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Abstract. In 1990, Merkle proposed two fast software encryption func-
tions, Khafre and Khufu, as possible replacements for DES [1]. In 1991,
Biham and Shamir applied their differential cryptanalysis technique to
Khafre {2], and obtained an efficient attack of the 16-round version and
some bounds on the 24-round version. However, these attacks take ad-
vantage of the fact that the S-boxes used for Khafre are public; they
cannot be applied to IChufu, which uses secret S-boxes, and no attack
of Khufu has been proposed so far. In this paper, we present a chosen
plaintext attack of the 16-round version of Khufu, which is based on dif-
ferential properties of this algorithm. The derivation of first information
concerning the secret key requires about 2*! chosen plaintexts and 2*
operations. Our estimate of the resources required for breaking the entire
scheme is about 2** chosen plaintexts and about 2*? operations.

1 Description of Khufu

Khufu is an iterated blockcipher with a 64-bit blocksize, The keys used in the
16-round version (the single one considered in this paper) are the following :

— four 32-bit words K1, K2, K3, K4, used before the first round and after the
last round (initial and final xors);

— four secret permutations pg, p1, p2 and p3 of the [0..255] set (the columns of
the first S-box introduced in [1}), which provide the functions used in rounds
1to8;

— four secret permutations qn, g1, ¢2 and g3 of the [0..255] set {the columns
of the second S-box introduced in [1]), which provide the functions used in
rounds 9 to 16.

The 16-round version of Khufu is depicted in Figure 1, which represents the
encryption of one 64-bit block consisting of two 4-byte halves L = (lg.l1,l2,l3)
and R = (rg,r1,r2,73). We are using the following notations :

— m; (i = 0 to 3) denotes the projection :
o [0.265]Y  — [0..255)
(:L‘Uy Iy, L2, '1?3) landit' 3]
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— [Piys Piy s Piyy Piy) (Where (ig,71.i2,13) is a circular permutation of (0,1,2,3))
denotes an S-box the columns of wlich are provided by the p;,, pi,, pi, and

Pi, Permutations :

[Pio: Pirs Pigs Pis] ¢ [0..255] —

The representation of Figure 1 is slightly different from the one provided in [1]:
in order to avoid swapping the right and left halves R and L and rotating the R
half at each round, we are using a different round function at each round. It is
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[0..255]*

(pfu[ ] ph[ ] pfz[ ] p13[ 1)

however easy to check that both representations are strictly equivalent.
For a more detailed presentation of the Khufu algorithm, see {1].
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Fig. 1. The 16-round version of Khufu
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361
2  Differential properties used in our attack

At the various steps of our attack, sets of n (P,P’) pairs of 64-bit plaintext blocks
are considered. In practice, these sets are defined by a combination of conditions
on :

— the plaintext difference P & P’;

— some bytes of P.

Let S be such a set of n (P,P’) pairs. After r rounds (where 7 € [0,..,16]), a
(P,P’) pair provides a (C[r], C'[r]) pair of intermediate blocks, of xor value :
Alr] = Clr]® C'[r]. We denote by AS[r] the set of Afr] values derived from the
n (P,P’) pairs in S after » rounds.

All the differential properties we are using in our attack can be expressed in
terms of the cardinal | AS[r] | of the AS[r] set of the distinct diflerence values
after 7 rounds for an appropriately selected set S of plaintext pairs.

The following Proposition will be useful for the initial step of our attack:

Proposition 1. Let A, A3 and p3 be arbitrary constants in [0..255].

For every o € ]0..255], there exist four constants by, 61, 62 and B € [0..255]
such that, if Sx| a, pa,a denotes the following set of plaintext pairs :

Snirepne = UL R (L, RY) | L& L = (0,0,0,0); R R = (60,81, 8,0);
=2 l3=23 3= P:s}

then AS/\l,)\s,ﬂa,O([g] = ((0,,0,0),(0,0,0,8)),

i. e. the difference for the various pairs of the Sx, x, ps,a sel 1s constant after 9
rounds.

Proof : After two rounds, the {/;,[]) pair is fixed and cqual to the two con-
stant bytes :

a=M® Kl & palps® K23 @ psab Klg)) ;i =c1®o;

furthermore, these !} and {{ values act as inputs to the [p2, p3, po, p1] S-box
at round 3. It suffices to select 8y, 8,84 as to "compensate” the difference be-
tween the two [pa, p3, po, p1] outputs to obtain a constant xor value for the six
subsequent rounds. The encryption of a S, i, sy« Dalr is depicted in Figure 2
(where the difference value at each round is provided).

The 8p, 61,82 and F constants are given by the relation :

(1) : (60,61,62.8) = [p2. p3. po. mller] @ (P2, p3. po. i)le)] where ¢y and ¢} are
defined above.
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Fig. 2. Encryption of an Sx, x, ., Pair

The next proposition, which is very similar to Proposition 1, will be useful for
the subsequent steps of our attack.

Proposition 2. Let A3 be arbitrary constant € [0..255]. For every a € ]0..255],
there cxist four constants 8y, 61,64 and b3 € [0..255] such thal, if S5, o denotes
the following set of plaintext pairs :

Srpa ={((L,R); (LR | L L =(0,0,0,0); RG R = (60,81, 82,83); 15 = Az}
then ASx, o8] = {((0,0,0,0),(0,0,0,0))}, 2. e. the difference for the various
pairs of the Sx, o set is constant after 8 rounds.

Proof : The proof is similar to the proof of Proposition 1. The I3 and I§ in-
puts to the [pg.p1.p2,p3] S-box in the first round are the constant bytes:

3= A3 @ Al and ¢ =c3 P a.

It suffices to take for &g, 81,6 and &3 the constants given by the relation :

(2) ¢ (80,61,82.83) = [po.p1,p2,pa) [ea] & [p2,ps, po,p1] [¢4] to obtain the
announced result.
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The next proposition essentially states that for a given set of plaintext pairs,
there are some bounds limiting the increase of the number of distinct difference
values after r rounds. When used in conjonction with Propositions 1 and 2,
Proposition 3 provides non-trivial differential properties for the whole 16-round
algorithm.

Proposition 3. If S is a set of n (P,P’) plaintest pairs and if AS[r] is de-
fined as above, then :
Y re[0.15], |AS[r + 1]} < 128 x |AS[r]|

Proof : Let A[r + 1] be a AS[r + 1] value. There exists a (P,P’) pair in S
leading to the A[r + 1] xor value after » + 1 rounds. Let us denote by A[r] the
xor value for this pair after r rounds, and by &[r] the byte of A[r] which position
is picked up as an input to the S-box used in round (r + 1); by a the input to
the S-box of round (» + 1) in the encryption of P.

Depending on the parity of », we have etther :

M) : Alr+1] = Alr] @ ((Sboz[a] & Shoz[a & 8[r]]),(0,0,0,0))

(**) : Alr+ 1] = Alr] ® ((0,0,0,0), (Sbox(a] ¢ Sboxa & &[r]])).
Moreover, Alr] € AS[r] by definition.

The results now follow from the obvious property that, for a fixed value of
Afr] (which determines a fixed value for 6[r]), we have :
| { Sboz[a] @ Shoxfad é[r]}|a €[0..265]}] < 128.

3 An attack of the 16-round Khufu

In this Section, we describe how to use the differential properties presented
above for deriving the secret key (i.e. four 32-bit words and 8 permutations of
the [0..255] set) from about 2** chosen plaintexts.

The proposed attack i1s divided in four main steps. Only the first Step (the
derivation of first information about the secret key) is developed in some de-
tail. The purpose of the description of the subsequent steps is only to give some
evidence that the information obtained at Step 1 can be used for breaking the
entire scheme.

Step 1 is based on Propositions 1 and 3. We are using the notation of Proposi-
tion 1. We fix four arbitrary constants A;, Az and p3 and o # 0 in [0..255].

The purpose of Step 1 is to find the three corresponding bytes &g, 61, 82.

We select a fixed arbitrary byte A,. For 64 different values of Iy (for instance the
0 to 63 values) we perform the following computations :
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e We encrypt the X, set of 224 plaintext values ((lg, A1, Az, As), (r0, 71,72, p3)),
where (rq,r1,72) € [0..255)3, thus obtaining 2** encrypted values
((Ho, 1y, Uy U3), (7o, 7y, 779, 773));

s We encrypt the X’;, set of 2%% plaintext values (({p, \i®a, Aq, Ag), (r, 71,7, p3))
where (74, 71, 74) € [0..255]3; thus obtaining 2?* encrypted values
(U, 0, 105, U8), (g, ol vl 78));

® We now want to find all the (P,P’) pairs in (X;, x X’,) such that ll; =
I, rro=rrl; rra=rr} (i.e. we want to filter those pairs of (X;, x X",) for which
the inputs and outputs of the S-boxes in the three last rounds of the encryption
are equal), and group these pairs according to the (rg @& rfh,r; & v}, r2 @ 75) dif-
ference value. This can be done efficiently, in about 2% operations in average,
as follows :

- we group the X;, plaintexts according to the ({ls, rrq, rry) value, thus obtaining
a list of X, plaintexts of average size 1 for each (lls, rrg, rrg) triplet;

- we group the X;, plaintexts according to the (Ily, #rf, rrh) value, thus obtain-
ing a list of X', plaintexts of average size 1 for each (Il}, rryy, rey) triplet;

- for each (Ua,rvq,rr3), we consider all the (P,P’) pairs in the crossproduct of the
corresponding lists of X;, and X’;, (average number of pairs : 1);

- we group the (P,P’) pairs obtained as above according to the (rq@®r), r1 @], ro®
rh) difference, thus obtaining a list of average size 1 for each (ro®rf, 11 By, r2@®
rh) value.

For each (rg & 1), r1 &b 7, 72 @ 74) triplet, we thus obtain, by merging the lists
obtained for each l; value, a list S of 64 (P,P’) pairs in average. Let us consider
the AS set of output xors for the (P,P’) pairs contained in such a list :

Claim :
(Z) N ]f(?’(] o] 7'6, b 7’11, 7o b 7’{3) = (60‘61,53) then IL\S[ S 16.
(it) - If (rog & v, r1 By, vo b vh) #£ (60,81, 62) then |AS] = 64.

Proof (heuristic arguments) : In the first case, S is @ subset of the Sy, 1, 53,0 cON-
sidered in Proposition 1. Moreover, AS = AS[13], because the three last rounds
have no effect on the output xor of an § pair and |AS[13]] < |ASx, a,.0.e[13]1/2%
because AS[13] contains only ASy, a, p;,0113] elements ((&,,b1,,81,,81,),
(8o, vy 00y, 0.,)) such that &, = 0 and é,, = 0 and 6., = 0.

The first part of the claim now results from :

|ASH, 2aps.0l9)] = 1 (by Proposition 1)

and

[ASK, Agipa.a[13]] < 1284 ASK, A, pal9]] (by Proposition 3).

The second part of the claim follows from the assumption that in other cases,
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the final xor values for pairs in the S set simply hehave as random elements of
the set of ((61,,81,,01,,81, ). (6o, 0r,, 6y, 6, )) differences such that 6, = 0 and
6, =0 and §,, = 0.

The above claim was confirmed by computer experiments, where (§) was checked.
Because of the difference between the behaviours (i) and (i), the (8, 6;,02)
triplet can be detected, as the one leading to a AS set of output zors of size less
than 16.

Step 1 requires the encryption of about 23! chosen plaintext blocks, and ahout
231 operations.

Step 2 : we repeat Step 1 for all possible o # 0 values (without modifying
the A1, Az and p3 constants). We are using the notation of Proposition 1 : ¢y
denotes the common input to the S-box of round 3 for all the plaintexts of the
various Xy, sets.

For every o, we obtain the 24-bit word :

(60,61, 82)(ax) = [p2, pa, pol[e1] & [p2, p3, po)ler D o]

In summary, after Step 2, the pa, p3 and pg permutations are entirvely deter-
mined, up to the four unknown bytes ¢y, po[c1], pslei] and po[er]. Steps 1 and
2 require to encrypt about 2% plaintext blocks, and the computational cost of
steps 1 and 2 is about 2% operations.

Step 3 is based on Propositions 2 and 3. We fix an arbitrary constant Ay €
[0..255]. We are using the notations of Proposition 2. The purpose of Step 3 is
to find for every o € [1..255] the four corresponding bytes &g, 8y, d2 and 83, such
that :

(60, 61,02, 63)(e) = [pv, p1, w2, p3l[cal B [po,p1,p2, p3lles & al.

We are using the fact that since {pa,ps,po] is known up to the unknown bytes
ey, paler], psfey] and pofe], 6o, 82, and 83 are known up to the single unknown
byte ¢1 @ ¢3 : there are only 256 possible values for the (8y, 84, &3) triplet.

Step 3 is divided in two substeps, numbered 3.1 and 3.2.

Substep 3.1 : We want to find (8p, 81,69, 83) for a first fixed o # 0 value.
We are doing an exhautive search on the ¢; 4 ¢y byte. For each ¢; P c¢3 as-
sumption, the candidate values 8, &2 and &3 are determined, and we efficiently
test the 256 candidate &; values by a method close to the one of Step 1. For that
purpose, we select fixed arbitrary bytes pg, po and ps; for 224 different. values of
the (lo, 11, 12) triplet, we perform the following computations :

e We encrypt the Xy, 7,1, set of 2% plaintext values (Lo, {1, {2, A3), (po, 71, p2. p3)).
where (r; € [0..255]), thus obtaining 2% encrypted values
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((Ho, 1y, Uz, U3), (rrg, rry, 719, 7r3)).(Note: this can be done once for all for all
¢y @ c3 assumptions).

e We encrypt the X’i,1,, set of 2% plaintext values ((lo, 1,42, A3 & a),(po @
80,74, p2 D b2, p3 @ 83)) where | € [0..255]; thus obtaining 2% encrypted values
(G, 13,15, 15, (rrg, vy, vrh, 7r5));

¢ We now want to find all the (P,P’) pairs in (Xiy1,1, X X'lo1,1,) such that lly =
ily; rro=rrh (i.e. we want to "filter” those pairs of (X 1,1, X X’to1,1,) for which
the inputs and outputs of the S-boxes in the two last rounds of the encryption
are equal), and group these pairs according to the r) @ r| difference value. This
can be done efficiently, in about 2®* operations in average, and provides in aver-
age one (P,P’) pair after filtering.

For each §; = r{ &7} candidate difference, we thus obtain, by merging the contri-
butions obtained for each lyl; 1, value, a list S of 216 (P,P’) pairs in average. Let
us consider the AS set of output xors for the (P,P’) pairs contained in such a list :

Claim :

(i) : If the (6y, 61,62, 63) candidate is corvect, then the AS differences are picked
from a set of size less than 128° / 256>

(1) - If the (8o, 81,62, 63) candidate is wrang, then the AS differences are picked
from a set of size about 256°.

(#ii) . The size of the S sets (aboul 2'% pairs) is sufficient 1o test (8y, 6y, 62, 03),
by comparing the sizes of S and AS, i.e. by counting how many collisions occur
between the output zors for S pairs.

Proof (heuristic arguments) : In the first case, S is a subset of the Sy, o consid-
ered in Proposition 2. Moreover, AS = AS[14], because the two last rounds have
no effect on the output xor of an S pair. The AS[14] elements are picked from
a set of size about |AS), o[14]]/256% because AS[14] contains only AS), {14]
elements ((&1,,&,,81,,81,), (brq, &y, ,0ry, &) such that &, = 0 and 6,, = 0.

The first part of the claim now results (rom :

|ASs, «[8]] = 1 (by Proposition 2)

and

[ASK, «[14]] < 128°1AS,, o[8]] (by Proposition 3).

The second part of the claim follows from the assumption that in other cases,
the final xor values for pairs in the S set simply behave as random elements of
the set of ((61,,8,,61,,81,), (6rg,8r,.6,,.6,,)) differences such that &, = 0 and

8, = 0.
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The third part of the claim follows from the facts that since 21 3> (128%/256%)'/2
many collisions will occur in the first case, whereas few collisions will occur in
the second case, since 216 < (2568)1/2.

Because of the difference between behaviours (i) and (i1}, Substep 3.1 provides
¢, & c3, (as the value for which one §; value behaves according to (i) ), and also
the &g 6; 82 63 difference for the considered o # 0 value. Substep 3.1 requires
to encrypt about 2% chosen plaintexts, and about 249 operations.

Substep 3.2 : We are doing the same scarch as at Substep 3.1 for each of
the 254 remaining o # 0 values, but the ¢; @& e¢3 byte has no longer to be
exhaustively searched, since it has been determined at Substep 3.1.

Step 3 requires to encrypt about 24! plaintext blocks, and the computational
cost of Step 3 is about 2% operations. After Step 3, the po, p1, p» and ps permu-
tations are entirely determined, up to the five unknown bytes ea, polea], pileal,
pg[c;;], and p3[c3], and the output of round 1 is known up to 8 constant bytes.

Step 4 is based on the results of Step 3.

We define four permutations 7y, By, Ps, P, by the relations :

(ﬁm?x,l—h’f’a)[/\:i] =0

(Po> P1> Pa» P3)[Aa @ a] = (803 81,09, 83)(«) for o # Q.

We thus define a [Py, Py, B, P3] S-box wlhich is intended to be the basis for the
construction of an equivalent representation of the first half of Khufu.

If we set K13 = 0, the assumptions [pg, p1. p2, pa] = [FosPrsPa, Pa) and K1z =
K13 provide the output of round 1 up to 8 unknown constant bytes for every
input block.

The purpose of Step 4 is to gradually derive, one after the other, seven ad-
ditional bytes K23, K1, K2y, K1g, K2y, K12, R 24 such that :

- the assumptions [py, p1, p2. pa] = [By, Py P2, P3), K13 = N5 K24 = K23 pro-
vide the output of round 2 up to 8 unknown constant bytes for every input block;

- the assumptions [po,p] P2 pal = [po,pl,pq,p:,] Klz = mg, K25 = 7\723,
K1 = [Xll, K2, = Ile, Nl = ]\ Loy K20 = W2, 20; Kla = I\ 1'7 K2, = [\22
provide the output of round 8 up to 8 unknown constant bytes f01 every input

block.

Our estimate of the cost of the derivation of the above cquivalent key bytes
is at most 2% plaintext blocks per key byte (232 per test of an assumption on
such a byte), using diflerential techniques similar to the one of Proposition 2 :
introduction of a fixed difference in the S-box inputs of round » and compen-
sation of the resulting difference for the S-hox inputs of the subsequent rounds
until round 8, with » = 1 in Proposition 2 and 7 = 2 to 8 here. Once the seven
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above equivalent key bytes have been derived, a differential attack on the second
half of Khufu (i.e. rounds 8 to 16 and the final xor with auxiliary key bits) can
be mounted, at no substantial additional expense.
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Latex version of this paper.

5 Conclusion

We have shown in some detail that first information concerning the secret S-
box used in the first half of the scheme can be derived with about 23! chosen
plaintexts, and about 23! operations (Step 1). Qur estimate of the resources
required for breaking the whole scheme is about 243 chosen plaintexts and 243
operations (Steps 2 to 4). However, further verifications (in particular computer
experiments) are required to make sure that the figures announced in the descrip-
tion of Steps 3 and 4 are valid. Although the proposed attack is far from heing
realistic, becanse of the required amount of chosen plaintext, it suggests that
the security of the 16-round Khufu might be too low for providing a suitable
replacement to DES. In fairness to Merkle, it should be noticed however that
some warnings concerning the choice of the 16-round version as compared with
the 24-round and 32-round versions are already contained in [1], in particular
the remark that the "safety factor” in Khufu with 16 rounds is less than that of

DES.

We have found no similar attack for the 24-round version of Khufu.
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