopt the constraint that all process
definitions are guarded (see e.g. [BW90]).

We define an event structure model which is very similar to a type of Petri nets
called occurrence nets [NPW81,Eng91]; the main difference is that there are no
tokens, and conditions can be in a binary choice relation.

Definition 4. A condition event structure is a 4-tuple (D, E,], ≺) with:
- D a set of conditions
- E a set of events
-] ⊂ D × D, the choice relation (symmetric and irreflexive)
- ≺ ⊆ (D × E) ∪ (E × D) the flow relation

We adopt some Petri net terminology: a marking is a set of conditions. A node is
either a condition or an event. The preset of a node x, denoted by •x, is defined
by •x = {y ∈ D ∪ E | y ≺ x}, and the postset x• by x• = {y ∈ D ∪ E | x ≺ y}.
The initial marking M0 is defined by M0 = {d ∈ D | •d = ∅}.

Definition 5. The transitive and reflexive closure of ≺ is denoted by ≤.
The conflict relation on nodes, denoted by #, is defined by: let x1 and x2 be
two different nodes, then x1 # x2 iff there are two nodes y1 and y2, such that
y1 ≤ x1 and y2 ≤ x2, with

- either y1 and y2 are two conditions in the choice relation, i.e. y1] y2
- or y1 and y2 are two events with •y1 ∩ •y2 6= ∅

Definition 6. A condition event structure is well-formed if the following pro-
perties hold:
1. ≤ is anti-symmetric, i.e. x ≤ x′ ∧ x′ ≤ x ⇒ x = x′

2. finite precedence, i.e. for each node x the set {y ∈ E ∪ D | y ≤ x} is finite
3. no self-conflict, i.e. for each node x: ¬(x # x)
4. for each event e: •e 6= ∅ and e• 6= ∅
5. for each condition d: |•d| ≤ 1
6. for all conditions d1 and d2: d1] d2 ⇒ •d1 = •d2

Let d be a condition, then we define](d), the set of conditions in choice with d,
by](d) = {d′ | d] d′}. Similarly for a set of conditions D,](D) = {d′ | ∃d ∈ D :
d] d′}.

A Complete Finite Prefix for Process Algebra 187

Definition 7. Suppose we have a condition event structure, with e an event,
and M and M ′ markings, then we say there is an event transition M

e−→M ′ iff
•e ⊆ M and M ′ = (M ∪ e•) \ (•e∪](•e)) (note there are no loops in well-formed
condition event structures).
An event sequence is a sequence of events e1 . . . en such that there are markings
M1, . . . , Mn with M0

e1−−→ M1−→ . . .
en−−→ Mn. We call C = {e1, . . . , en} a

configuration of the condition event structure.

Definition 8. Two nodes x and x′ are said to be independent, notation x � x′,
iff ¬(x ≤ x′) ∧ ¬(x′ ≤ x) ∧ ¬(x # x′).

Definition 9. A cut is a marking M such that for each pair of different con-
ditions d and d′ in M holds: d � d′ or d] d′, and that is maximal (w.r.t. set
inclusion).

Theorem 1. Let C be a configuration and M a cut. Define
Cut(C) = (M0 ∪ C•) \ (•C ∪](•C)) and Conf (M) = {e ∈ E |∃d ∈ M : e ≤ d}.
Then: Cut(C) is a cut, Conf (M) is a configuration, Conf (Cut(C)) = C, and
Cut(Conf (M)) = M .

Definition 10. A condition event structure E = (D, E,], ≺) with mappings
lC : D → Comp (mapping conditions to components)
lE : E → Act (mapping events to actions)

is called a component event structure.

We will often be sloppy and denote a condition by its component label (but note
that different conditions may be labelled with the same component).

3 Component Event Structures as Semantics for Process
Algebra

In this section we define a component event structure as a semantics for a process
algebra expression with the help of a derivation system for transitions (again
inspired by [Old91]). This derivation system will allow derivations of transitions
of the form S a−→ (S ′, R′), where S and S ′ are sets of components, and R′ is a
choice relation over components S ′. The rules are given in table 1.

Definition 11. Let E be a component event structure. The possible extensions
of E , denoted by PE(E), is the set of all pairs (D, S a−→ (S ′, R′)) such that:
- D is a set of pairwise independent conditions of E , with lD(D) = S
- S a−→ (S ′, R′) can be derived from the rules in table 1
- E does not already contain an event e with lE(e) = a and •e = D
For component event structures it is easy to check that if two conditions have
the same component label they are in conflict; this means that a set of pair-
wise independent conditions is labelled by a set of components with the same
cardinality.

188 R. Langerak and E. Brinksma

Table 1. Derivation system for component transitions

{ax;B} a−→ dec(B)

S a−→ (S ′, R′)
S |A a−→ (S ′ |A, R′ |A)

(a 6∈ A)
S a−→ (S ′, R′)

|AS a−→ (|AS ′, |AR′)
(a 6∈ A)

S1
a−→ (S ′1, R′1) S2

a−→ (S ′2, R′2)

S1 |A ∪ |AS2
a−→ (S ′1 |A ∪ |AS ′2, R′1 |A ∪ |AR′2)

(a ∈ A)

We can add a possible extension (D, S a−→ (S ′, R′)) ∈ PE(E) to E by adding
a new event e labelled a and new conditions D′ with labels from S ′, such that
•e = D and e• = D′, and a choice relation over the conditions D′ induced by
the relation R′ over S ′.

Algorithm 1. Let B be a process algebra expression, with dec(B) = (S0,R0).
The unfolding of B, denoted Unf (B), is generated by the following algorithm:

Let E be the component event structure with conditions M0,
lD(M0) = S0, choice relation R0, and no events;
pe := PE(E);

while pe 6= ∅
do select a pair (D, S a−→ (S ′, R′)) from pe;

add it to E ;
pe := PE(E)

od;
Unf (B) = E ut

The algorithm only terminates for expressions with finite behaviour. For ex-
pressions with infinite behaviour, the above algorithm produces arbitrarily large
unfolding approximations (under the fairness assumption that each pair in pe
is eventually added to E). In that case we define Unf (B) as the limit of these
approximations. It is easy to prove that Unf (B) is a well-formed component
event structure, i.e. the properties of definition 6 hold.
Notation: let R ⊆ S × S, and S ′ ⊆ S, then RdS ′ = R ∩ (S ′ × S ′). Note that if]
is the choice relation of Unf (B), and dec(B) = (M, R), then by the definition
of unfolding R =]dM .
In [Lan92] it is shown how by slightly adapting the standard operational seman-
tics it is possible to derive event sequences. In [LB99] this idea has been adapted
to component event structures and the following result has been proven there.

Theorem 2. Let B be a process algebra expression, Unf (B) its unfolding and
M0 the initial marking of Unf (B). Let σ be an event trace. Then:

B
σ−−→ B′ ⇔ M0

σ−−→ M ′ with dec(B′) = (M ′,]dM ′)

A Complete Finite Prefix for Process Algebra 189

In the last section we saw that there is a one-to-one correspondence between
cuts and configurations via the mappings Cut and Conf. In [Lan92] it has been
proven (Theorem 7.4.1) that there is also a one-to-one correspondence between
configurations and reachable states (where each reachable state is a process al-
gebra expression). It follows that there is a one-to-one correspondence between
cuts and states of some unfolding Unf (B); therefore given a cut M ′, there is a
process algebra expression B′ such that dec(B′) = (M ′,]dM ′). So given an un-
folding Unf (B), we define a mapping St from cuts to process algebra expressions
by St(M ′) = B′ where B′ is the reachable state corresponding to Conf (M ′), so
dec(B′) = (M ′,]dM ′). If C is a configuration, we will also write St(C) for
St(Cut(C)).

4 A Complete Finite Prefix for Component Event Structures

In the last section we have defined the component event structure Unf (B) for a
process algebra expression B. This representation may be infinite for recursive
processes; we would like to have a finite representation of such behaviour.
Therefore in this section we will look at McMillan’s so-called complete finite
prefix of an unfolding, which is an initial part of the unfolding that is complete
in the following sense:
For each cut M of Unf (B) there is a cut M ′ of the finite prefix such that:

– St(M) = St(M ′), so the prefix contains all reachable states

– if M
e−→ in Unf (B) with lE(e) = a then M ′ e′−−→ and lE(e′) = a, so the prefix

contains all transitions

The complete finite prefix and McMillan’s algorithm for computing it have ori-
ginally been defined in the context of Petri nets (see [McM95b,Esp94,ERV97]).
However, the approach (using the concepts of event, configuration and cut) can
be transferred completely to the setting of component event structures, as we
show here. For details and proofs we refer to [McM95b,Esp94,ERV97].

The complete finite prefix approach only works for finite state processes, i.e.
processes with a finite number of reachable states. It is in general undecidable
whether a process algebra expression is finite state. However, there exist syntac-
tical restrictions that are sufficient to guarantee that an expression is finite state
(see [FGM92] for discussion and overview). In the following we simply assume
that all process algebra expressions are finite state.

We first need some preliminary definitions where we closely follow [ERV97].
Let E be a set of events and let C be a configuration of a component event
structure. If C ∪ E is a configuration, and C ∩ E = ∅, then we denote C ∪ E by
C ⊕ E, the extension of C by E.
Let M be a marking of a (well-formed) component event structure. Define the
successor nodes of M by N = {x ∈ E ∪ D | ∃y ∈ M : y ≤ x}. We define
⇑ M = (D ∩ N, E ∩ N,]dN, ≺ dN). It is easy to check that ⇑ M is a
well-formed component event structure.

190 R. Langerak and E. Brinksma

It is easy to check that for a configuration C the unfolding Unf (St(C)) is
isomorphic to ⇑ Cut(C). So if C1 and C2 are two configurations such that
St(C1) = St(C2), then ⇑ Cut(C1) and ⇑ Cut(C2) are isomorphic. So there
is an isomorphism IC2

C1
from ⇑ Cut(C1) to ⇑ Cut(C2); this induces a mapping

from the extensions of C1 onto the extensions of C2, so C1 ⊕ E is mapped onto
C2 ⊕ IC2

C1
(E).

The following definition presents an important technical aspect of the calculation
of a complete finite prefix.

Definition 12. A (strict) partial order < on the finite configurations of an
unfolding is an adequate order iff:
1. < is well-founded, i.e. there is no infinite sequence C1 = C2 = . . .
2. < refines ⊂, i.e. C1 ⊂ C2 implies C1 < C2
3. < is preserved by finite extensions, which means that if C1 < C2 and
St(C1) = St(C2), then C1 ⊕ E < C2 ⊕ IC2

C1
(E).

The original algorithm by McMillan uses as adequate order the order <m defined
by C1 <m C2 ⇔ |C1| < |C2|. This order is intuitively easy to understand but
can be very inefficient. An improvement has been given in [ERV97]; in the next
section we present an adequate order that is very suitable for a process algebra
prefix.

Let e be an event of a component event structure, then the local configuration
[e] is defined by [e] = {e′ ∈ E|e′ ≤ e} (it is very easy to prove that [e] is indeed
a configuration).

Definition 13. Let Unf (B) be an unfolding and let < be the selected adequate
partial order on the configurations of Unf (B). An event e is a cut-off event if
Unf (B) has a local configuration [e′] such that St([e]) = St([e′]) and [e′] < [e]

Definition 14. Let X be the set of nodes of Unf (B) such that x ∈ X iff no
event causally preceding x is a cut-off event. Then the finite prefix Fp(B) of
Unf (B) = (D, E,],≺) is defined by Fp(B) = (D ∩ X, E ∩ X,]dX, ≺ dX)

So Fp(B) contains all local configurations, and stops at cut-off events since their
local configuration has been encountered already. The nice result (originally
proven by McMillan for Petri nets [McM95b]) is that this is enough to guarantee
completeness, so the prefix contains also all non-local configurations; Fp(B) is
finite and complete.

Conceptually a finite prefix is obtained by taking an unfolding and cutting away
all successor nodes of cut-off events. This is not a practical recipe; the next
algorithm shows how to obtain directly the complete finite prefix, without first
creating the (possibly infinite) unfolding. First we redefine the set of possible
extensions, to make sure that no successors of cut-off events are created.

Definition 15. Let E be a labelled component event structure with a set of cut-
off events cut. The possible non-cut-off extensions of E , denoted by PE′(E , cut),
is the set of all pairs (D, S a−→ (S ′, R′)) such that (D, S a−→ (S ′, R′)) ∈ PE(E)
and ∀d ∈ D : •d 6∈ cut

A Complete Finite Prefix for Process Algebra 191

Algorithm 2. Let B be a process algebra expression, with dec(B) = (S0,R0).
Then the finite prefix Fp(B), is generated by the following algorithm:

Let E be the component event structure with components M0,
lD(M0) = S0, choice relation R0, and no events;
cut := ∅;
pe := PE′(E , cut);

while pe 6= ∅
do select a pair (D, S a−→ (S ′, R′)) from pe such that adding it

leads to a new e with [e] minimal w.r.t. <;
add it to E ;
if e is a cut-of event then cut := cut ∪ {e};
pe := PE′(E , cut)

od;
Fp(B) = E ut

It is easy to check that Fp(B) as generated by algorithm 2 contains all nodes
of Unf (B) that are not causally preceded by a cut-off event, so it is indeed the
finite prefix defined by definition 14.

Example 1. Consider B = P |b Q with P = a; b; P and Q = c; b; (e; P + d; Q).
Then the unfolding is given in figure 1; cut-off events are indicated by a box.

a c

b

a e

a

a; b;P |b |b c; b; (e;P + d;Q)

b;P |b |b b; (e;P + d;Q)

a; b;P |b |b e;P |b d;Q

|b c; b; (e;P + d;Q)b;P |b |b a; b;P

|b b;P

a; b;P |b |b a; b;P

b

d

Fig. 1. Example of a complete finite prefix

192 R. Langerak and E. Brinksma

5 An Adequate Order for Process Algebra

As already noted in [ERV97], the original McMillan ordering <m defined by
C1 <m C2 iff |C1| < |C2| can be quite inefficient. Consider e.g. the expression
a; P + b; P . Now although both a and b lead to the same state, it is not possible
to make one of them a cut-off event as [a] and [b] have the same number of
events. This makes it possible to find examples in which the finite prefix has a
size that is exponential in the number of reachable states of the process algebra
expression.
In [ERV97] an adequate order has been defined that does not suffer from this
problem. This order is total on all configurations, so whenever two local con-
figurations have the same state this leads to a cut-off. This is an important
improvement on the original McMillan order, but an adequate order does not
need to be total on all configurations, in order to have this property. The order
in [ERV97] is rather complicated as it requires operations on configurations like
subtracting the set of minimal events of a configuration (in fact this order is
defined on suffixes of configurations).

In this section we define an adequate order which differs from <m only for con-
figurations having the same state and the same number of events. This order is
easy to implement as it is defined syntactically as a kind of lexicographical order
on process algebra expressions. The order orders each pair of configurations with
the same state, so local configurations having the same state always lead to a
cut-off.

We assume that initially process instantiations in an expressions are indexed
with simple process indices (denoted by Greek letters) and actions are indexed
by action indices. We furthermore assume an operation Φ(B) that takes an in-
dexed expression B and prefixes all indices with Φ. We change the operational
rule for process instantiation into (Φ(B) a−→ B′, P := B) ⇒ PΦ

a−→ B′). This me-
ans that the process index of an instantiation PΦ has the effect of prefixing all
indices in the defining expression of P with Φ, leading to process indices that
are strings of simple process indices; for details we refer to [LB99].

We assume there is an order on simple process indices; this order is arbitrary but
we have (for technical reasons) the constraint that the order should respect the
left to right order of the indices in the indexed process algebra expression that
we are interested in (so if α is ordered before β, it will occur as a process index
to the left of the occurrence of β). Remember that a proces index is a string of
simple process indices; so the order on simple process indices induces a lexico-
graphical order on process indices. This lexicographical order is not well-founded
but can be used to define a well-founded order on process indices:

Definition 16. Let Φ1 and Φ2 be two process indices. We define Φ1 � Φ2 iff
either |Φ1| < |Φ2|, or |Φ1| = |Φ2| and Φ1 is lexicographically smaller than Φ2.

With this order we can define an order on process algebra expressions that are
equal modulo process identifiers; B1 and B2 are equal modulo process indentifier,
notation B1 =p B2, iff after removing all process indices they are equal.

A Complete Finite Prefix for Process Algebra 193

A component is of the form stopΦ or aΦi; B, with Φ a process index and i a
simple action index, possibly decorated with strings of parallel operators to the
left and right. In these cases we call Φ the process index of the component.

Definition 17. Let B1 and B2 be two different process algebra expressions with
B1 =p B2. Then to each component of B1 corresponds a component of B2 that
is equal modulo process identifiers. We define B1 � B2 iff for the leftmost first
two corresponding components of B1 respectively B2 that have different process
indices Φ1 respectively Φ2 holds: Φ1 � Φ2.

Example 2. Suppose α comes before β in the order on simple process indices,
then αα1; Pαφ |G bα2; Qαψ � αα1; Pαφ |G bβ2; Qβψ and
stopα |G a1; Pφ � stopβ |G a1; Pφ

With the help of � we define the state order <s on the configurations of Unf (B):

Definition 18. Let C1 and C2 be two configurations of Unf (B). Then C1 <s C2
iff |C1| < |C2| or: |C1| = |C2|, St(C1) =p St(C2) and St(C1) � St(C2).

Theorem 3. <s is an adequate order on the configurations of Unf (B).

Just like the adequate order presented in [ERV97] (denoted ≺r there) our order
has the property that for each pair of events e and e′ with St([e]) = St([e′]):
either [e] <s [e′] or [e′] <s [e]. This has two desirable consequences:

– the number of non-cut-off events in a complete finite prefix cannot exceed
the number of local states (i.e. states of local configurations)

– since events are generated in accordance with <s in algorithm 2, we need for
each newly added event e only to check if there is already an event e′ with
St([e]) = St([e′]) in order to check that e is a cut-off event.

We think that in comparison with the adequate order of [ERV97] our order
is easier to understand as it is based on a syntactical lexicographical order on
process algebra expressions. For the same reason we expect it to be easy to
implement. This will be checked in an implementation of our algorithm that is
currently under construction.

6 Conclusions

We have presented component event structures which are similar to both prime
event structures and occurrence nets. The advantage of component event struc-
tures over Petri nets is that the choice operator can be modelled naturally with
the choice relation. When using Petri nets to model process algebra (as has been
done in [Old91]) extra places have to be introduced, using a technical trick, to
model the effect of choice. This trick leads to markings that do not directly cor-
respond to process algebra expressions (only after a kind of garbage collection)
which would greatly complicate the construction of a complete finite prefix. Our
component event structures do not suffer from these complications. In addition,

194 R. Langerak and E. Brinksma

they are very similar to prime event structures which can be obtained by just
deleting the components.

We have shown how McMillans approach can be used for obtaining a finite com-
plete prefix. We have presented an optimization that has the same effect as the
one in [ERV97] but profits from the process algebra context in such a way that
it is less complex.

Our current research is concentrating on how the complete prefix can be trans-
formed into a kind of graph grammar that produces the infinite behavior. This
graph grammar representation can then be used for simulation and model check-
ing. Furthermore, using timed, probabilistic and stochastic extensions similar to
[KLL+98,BKLL98] we will investigate how the graph grammar can be used for
performance modelling. We are also working on an implementation which we
hope to finish soon.

Acknowledgements

Many thanks to Joost-Pieter Katoen, Diego Latella and Mieke Massink for ex-
tensive discussions and many suggestions for improvement.

References

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO specification lan-
guage LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987.

[BC94] G. Boudol and I. Castellani. Flow models of distributed computations: three
equivalent semantics for CCS. Information and Computation, 114:247–314,
1994.

[BKLL98] E. Brinksma, J.-P. Katoen, D. Latella, and R. Langerak. Partial-order
models for quantitative extensions of LOTOS. Computer Networks and
ISDN Systems, 30(9/10):925–950, 1998.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[Eng91] J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–
591, 1991.

[ERV97] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s un-
folding algorithm. In Proc. TACAS ’96, volume 1055 of Lecture Notes in
Computer Science, pages 87–106. Springer-Verlag, 1997.

[Esp94] J. Esparza. Model checking using net unfoldings. Science of Computer
Programming, 23(2):151–195, 1994. Also appeared in Proc. TAPSOFT ’93,
volume 668 of Lecture Notes in Computer Science, pages 613–628. Springer-
Verlag, 1993.

[FGM92] A. Fantechi, S. Gnesi, and G. Mazzarini. The expressive power of LOTOS
behaviour expressions. Nota Interna I.E.I. B4-43, I.E.I (Pisa), October 1992.

[Gra97] B. Graves. Computing reachability properties hidden in finite net unfol-
dings. Lecture Notes in Computer Science, 1055:327–342, 1997.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

A Complete Finite Prefix for Process Algebra 195

[KLL+98] J.-P. Katoen, D. Latella, R. Langerak, E. Brinksma, and T. Bolognesi. A
consistent causality-based view on a timed process algebra including urgent
interactions. Journal on Formal Methods for System Design, 12(2):189–216,
1998.

[Lan92] R. Langerak. Transformations and Semantics for LOTOS. PhD thesis,
University of Twente, 1992.

[LB99] R. Langerak and E. Brinksma. A complete finite prefix for process algebra.
Technical report, University of Twente, January 1999.

[McM92] K. McMillan. Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In Proc. CAV ’92, Fourth Workshop
on Computer-Aided Verification, volume 663 of Lecture Notes in Computer
Science, pages 164–174, 1992.

[McM95a] K. McMillan. Trace theoretic verification of asynchronous circuits using
unfoldings. In Proc. CAV ’95, 7th International Conference on Computer-
Aided Verification, volume 939 of Lecture Notes in Computer Science, pages
180–195. Springer-Verlag, 1995.

[McM95b] K.L. McMillan. A technique of state space search based on unfolding. For-
mal Methods in System Design, 6:45 – 65, 1995.

[NPW81] M. Nielsen, G.D. Plotkin, and G. Winskel. Petri nets, event structures and
domains, part 1. Theoretical Computer Science, 13(1):85–108, 1981.

[Old91] E.-R. Olderog. Nets, terms and formulas. Cambridge University Press,
1991.

[Wal98] F. Wallner. Model-checking LTL using net unfoldings. In Proc. CAV
’98, 10th International Conference on Computer-Aided Verification, volume
1427 of Lecture Notes in Computer Science, pages 207–218, Vancouver,
Canada, 1998.

[Win89] G. Winskel. An introduction to event structures. In J.W. de Bakker, W.-
P. de Roever, and G. Rozenberg, editors, Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency, Lecture Notes in
Computer Science, pages 364–397. Springer-Verlag, 1989.

	Introduction
	Process Algebra and Component Event Structures
	Component Event Structures as Semantics for Process Algebra
	A Complete Finite Prefix for Component Event Structures
	An Adequate Order for Process Algebra
	Conclusions

