Handling Global Conditions in Parameterized
System Verification

Parosh Aziz Abdulla!, Ahmed Bouajjani?, Bengt Jonsson', and
Marcus Nilsson!

! Dept. of Computer Systems, P.O. Box 325, S-751 05 Uppsala, Sweden
{parosh, bengt, marcusn}@docs.uu.se
2 VERIMAG, Centre Equation, 2 av. de Vignate, 38610 Gieres, France
Ahmed.Bouajjani@imag.fr

Abstract. We consider symbolic verification for a class of parameterized
systems, where a system consists of a linear array of processes, and where
an action of a process may in general be guarded by both local conditions
restricting the state of the process about to perform the action, and
global conditions defining the context in which the action is enabled.
Such actions are present, e.g., in idealized versions of mutual exclusion
protocols, such as the bakery and ticket algorithms by Lamport, Burn’s
protocol, Dijkstra’s algorithm, and Szymanski’s algorithm. The presence
of both local and global conditions makes the parameterized versions of
these protocols infeasible to analyze fully automatically, using existing
model checking methods for parameterized systems. In all these methods
the actions are guarded only by local conditions involving the states of
a finite set of processes.

We perform verification using a standard symbolic reachability algorithm
enhanced by an operation to accelerate the search of the state space.
The acceleration operation computes the effect of an arbitrary number
of applications of an action, rather than a single application. This is
crucial for convergence of the analysis e.g. when applying the algorithm
to the above protocols.

We illustrate the use of our method through an application to Szym-
anski’s algorithm.

1 Introduction

Much attention has recently been paid to extending the applicability of mo-
del checking to infinite-state systems. One reason why a program may have an
infinite state space is that it operates on unbounded data structures. Exam-
ples of such systems include timed automata [ACD90], data-independent sy-
stems [Wol86], relational automata [Cer94], pushdown processes [BS95], and
lossy channel systems [AJ96]. Another reason is that the program has an infinite
control part. This is the case e.g. in Petri nets [Esp95,Jan90], and parameterized
systems, in which the topology of the system is parameterized by the number of
processes inside the system. In verification of parameterized systems, we are often

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 134-145, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Handling Global Conditions in Parameterized System Verification 135

interested in proving the correctness of the system regardless of the number of
processes. Verification algorithms for systems consisting of an unbounded num-
ber of similar or identical finite-state processes include [GS92,AJ98 KMM™97],
and (using a manually supplied induction hypothesis) [CGJ95,KM89,WL89].

In this paper we consider algorithmic verification of a class of parameterized
systems, intended to capture at least the behaviours of several mutual-exclusion
algorithms that can be found in the literature. Examples of mutual exclusion
algorithms that work for an arbitrary number of processes are: the bakery and
ticket algorithms by Lamport, Burn’s protocol, Dijkstra’s algorithm, and Szy-
manski’s algorithm. These algorithms are implemented on systems with an ar-
bitrary number of processes with linearly ordered identities. The ordering of the
processes may reflect the actual physical ordering (e.g. Szymanski’s algorithm),
or the values assigned to local variables inside processes (e.g. the ticket given to
each process during the execution of Lamport’s bakery protocol). A configura-
tion of the system can be described as a string representing the local states of
the processes. A common feature which places these protocols outside the scope
of existing model checking methods, is that an action of a process is in general
guarded by both local and global conditions on the processes. Local conditions
restrict the state of the process which is about to perform the action. Global
conditions define the context in which the action is allowed to occur. A context is
typically stated as a formula which is quantified over the set of processes inside
the system. Examples of contexts are “all processes with lower identities should
have local states belonging to given set”, or “there should be at least one process
with a higher identity which has a local state included in a given set”, etc. We
propose a model which combines both types of conditions. An action involves
the change of local state of a process, and may be conditioned on both the local
state, and the context in which the action is performed.

To verify our protocols we perform a standard symbolic forward reachabi-
lity analysis, using regular expressions to represent (possibly infinite) sets of
configurations. It is well-known that checking most safety properties (including
satisfiability of mutual exclusion) can be reduced to checking the reachability
of a set of “bad” configurations (in our case specified as a regular expression).
However, the presence of both local and global guards implies that the standard
reachability algorithm will not terminate when applied to any of the earlier men-
tioned protocols. A main contribution of this paper is that we define an operation
to accelerate the search through the state space. The acceleration operator com-
putes the effect of an arbitrary number of applications of an action, rather than
the effect of only a single application. This is crucial for obtaining termination
during the analysis of any of the above protocols. Notice that the algorithm is
incomplete and may in general still fail to terminate.

Related Work There are several results on verification of parameterized sy-
stems [GS92,AJ98,CGJ95,KMM™97]. In all these works the actions are guarded
only by local conditions involving the states of a finite set of processes. A work,
which is close in spirit to ours is [KMM™97]. The authors propose to use regular
sets of strings to represent states of parameterized arrays of processes, and to

136 P.A. Abdulla et al.

represent the effect of performing an action by a predicate transformer (transdu-
cer). However, the work in [KMM™97] considers only transducers that represent
the effect of a single application of a transition. This means that their approach
will not terminate if applied to reachability analysis for the protocols we consider
in this paper. In contrast, we introduce a acceleration operator for actions with
both local and global contexts, meaning that reachability analysis will terminate.
Applications of acceleration operations are reported in the context of communi-
cating finite state automata [BG96,BGWW97 BH97,ABJ98]. The acceleration
operation is applied to transitions of different types than in our work, namely
those that iterate a single loop in the control part of a program, rather than
repetitive applications of a transition to different processes in the system. There
has also been a number of case studies in verification of mutual exclusion proto-
cols such as Burn’s protocol [JLI8] and Szymanski’s algorithm [GZ98, MAB*94,
MP90]. The verification in each case is dependent on abstraction functions or
lemmas explicitly provided by the user.

Outline In the next section, we define the class of system models that we
consider and illustrate it by an idealized version of Szymanski’s mutual exclusion
algorithm. In Sect. 3 we define composition and acceleration of actions. In Sect. 4
we show how they can be used in verification of safety properties, illustrated by
a verification of Szymanski’s algorithm. Section 5 contains conclusions and some
non-resolved problems.

2 Preliminaries

In this section, we will introduce a generic system model which is intended to
capture the behaviour of idealized versions of many existing mutual exclusion
protocols, e.g. Dijkstra’s mutual exclusion problem, Lamport’s bakery algorithm,
Burn’s protocol, Szymanski’s algorithm. In our model, a program consists of an
arbitrary number of identical processes, ordered in a linear array. The process
behaviours are defined through a finite set of actions. An action represents a
change of local state of a process. An action may be conditioned on both the
local state of the process, and the context in which it may take place. The
context represents a global condition on the local states of the rest of processes
inside the system. The ordering of the processes may reflect the actual physical
ordering (e.g. Szymanski’s algorithm), or the values assigned to local variables
inside processes (e.g. the ticket given to each process during the execution of
Lamport’s bakery protocol).

An idealized version of Szymanski’s mutual exclusion algorithm can be given
as follows. In the algorithm, an arbitrary number of processes compete for a
critical section. The local state of each process ¢ consists of a control state ranging
over the integers from 1 to 7 and of two boolean flags, w; and s;. A process is
in the critical section when the control state is 7. A pseudo-code version of the

Handling Global Conditions in Parameterized System Verification 137

actions of any process i could look as follows:

1: await Vj:j #i: —s;
2: Wi, Si 1= true, true
3: if3j:j#i: (pe; #1) A—wj

then s; := false; goto 4
else w; := false; goto 5
await Jj : j # i :s; A ~w; then w;, s; = false, true
await Vj: j #7: —w;
await Vj : j <1i:—sj
si := false, goto 1

- o U

For instance, according to the code at line 6, if the control state of a process
1 is 6, and the value of s is false in all processes to the left, i.e. for all processes
J < i, then the control state of ¢ may be changed to 7. In a similar manner,
according to the code at line 4, if the control state of a process i is 4, and if
the context is that there is at least another process j (either to the right or to
the left of i) where the value of s; is true and the value of w; is false, then the
control state, w; and s; in ¢ may be changed to 5, false, and true, respectively.
In fact in almost all the protocols that we have considered, contexts are defined
by existentially or universally quantified formulas restricting the local states of
processes to the left or to the right. In our model we work with a particular
subclass of regular languages, which can capture such contexts.

A left context is a regular language which can be accepted by a deterministic
finite-state automaton with a unique accepting state, and where all outgoing
transitions from the accepting state are self-loops. (transitions with identical
source and target states). A right context is a language such that the language of
reversed strings is a left context. The tail of a left context is the set of symbols
that label self-loops from the accepting state. The tail of a right context is the
tail of the left context which is its reverse language.

Examples of left contexts are regular expressions of the form

€1f1€2f2 ce enfnenJrl

where each e; is of form (a3 + - -+ an,)*, where each f; is of form (b1 + - - - + by)
such that b; does not occur in the expression e;, for any j =1,... k.

Now, we give the formal definition of our model. We use a finite set C' of
colours to model the local states of processes. A program is a triple P = (C, ¢y, A)
where

C is a finite set of colours,
¢ is a regular expression denoting a set of initial configurations over C, and
A is a finite set of actions. An action is a triple of the form

oL ; T(Cv Cl) i R

where ¢r, is a left context, ¢g is a right context, and 7(c,¢’) is a an idem-
potent binary relation on C'.

138 P.A. Abdulla et al.

A configuration v of P is a string y[1] ¥[2] - -+ v[n] over C, where «[i] denotes
the local state of process i. For a regular expression ¢, we use v € ¢ to denote
that ~ is a string in the language denoted by ¢. For i,5 : 1 < i < j < n, we use
~[i .. j] to denote the substring [i] v[i + 1] --- v[j]. An action

a=¢r; 7(ce,d); or

defines a relation « on configurations such that a(v,v’) holds if v and ' are of
equal length n, and there is an ¢ with 1 < 4 < n such that 7(y[é],+'[{]) holds,
y1.i—-1]=+1.i—1] € ¢r,andy[i+1..n]=+[i+1..n| € ¢g. Thus, an
action corresponds to a (possibly nondeterministic) program statement in which
the colour at one position ¢ can be changed from some colour ¢ to some colour ¢,
provided that 7(c, ¢’) holds and that the string to the left of 7 is in ¢, and that
the string to the right of ¢ is in ¢r. We write 41 — 72 to denote that a(v1,72)
for some action o € A. We use a* and — to denote the transitive closures of
«a and — respectively. A configuration + is said to be reachable if there is a
configuration v; € ¢; such that y; —— ~.

The reachability problem is defined as follows.

Instance A program P and a set of configurations of P represented by a
regular expression ¢p.

Question Is any v € ¢ reachable?

In Fig. 1 we represent Szymanski’s algorithm as a program in our framework.
To simplify the notation, we introduce the following syntactical notations. We
let a colour be a triple (pc, w, s), where pc € {1,...,7}, and w and s are boolean.
We use predicates to define colours. For example, the predicate (—s) denotes the
set of colours where the value of s is equal to false, that is the set {(pc, w, false) :
pc €{1,...,7} and w € {true, false}}. We use the predicate true to denote the
set of all colours. We use guarded commands to represent binary relations on
colours. For instance, the command (pc = 1) — pc := 2 represents the relation
{{{pc1,w, s), (pca,w, s)) : (pcy = 1) and (pc2 = 2)}. Notice that e.g. at line
3 the left context ((pc = 1) V w)*((pc # 1) A —w)true* is equivalent to
true*((pc # 1) A —w)true®; however, we use the previous expression in order to
be consistent with the definition of a left context.

3 Acceleration of Actions

In this section we define an operation which computes the effect of an unbounded
number of executions of an action.

For an action «;, let a* be the action constructed by repeating the action a an
arbitrary number of times. More precisely, a* denotes the set of pairs (v,7") of
configurations such that there exists a sequence ypvy17y2 - - - v, of configurations
with n > 0 such that v = 79, ¥/ = 7., and such that a(vy;,v;41) for i =
0,1,...,n — 1. Similarly, we let ot be the action constructed by repeating the
action o one or more times.

Handling Global Conditions in Parameterized System Verification 139

1: (=s8)*; (pe=1) — pc:=2; (—s)*

2: true® ; (pc=2) — pc,w, s := 3, true, true ; true”

3: ((pec=1) V w)" ((pc#1) N ~w)true™ ; (pc =3) — pc, s := 4, false ; true*
4: true® ; (pc=3) — pc,s:=4, false ; true*((pc #1) A ~w)((pc=1) V w)*
5: ((pec=1) V w)"; (pc=3) — pc,w :=5, false ; ((pc=1) V w)*

6: (0s V w)*(s A ~w)true™ ; (pc =4) — pc,w, s := b, false, true ; true*

T: true* ; (pc =4) — pe,w, s := b, false, false ; true*(s A —w)(—s V w)*

8: (-w)"; (pc=5) — pc:=6; (-w)”

9: (ms)"; (pc=6) — pc:=7; true”

10 : true™ ; (pc =T) — pe, s == 1, false ; true®

Fig. 1. Actions for Modelling Szymanski’s Algorithm

We shall now characterize a for any action o. A characterization of o* can
be obtained from a characteriztion of o by taking the union with the identity
relation.

Theorem 1. Let o be an action of the form
a=o¢r; 7(c,c); ér

where 7(c,c’) is idempotent, and where X (Xg) is the tail of ¢r, (¢r). Then
a™ consists of the set of pairs (v,7') of configurations of equal length (say n),
such that there are indices i, j with 1 < i < j < n such that

1A[li—1]=~[l.i—1] € ¢1,

2. v+ 1.n]=~'[j +1.n] € ¢r,

3. 7(v[i),Y'2]), T(v[4], ¥ [4]) and for each k with i < k < j we have y[k] = ~'[k]
or 7(v[k], 7' [k])-

4. For each k with i < k < j we have y[k] € Xr or ~'[k] € Xr.

5. For each k with i < k < j we have v[k] € X, orv'[k] € Xp.

6. For all indices k1, ko withi < ki < ko < j we have y[k1] € X1, V ~v[ka] € Xr
and ¥'[k1] € X, V +'[ks] € Xr. O

In the symbolic reachability analysis (described in Sect. 4), we use regular
expressions as representations of sets of configurations. The characterization of
Theorem 1 can be used to model the effect of (repetitive applications of) actions
on regular sets by using finite-state transducers. This approach is proposed in
[KMM*97], where however acceleration is not considered.

We recall that an action « denotes a set of pairs (v,v’) of configurations.
Equivalently, we can represent the action as a set of finite strings over C' x C,
namely as the strings (c1,¢}) (c2,c4) -+ (cn,cl,) such that
(crea -~ cp, iy -+ cl) € a. It is easy to see that each action can be represented
by a finite-state transducer.

More importantly, for any action « the characterization of Theorem 1 can
be used to find a representation of ot in a straight-forward way, since at can

140 P.A. Abdulla et al.

be represented as a regular language over C' x C'. As an example, in Fig. 2 we
show the transducer which accepts o™ where « is the action at line 3 in Fig.1.
We note that the transducer in Fig. 2 need not use the full generality of the
characterization of Theorem 1, since the alphabets X';, and X'i both are equal
to the set of all colours.

—guard copy copy V change

guard < m > change Q

A/

Fig.2. Transducer for o from line 3 of Fig. 1.

In the figure we use —guard to denote pairs {({pc,w, s), (pc,w,s)) : pc #
1 A —~w} , we use guard to denote pairs {({pc, w, s}, (pc, w,s)) : pc =1V w}, we
use copy to denote pairs ({pc, w, s}, (pc,w, s)) of identical tuples, and change to
denote pairs {({pc, w, s), (pc’,w’',s"Y) : pc=3 Apd =4 AN w' =w A s = false}
that represent a change of local control state.

For a regular expression ¢ and an action «, we use a*(¢) to denote the
regular expression we get by computing (in the usual way) the product of ¢ and
the transducer corresponding to a*.

In order to illustrate that the conditions in Theorem 1 characterize a regular
relation between configurations, we show a representation of this relation in
terms of a finite-state transducer. We show the part which is inserted between
the accepting state ¢, of an automaton that copies strings in ¢;, and the initial
state qgr of an automaton that copies strings in ¢g. In Fig. 3, we show the general
construction. Edges are labeled by predicates on pairs (¢, ¢’) of colours that are
read. We use the abbreviations ¢y, for ¢ € Xy, ¢}, for ¢ € X'y, cg for ¢ € Xg, and
¢ for ¢ € Xp. In addition to the transitions in the figure, there are self-loop
at states q1, g2, g3, and g4 labeled ¢ = ¢ € X N Yg. Informally, the states
correspond to the following situations.

— @1 corresponds to a state when the transducer has read an index where some
change has occurred, but where so far there has been no index with change
at which e ¥, v ¢ ¢ Y.

— @9 corresponds to a state when the transducer has read an index where some
change has occurred where ¢ ¢ X', but where so far there has been no index
with change at which ¢’ € Y.

— @3 corresponds to a state when the transducer has read an index where some
change has occurred where ¢’ € X1, but where so far there has been no index
with change at which ¢ € 3.

Handling Global Conditions in Parameterized System Verification 141

(e, c’)

/ T(e,)Nl Aeg \

T C’C/)/\CIL/\(CR\/CGQ>

(e, /Y Nep, A\A (eg vV eR)

T(c, ') A cr, A e
L . ql

@)

T(c, ') A cp A o
@ . J

(e, /YA (ep V) Aer Ay

) Aep Aer v eR) T(e,e!) Ay Aler V 4

(e, e’) A cr

’ ’
r(e.e!) Aep Ach

+

Fig. 3. General transducer for a

— g4 corresponds to a state when the transducer has read an index where some
change has occurred where ¢’ ¢ X, and some index where some change has
occurred where ¢ & X7p,.

4 Verification

In this section we show how the operation of acceleration, presented in the pre-
ceding section, can be used to enhance a standard version of symbolic forward
reachability analysis, whose purpose is to compute a representation of the set
of reachable configurations. The analysis algorithm maintains a set of reach-
able configurations, which is initially the set of initial configurations. In each
step of the algorithm, the set of reachable configurations is extended with the
configurations that can be reached by some action from a configuration in the

142 P.A. Abdulla et al.

current set. We use regular expressions to represent (potentially infinite) sets of
configurations. As we shall illustrate later in the section, this algorithm will not
terminate when applied to any of the protocols mentioned in the introduction.
To solve this problem, we use the operation a* (defined in Sect. 3) to accelerate
the exploration of the state space. We recall that a* computes the set of succes-
sors corresponding to an arbitrary number of applications of an action (rather
than a single application).

Suppose we are given a program P = (C, ¢1, A} and a regular expression ¢,
and that we want to check whether some configuration vg € ¢ is reachable in P.
For the current discussion, let us represent the set of configurations maintained
by the algorithm by a set V' of regular expressions. The set V represents the
union of the sets denoted by all regular expressions in V. Initially, V' = {¢;}. The
algorithm will now for each regular expression ¢ in V' and each action o compute
a*(¢) represented as a finite union of regular expressions. When a new expression
¢ is generated, it is compared with those which are already in V. If ¢ C ¢’ for
some ¢’ € V', then ¢ is discarded, since it will not add new configurations to the
explored state space (it is actually sufficient that ¢ C > eV ¢’ for ¢ to be safely
discarded). In fact, we can also discard all ¢’ € V with ¢’ C ¢. It is also checked
whether ¢ has a non-empty intersection with ¢ . If the intersection is non-empty,
the algorithm terminates, reporting that some configuration in ¢ is reachable.
Otherwise, the algorithm terminates when no new regular expressions can be
generated. Obviously, our algorithm is incomplete in the sense that while it will
always find reachable configurations in ¢, it will not necessarily terminate if all
configurations in ¢ are unreachable.

We illustrate this algorithm through an application to Szymanski’s protocol.
To simplify the notation we use the coding of colours shown in Table 1, so e.g.
¢ corresponds to the colour (2, false, false). The set of initial configurations is
represented by ¢o = cj.

First, we observe that the above standard reachability algorithm will run into
an infinite loop as follows. By applying action 1 to ¢o we get ¢} c2 ¢}. Applying
action 1 again gives cj ca ¢ c2 c], etc.

Although the standard algorithm fails, using the acceleration operation leads
to termination. In Table 2 we describe a simulation of our algorithm. We start
from the set of initial configurations ¢g. For each regular expression ¢; and action
a, we compute a*(¢;) or a™(¢;) and add the resulting regular expressions to
the set of existing expressions. For instance, from ¢g, only action 1 is enabled,
resulting in the configurations denoted by ¢;. Whenever an expression is entailed
by another one (e.g. ¢7 C ¢p), we indicate that in the table. In such a case,
the constraint (in this case ¢7) is discarded and not explored further. At ¢, we
pursue both a;f and o , denoted a; Uy, in one step. The algorithm terminates
in 19 steps.

Handling Global Conditions in Parameterized System Verification 143

c1|(1, false, false)
c2|(2, false, false)
cs| (3, true, true)

(4, true, false)
s | (5, false, true)
cs | (6, false, true)

(7, false, true)

Cq

C7

Table 1. Coding of colours in analysis of Szymanski’s algorithm

5 Conclusions

In the paper, we have presented techniques for reachability analysis of para-
meterized systems where a configuration of the system can be described by a
string representing the local states of the processes. We have found that naive
symbolic reachability analysis does not converge for such systems, and propose
to use acceleration of actions to obtain termination. We showed that using ac-
celeration, symbolic reachability analysis terminates for an idealized version of
Szymanski’s algorithm. We have also analyzed corresponding versions of other
mutual exclusion algorithms, including Burn’s and Dijkstra’s mutual exclusion
algorithms, and the bakery and ticket algorithms by Lamport. For some of these
algorithms, we use variants of the acceleration operation presented in this paper:
we perform the acceleration on the action obtained by sequentially composing
two actions, and we also define an acceleration operation on actions that involve
two adjacent processes which can be guarded by left and right contexts.

We further note that we have considered idealized versions of the mutual
exclusion algorithms. In most implementations of these algorithms, a global gu-
ard (such as e.g., Vj : j < i:—s;) is not atomic: in a more refined description of
the algorithm this is a loop which checks the states of other processes. We have
not considered how to treat the non-atomic versions of statements such as this
one.

References

[ABJ9S] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly
analysis of systems with unbounded, lossy fifo channels. In Proc. 10"
Int. Conf. on Computer Aided Verification, volume 1427 of Lecture Notes
in Computer Science, pages 305-318, 1998.

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time
systems. In Proc. 5" IEEE Int. Symp. on Logic in Computer Science,
pages 414-425, Philadelphia, 1990.

[AJ96] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unre-
liable channels. Information and Computation, 127(2):91-101, 1996.
[AJ9g] Parosh Aziz Abdulla and Bengt Jonsson. Verifying networks of timed

processes. In Bernhard Steffen, editor, Proc. TACAS 798, 7" Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems,
volume 1384 of Lecture Notes in Computer Science, pages 298—-312, 1998.

144 P.A. Abdulla et al.

%0 T 3 ¢1
%1 (e1 +e2)” oy b2
P2 (e1 + co +c3)* o Uaf| o3
oy b4
(c1 +cg +e3)¥ealer +eg +eg+eg)fegle] Feg+ezfeg)”
b3 + a3 | ¢8
(c1+ep+egt+ea)ealer +ea+eg+ea)ealeg +co+e3)”
b4 (e1 +e3)*ep(eq +e3)™ ag o5
b5 cfegel o b6
P6 cierel ”Tg 7
b7 cf clc’{ Subs ¢
(c1 +ea +eg)Tealer oo +eg+ea) ealer +ea+eg+ea)”
b8 + N b9
(eg +egtegteq)®eq(e +egtegteg)eg(eg +egtegteg)”
(c1 +eg+ez+eg)Tealer +ea+eg+eg)eqler +eg+eg+eg)”
¢9 + a3 #10
(c1 +cg+eg+eca)eqleg +ea+eg+ea)ea(eg +eo+eg+en)”
(c1 +ca+eg+eg)(ea +e3z)(er +ea+eg+eq)eqler +eg+ez+eg)”
®10 + a;,r é11
(c1 teagtezteq)®eqleg +eatez+teq)®(categ)leg +eptegtey)”
(1 +e3 +eg)esler + ez +eq)Teqler + ez +eg)”
$11 + agd 12
(c1 + ez +cy)*cylcy + ez +cg)*e5(cy + ez +cg)*
(c1 +e3+eq)Teser ez +eg +es) (eq+e5)(ey +e3+eg +e5)”
P12 + ai |b13
(c1+egteates) (cates)(e; +egteates) es(eg +egteg)”
(c1 +c3+ecgtes)ieslecr Feg+cg+es) (cq +eg)ler +ez3+cq +ep)”
13 + a; 14
(e1 +eg+eqg+ep)(eqtes)(egteg+eqgteg)esleg +eg+eqg+ep)”
(c1 +ec5 +cp)Tegler +es5 +eg) (es + cg)er + 5 +)™
P14 + a;r 15
(c1 +es5 +ep)(e5 +cg)er + e + cg) egler + 5 +)™
%15 cier(er +ep +cp)” (e5 +cg)(er +c5 +¢6)7 210 %16
916 ciei(er +e5 +cg) (ep + cg)(er + 5 +) ag |17
b17 cicier(er +e5 +cg)™ @10 |18
%18 clerei(er +e5 +ce)” ag |10
$19 cicicier(er +e5 +cg)” Subs é17
Table 2. Reachability Analysis of Szymanski’s Algorithm
[BGI6] B. Boigelot and P. Godefroid. Symbolic verification of communication
protocols with infinite state spaces using QDDs. In Alur and Henzinger,
editors, Proc. 8" Int. Conf. on Computer Aided Verification, volume
1102 of Lecture Notes in Computer Science, pages 1-12. Springer Verlag,
1996.
[BGWW97] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs. In Proc. of the Fourth International Static Analysis Symposium,
Lecture Notes in Computer Science. Springer Verlag, 1997.
[BHI7] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of fifo-
channel systems with nonregular sets of configurations. In Proc. ICALP
’97, number 1256 in Lecture Notes in Computer Science, 1997.
[BS95] O. Burkart and B. Steffen. Composition, decomposition, and model
checking of pushdown processes. Nordic Journal of Computing, 2(2):89—
125, 1995.
[Cer94] K. Cerans. Deciding properties of integral relational automata. In Abite-
boul and Shamir, editors, Proc. ICALP ’9/, volume 820 of Lecture Notes
in Computer Science, pages 35—46. Springer Verlag, 1994.
[CGJ95) E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized net-

works using abstraction and regular languages. In Lee and Smolka, edi-
tors, Proc. CONCUR ’95, 6'" Int. Conf. on Concurrency Theory, volume
962 of Lecture Notes in Computer Science, pages 395—407. Springer Ver-
lag, 1995.

Handling Global Conditions in Parameterized System Verification 145

[Esp95] J. Esparza. Petri nets, commutative context-free grammers, and basic
parallel processes. In Proc. Fundementals of Computation Theory, num-
ber 965 in Lecture Notes in Computer Science, pages 221-232, 1995.

[GS92] S. M. German and A. P. Sistla. Reasoning about systems with many
processes. Journal of the ACM, 39(3):675-735, 1992.
[GZ98] E.P. Gribomont and G. Zenner. Automated verification of Szymanski’s

algorithm. In Proc. TACAS ’98, 7" Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, number 1384 in Lecture
Notes in Computer Science, pages 424—438, 1998.

[Jan90] P. Jancar. Decidability of a temporal logic problem for Petri nets. Theo-
retical Computer Science, 74:71-93, 1990.
[JL98] E. Jensen and N. A. Lynch. A proof of Burn’s n-process mutual exclusion

algorithm using abstraction. In Proc. TACAS 98, 7" Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems, number
1384 in Lecture Notes in Computer Science, pages 409—-423, 1998.

[KM8&9] R.P. Kurshan and K. McMillan. A structural induction theorem for pro-
cesses. In Proc. 8" ACM Symp. on Principles of Distributed Computing,
Canada, pages 239-247, Edmonton, Alberta, 1989.

[KMM*97] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic
model checking with rich assertional languages. In O. Grumberg, editor,
Proc. 9" Int. Conf. on Computer Aided Verification, volume 1254, pages
424-435, Haifa, Israel, 1997. Springer Verlag.

[MAB*94] Z. Manna, A. Anuchitanukul, N. Bjgrner, A. Browne, E. chang, M. Colén,
L. de Alfaro, H. Devarajan, H. Sipma, and T. Uribe. STEP: the stanfor
temporal prover. Draft Manuscript, June 1994.

[MP90] Z. Manna and A. Pnueli. An exercise in the verification of multi — process
programs. In W.H.J. Feijen, A.J.M van Gasteren, D. Gries, and J. Misra,
editors, Beauty is Our Business, pages 289-301. Springer-Verlag, 1990.

[WLS&9] P. Wolper and V. Lovinfosse. Verifying properties of large sets of proces-
ses with network invariants (extended abstract). In Sifakis, editor, Proc.
Workshop on Computer Aided Verification, number 407 in Lecture Notes
in Computer Science, pages 68—80, 1989.

[Wol86] Pierre Wolper. Expressing interesting properties of programs in proposi-
tional temporal logic (extended abstract). In Proc. 13" ACM Symp. on
Principles of Programming Languages, pages 184-193, Jan. 1986.

	Introduction
	Preliminaries
	Acceleration of Actions
	Verification
	Conclusions

