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Abstract. We present simple and efficient hash functions applicable to se- 
cure authentication of information. The constructions are mainly intended 
for message authentication in systems implementing stream cipher encryp- 
tion and are suitable for other applications as well. The proposed hash func- 
tions are implemented through linear feedback shift registers and therefore 
attractive for hardware applications. A5 an example, a single 64 bit LFSR 
will be used to authenticate 1 Gbit of information with a failure probabil- 
ity of less than 2-". One of the constructions is the cryptographic version 
of the well known cyclic redundancy codes (CRC); the other is based on 
Toeplitz hashing where the matrix entries are generated by a LFSR. The 
later construction achieves essentially the same hashing and authentication 
strength of a completely random matrix but at a substantidy lower cost in 
randomness, key size and implementation complexity. Of independent inter- 
est is our characterization of the properties required from a family of hash 
functions in order to be secure for authentication when combined with a 
(secure) stream cipher. 

1 Introduction 

In this paper we deal with the application of traditional hashing techniques ( n o t  
one-way hashing) t o  cryptographic authentication of information. This investiga- 
tion was initiated by Carter and Wegman 1211, and further developed in subsequent 
works [4, 6, 19, 11, 2, 71. We concentrate, for the sake of clarity, in the case of 
message authentication, although these techniques have broader application to dif- 
ferent scenarios of information authentication. We assume a typical communication 
scenario in which two parties communicate over an  unreliable link where messages 
can be maliciously altered. The communicating parties share a secret key unknown 
to  the adversary. 

There are two basic approaches for the application of hashing in the message au- 
thentication scenario. Both approaches use a predetermined family of hash functions 
from which a particular function is secretly chosen by  the parties for authentication. 
In the first case a new hash function is selected from the family for each transmitted 
message. In the second, the same hash function is applied t o  the authentication of 
multiple messages, but the resultant hash values are encrypted before transmission. 
The  advantage in the second case is that  it  usually requires less random (or pseudo- 
random) bits, and that it allows for a less frequent (possibly off-line) generation of 
the specific hash function, 
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Our work presents very simple and practical constructions of hashing schemes 
applicable to both approaches. Nevertheless, they are especially advantageous in 
the second case, i.e., for authentication of multiple messages, when the encryption 
is done via (additive) stream cipher encryption. We show these constructions to be 
unconditionally secure when used with a perfect one-time pad system, and therefore 
in most practical applications their security reduces to that of the stream cipher in 
use. 

We start by proving a theorem on the minimal conditions required from a hash 
family in order to provide secure authentication when combined with one-time pad 
encryption, and later use this theorem to prove the security of our constructions. The 
characterization result is interesting independently of these specific constructions. 

Our emphasis is in providing practical and secure methods for information au- 
thentication in systems that implement a stream cipher cryptosystem. We note that 
systems using block ciphers for secrecy often take advantage of these same ciphers 
for implementing a message authentication function. Additive stream ciphers, how- 
ever, characterized by the use of pseudorandom generators which are essentially 
decoupled from the data, cannot directly be used to compute an authenticator on 
the data. On the other hand, the use of authentication in systems with stream ci- 
pher encryption is crucial because of the easy malleability of the plaintext through 
the corresponding ciphertext (e.g., flipping ciphertext bits is equivalent to flipping 
the same bits in the plaintext). In addition, authentication is required for validation 
of correct decryption and for detection of key synchronization loss. An important 
aspect related to stream ciphers is that these systems are often chosen for imple- 
mentation (especially in hardware) because of their simplicity and efficiency. In 
such a case an equally simple and efficient authentication algorithm is required. 
OUT constructions are intended t o  f i l l  this need. 

The first scheme we analyze is the cryptographic version of the well-known 
cyclic redundancy codes (CRC) used for non-cryptographic detection of information 
errors. It is based on the same operation of polynomial modular division and retains 
most of the simplicity of the regular CRC’s except that in our case the dividing 
polynomial is variable. We prove the construction to be secure for authentication 
using the general results developed in Section 2. 

The second construction is based on the well-known hashing technique that mul- 
tiplies the data (seen as a binary vector) by a random matrix [5, 61. This technique 
requires m - n random bits for specifying a hash function from m-bit messages into 
n-bit hash values which is prohibitive for many applications (e.g. large message 
and file authentication). Here, we show that essentially the same hashing and au- 
thentication effect can be achieved by choosing just n random bits and a random 
irreducible polynomial of degree n and then generating a Toeplitz matrix out of 
these initial values by a simple linear feedback shift register. In typical applications 
n << m (n is the security parameter), and therefore the resultant savings (includ- 
ing number of random bits, size of hash description, key length) is enormous. It 
also makes possible the implementation of this technique in hardware as required 
in some authentication (and other hashing) applications. 

Our constructions achieve up to small constants the known lower bounds on size 
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of description and number of functions in the hash family. This is an important 
factor for the practicality of these constructions as they influence, for example, the 
amount of hardware required in their implementation. As a n  example, a single 64 bit 
LFSR will be used to authenticate 1 Gbit of information with a failure probability of 
less than 2-30. (We stress that both of our constructions can be applied to variable 
length messages). 

We also mention that it is possible to extend our LFSR-based Toeplitz construc- 
tion to  general c-biased sequences [15, 11 of which LFSRs are a particular case. 

RELATED WORK. Unconditionally secure authentication codes have been extensively 
studied in the literature (see [18] for a survey). Pioneering works were Gilbert, 
MacWilliams and Sloane [8], Carter and Wegman [21] and the foundational work by 
Simmons (see [17, 181). Carter and Wegman were the first to  interpret and construct 
authentication codes through hash functions. They also were first to show how one- 
time pad systems can be used in combination with hash functions to  construct 
efficient authentication algorithms. This approach was further studied by Brassard 
[4] and Desmedt [6]. Our work follows and refines this line of research. 

The hashing approach for unconditional authentication was further developed 
by Stinson [19] who presents improved constructions and lower bounds on the size 
of the required hash families. More recently, Bierbrauer, Johansson, Kabatianskii 
and Smeets [ll, 21 and Gemmell and Naor [7] generalize and improve on the above 
works by noticing and exploiting the connection between hash functions and error 
correcting codes. 

Works that directly use stream ciphers in their constructions of cryptographic 
checksums are Lai, Rueppel and Woollven [12] and Taylor [20]. Contrary to our 
approach, [12] uses for the checksum computation a number of pseudorandom bits 
equal to the number of message bits. In our construction the number of pseudo- 
random bits depends linearly on the security parameter (usually much smaller than 
the information size) and grows only logarithmically with the message length. The 
approach in [20] is essentially to generate a new member of a hash family for each 
message using the pseudorandom generator of the stream cipher. In our case, we 
reuse the same hash function for multiple messages and use the pseudorandom 
generator only for generating encryption pads for the hash values. 

A very recent and independent paper by Johansson [lo] uses a LFSR to gen- 
erate an authentication matrix. However, that construction, as well as its goals, is 
essentially different from ours. Most notably, it requires a LFSR (and then also a 
key) of the length of the message itself as opposed to  just the length of the security 
parameter as in our case. 

2 Hash Functions and Message Authentication 

In this section we introduce the basic concepts regarding hash functions as required 
in the context of message authentication, and the notion of security for the authen- 
tication functions. We also characterize the exact requirements from a hash family 
to be secure when combined with a one-time pad system. 
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2.1 Hash Funct ions  

Def in i t i on l .  An (m, n)-family H of hash functions is a collection of functions that 
map the set of binary strings of length m into the set of binary strings of length n. 

Nota t ion :  The notation s ER S denotes that the element s is chosen with uniform 
probability from the set S .  The expression Prh(A(h))  denotes the probability of 
the event A(h)  when h ER H ,  and H is a (usually implicit) set of hash functions. 
We will use MI M‘, etc., to denote arguments or inputs for the functions in the 
family H. When it is clear from the context, and for the sake of readability, we will 
omit explicit reference to the lengths of these inputs. We will usually denote the 
output of the hash functions by c. 

A property of some hash functions that simplifies their analysis is being linear 
relative to the bitwise exclusive-or operation. This property is found in many natural 
constructions (including ours). 

Definit ionZ. A family of functions H is $-linear if for all M ,  M’ we have h(M @ 
M’) = h ( M )  @ h(M’). 

The following property of a family of hash functions has a central role in our 
work, it states that elements are mapped into their images by these functions in a 
“balanced” way. Its importance in our context is given by Theorem 6. 

Definit ion3. A family of hash functions is called &-balanced if 

V M  # 0, c ,  P r h ( h ( M )  = c )  5 E .  

2.2 Message  Au then t i ca t ion  

We assume a typical communication scenario in which two parties communicate over 
an  unreliable link where messages can be maliciously altered. The communicating 
parties share a secret key unknown to the adversary. 

For simplicity we start assuming that the parties exchange (using that secret 
key) only one message of length m. In that case, the secret key consists of the 
description of a particular hash function h drawn randomly from an  (m, n)-family 
of hash functions and a random pad T of length n. The sender of the  message 
MI sends M together with the “tag” t = h ( M )  @ r ,  which at reception will be 
recomputed and checked for consistency by the receiver. 

Although in the above scheme the authentication tag looks completely random 
to an  adversary, and therefore it learns nothing about the specific hash function, 
it still can use its knowledge of the hash family to try to modify consistently the 
message and corresponding tag such that the message alteration is not discovered. 
Indeed, if the family H of hash functions is not chosen carefully such an  attack i s  
possible (see Section 3.1). Here we derive a necessary and sufficient condition on H 
to make the success probability of any attack no more than a pre-specified value E. 

Let M be a message of length m authenticated with the tag t = h ( M ) @ r ,  where 
h ER H and r E R  (0, I)”. We say that an adversary that sees M and t succeeds in 
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breaking the authentication if it finds M' and t', where M' is different than M and 
t' = h(M')  @ r .  We assume that the adversary knows the family of hash functions, 
but not the particular value of h or the pad r .  

Definition4. A family H of hash functions is called c-otp-secure if for any message 
M no adversary succeeds in the above scenario with probability larger than E .  

Usually the value of E for a given family of hash functions will depend on the 
parameters of this family (e.g. input and output size). The following theorem char- 
acterizes those families of hash functions that are c-otp-secure. 

Theorem 5. A necessary and suff icient condi t ion  f o r  a f a m i l y  €l of h a s h  f u n c t i o n s  
t o  be E-otp-secure is t h a t  

VM, # M2, c, Prh(h(M1) CB h(M2) = c )  5 c .  

Proof Ske tch .  The pair ( M I ,  t l )  is successfully replaced by the pair (Mz, t 2 )  only if 
for the secret and random h and r used by the communicating parties we have tl  = 
h ( M i ) @ r  and t z  = h ( M z ) @ r ,  or equivalently, t1@tz = h(M1) $ h(M2). Therefore, 
the success probability of the adversary is bounded by maxM,,M2,c Prh(h(M1) @ 
h(M2) = c )  where c represents the difference t l @  t 2 .  Notice that this success prob- 
ability is achievable whenever the transmitted message is one of the messages in 

As an immediate consequence we have the following theorem that is the main 
which the maximum is attained (just replace ( M I ,  t l )  by (M2,  t l $  c)). 0 

tool for proving the security of our constructions. 

Theorem 6. I f  H i s  @-linear t h e n  H is c-otp-secure if and on ly  if H is &-balanced. 

Therefore, in order to prove the security of a particular family of hash functions 
for implementation of a message authentication scheme of the above kind (i.e., 
combined with a one-time pad) it is sufficient (and necessary) to show that the 
family has the condition stated in Theorem 5. In case the family is also $-linear 
one has to prove it to be E-balanced. 

In the typical scenario where the parties exchange multiple messages, the hash 
function h can be reused for the different messages, but for each new message a 
different random pad (each of length n) will be used for encryption of the hash 
value. In this case, if the hash family is .c-otp-secure then the success probability of 
an adversary that tries to modify a single message is still a t  most E. Indeed, the fact 
that the adversary sees many pairs of messages and corresponding tags is useless 
since these tags are completely random and therefore give no information on the 
value of h. If the adversary can modify k of the transmitted messages its probability 
of success is bounded by kE. 

When authenticating multiple messages with the same hash function, it is de- 
sirable that this function be applicable to variable length messages (as is the case 

' We choose the term otp-security to stress the essential role of the one-time pad (otp) 
added to the hash value for the security of the authentication scheme. 
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for our constructions). In this case the adversary’s success probability depends on 
the total length of messages he or she modifies. 

Remark: The above definitions of security are stated in unconditional terms (i.e., 
against any adversary). This requires the communicating parties to exchange truly 
random pads (of the size of the hash output) for each transmitted message. In 
most practical applications, however, the successive pads T will be generated using 
a pseudorandom generator out of a secret seed shared by the parties. In this case the 
security of the authentication scheme reduces to the security of the pseudorandom 
generator or stream cipher in use; and the computational power of the adversary is 
assumed to be bounded depending on the security model of the stream cipher. 
From a practical point of view our approach to message authentication is especially 
advantageous in systems implementing stream cipher encryption of the transmitted 
information. In these cases the hash value computed on the message is appended to 
the message before transmission and the combined information is then encrypted 
using the stream cipher. 

3 Constructions 

We present two simple and practical constructions of @-linear hash functions that 
are &-balanced with E being exponentially small in the length of the hash value, and 
therefore suitable for information authentication in the sense described in Section 2. 
Both schemes can hash variable length messages. 

3.1 Cryptographic CRC 

The first construction is based on the operation of division modulo an irreducible 
polynomial over GF(2). It is a cryptographic variant of the well known Cyclic Re- 
dundancy Codes (CRC) which are commonly used as a standard error detection 
mechanism in data networks. CRC’s are used to detect non-malicious errors and 
therefore there is no need for a secret key or even a family of functions; they are 
implemented as a fixed, public function. The simplicity of implementation and prov- 
able properties of these constructions have made them so popular; many of these 
advantages are inherited by the stronger cryptographic version. 

To our knowledge, the first to use these functions in the cryptographic setting 
was Rabin [16] who proposed their use for fingerprinting information. As opposed 
to Rabin’s application where the fingerprint value is kept secret, our setting requires 
the transmission of this value. Interestingly enough, even if one encrypts the fin- 
gerprint before transmissiom using a perfect one-time pad that scheme is insecure 
for message authentication. The construction presented here introduces a seemingly 
minor technical modification that solves that problem. 

In what follows we will explicitly or implicitly associate each binary string S 
with the polynomial S(z),over GF(2) with coefficients corresponding to the bits of 
S. 
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THE CONSTRUCTION (Cryptographic CRC): We define an (m, n)-family of hash 
functions as follows. For each irreducible polynomial p ( z )  of degree n over GF(2) 
we associate a hash function h,, such that for any message M of binary length m, 
h,(M) is defined as (the coefficients of) M ( z )  - zn mod p ( z ) .  

&bin's construction is essentially the same except for the multiplication by the 
zn factor in the modular operation (that has the practical effect of shifting the 
message by n positions). Without this change the resultant hash family is only 
1-balanced, and therefore breakable with probability 1. (The flipping of any bits 
among the n least significant bits of the message and the same bits in the encrypted 
authenticator will be undetected; even if the message itself is encrypted under a one- 
time pad!). After its modification we can prove that the proposed scheme is secure 
for authentication when combined with a one-time pad or secure stream cipher. 

Theorem7. For any  values of n and rn t h e  above defined f a m i l y  of hash  func t ions  
is @-linear and  &-baZanced for E 5 s, and therefore c-otp-secure.  

Proof. The CRC family is $-linear since division modulo a polynomial is a linear 
operation where addition is equivalent to a bitwise exclusive-or operation. To show 
that the family is also &-balanced notice that for any polynomial p ( z )  of degree n, 
any non-zero message M of length m and any string c of length n, 

h,(M) = c iff M ( z ) .  zn mod p ( z )  = C(Z) iff p ( z )  divides M ( z )  - zn - ~ ( z ) .  

Denote q(z)  = M ( z )  - z" - c(z). Clearly, q(z)  is a non-zero polynomial of degree (at 
most) m + n, and p ( z )  is an irreducible polynomial of degree n that divides q(z). 
Because of the unique factorization property there are at  most irreducible 
factors of q(z)  each of degree n. In other words, there are a t  most hash functions 
in the CRC family that map M into c. On the other hand, there are more than 
2"-1 
- n elements in this family (as the number of irreducible polynomials over GF(2) 
of degree n). Therefore, Prob(h,(M) = c )  5 = H. 0 

The practical consequence of this theorem and Theorem 6 is that one can safely 
use this very practical method of hashing for cryptographic authentication when 
combined with a cryptographically strong pseudorandom generator (i.e., secure 
stream cipher). We briefly consider some practical aspects of this construction. 
VARIABLE-LENGTH MESSAGES. The hash functions in the CRC family are essentially 
defined by the polynomial p ( z )  and not by the length of the messages. Therefore, 
they can be applied to messages of different lengths as it is desirable in practice. In 
this case, one has to treat the polynomial M ( z )  corresponding to the message M 
as having a leading coefficient '1' (i.e., if M is of length m, then M ( z )  is of proper 
degree m). This determines a 1-1 mapping between messages and polynomials and, 
in particular, prevents changing the message by just appending zeros to it. Also, the 
value of E in Theorem 7 depends on m being the maximum size of the fake message 
inserted by the adversary rather than by the length of the original message. 
HARDWARE IMPLEMENTATION. Implementing the above hash functions in hard- 
ware is simple and very efficient. The operation of division modulo a polynomial 
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over GF(2) is implemented through a simple linear feedback shift register with taps 
or connections determined by the dividing polynomial. Since this same operation 
is used for standard CRC’s there are plenty of references in the literature on its 
implementation. (Even the multiplication by 5‘‘ in our construction is implemented 
in many cases without penalty in hardware or performance). However, recall that 
in the standard CRC the dividing polynomial is fixed and known in advance, and 
most circuits that implement it have the particular taps hardwired into the circuit. 
A cryptographic CRC as proposed here needs an implementation where the connec- 
tions (determined by the polynomial) are programmable. The actual value for these 
connections is the key for the hashing which should be changeable (and secret). We 
stress that CRC circuits with variable connections are already designed even for 
implementation of regular CRC’s. One reason for that is the need to  support differ- 
ent CRC standards (each one determines a different polynomial), and in particular 
different polynomial degrees. See (31 for one such example. 
SOFTWARE IMPLEMENTATION. Efficient implementations of CRC’s in software ex- 
ist too. In these implementations significant speed up is achieved by using pre- 
computation tables. These tables depend on the particular key polynomial. There- 
fore, they are computed only once per key which is affordable in many applications. 
CHOOSING KEYS. The keys for the cryptographic CRC functions is a random irre- 
ducible polynomial. The time complexity of generating such a polynomial of degree 
n is O(n3)  bit operations or, in a software implementation, O(n2) word operations 
(mostly XOR’s and SHIFT’S). Therefore, it is efficient enough for applications (as 
suggested here) where the key is changed only sporadically (e.g. a t  the beginning of 
a network session). Algorithms for generating random irreducible polynomials can 
be found in [9, 161. 
A NOTE OF CARE. Efficient stream ciphers (especially in hardware) sometimes use 
constructions based on LFSRs. In these cases using a cryptographic CRC is espe- 
cially attractive because of the similar hardware structure. However, the security of 
these stream ciphers (as any other encryption system) is claimed only heuristically. 
Therefore, special care and attention need to  be devoted to the interaction between 
these constructions. 

3.2 LFSR-based  Toeplitz 

Our second construction is based on the following hashing method that uses random 
binary matrices. Let A be an n x m Boolean matrix. Let M be a message consisting 
of m bits. Define ~ A ( M )  to be the Boolean multiplication of the matrix A by 
the column vector composed of M’s bits. Carter and Wegman [5] showed that the 
family of functions { h ~  : A is a n x m Boolean matrix }, is a universal2 family of 
hash functions. This family is according to  our terminology &-balanced for E = 2-”, 
and then its affine version (namely, h ’ ~ , b ( M )  = A .  M + b, where b is a binary vector 
of length n) is strongly universal2. 

The description of such a hash function takes n - m  bits (or n(m+ 1) in the affine 
case). A related family with the same properties as above but with much smaller 
description is obtained by restricting the Boolean matrix A to be a Toeplitz matrix. 
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These are matrices where each left-to-right diagonal is fixed, i.e., if k - i = 1 - j 
for any indices 1 5 i , k  5 n, 1 5 j , l  5 rn, then Ai,j = Ak,,. (For a proof of 
the universality of these hash functions see e.g. [14]). Notice that by defining the 
first column and first row of the matrix all other entries are uniquely determined. 
Therefore, only m + n - 1 bits define the whole matrix, a significant savings relative 
to the n * rn bits necessary to describe the original family. However, even these 
functions require a description that is as long as the input (or message) to be 
hashed. When these inputs are significantly longer than the required output (i.e., 
the security parameter) then this description can be prohibitively expensive. 

Our construction modifies the above Toeplitz family by restricting it even more. 
Indeed, we use Toeplitz matrices where consecutive columns are the consecutives 
states of a LFSR of length n. To see that such a construction is indeed a Toeplitz 
matrix just notice that Toeplitz matrices are characterized by the property that 
each column in the matrix is determined by shifting (down) the previous column 
and adding a new element to the top of the column. Therefore in our construction a 
function is specified by defining a particular LFSR (i.e., its connection polynomial) 
and its initial state, a total of 2n bits (recall that usually n << m). Interestingly 
enough, by limiting the connections of the LFSRs to irreducible polynomials our 
construction keeps most of the strength of the original Carter-Wegman family but 
with a much shorter description size. The price we pay is that  our functions are 
only &-balanced for a small E instead of being perfectly balanced as the original. For 
the purpose of authentication this small E represents no substantial loss, while the 
lower description size makes them significantly more practical. 
THE CONSTRUCTION (LFSR-based Toeplitz): Let p ( z )  be a n  irreducible polyno- 
mial over G F ( 2 )  of degree n. Let s o I s l ,  . . .  be the bit sequence generated by a 
LFSR with connections corresponding to  the coefficients of p ( x )  and initial state 
so, s1,. . . , ~ ~ - 1 .  For each such polynomialp(z) and initial state s # 0 we associate a 
hash function hp,3 such that for any message M = MOM1 . . . illm- 1 of binary length 
m, h p + ( M )  is defined as the linear combination @y=il Mj . ( s j ,  s j+l . .  . s j + , , - ~ ) .  

In simple words, the LFSR advances its state with each message bit. If this bit 
is ‘1’ the corresponding state is accumulated into an accumulator register, if it’s ‘0’ 
the state is not accumulated (see Figure 1). 

The main technical theorem regarding this construction is the following charac- 
terization of LFSR-based Toeplitz hashing. The proof is omitted from this abstract. 

Theorem& Le t  p ( x )  be a n  irreducible polynomial of degree n over GF(2) and le t  
s = (so,. . ., ~ ~ - 1 ) ~  be an init ial  state for the L F S R  defined by the connection poly- 
nomiaZp(x ) .  Let  M be an m-bit long message. Let  X I ,  Xz, . . . , A, be the  n (dif lerent) 
roots o f p ( x )  (over GF(2,,)). Then ,  

hp , , (M)  = B D M ~ ~ B - ~ S  

where B is a non-singular n x n m a t h  which depends o n  p(x) only and D M , ~  is 
a n  n x n diagonal ma t r i z  wi th  M(A;), 1 5 i 5 n, as i ts  i-th diagonal entry.  

From this we can derive that our construction has the required &-balanced prop- 
erty. 
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Shlft Register 

enabler 

Amtintlator 

Fig. 1. A schematic implementation of the LFSR-based Toeplitz hashing 

Theorem 9. T h e  LFSR-based Toeplitz construction defined above i s  €-balanced for 
m &I-. 

Proof. Fix a message M # 0 and a hash value c .  We need to bound the probability 
that hp, , (M) = c for randomly chosen irreducible polynomialp(r) and initial state 
s # 0. We use Theorem 8 and the fact that  M ( s )  has a common root with p ( r )  if 
and only if p ( r )  divides M ( z ) .  We distinguish between two cases according to the 
value of c. 
Case I: Let c = 0 (i.e., c is the all-zeros vector). Since we choose s # 0 then 
h P , 6 ( M )  = 0 may happen only if D M , ~  is singular (the matrices B and B-' are 
not). This is the case only if for some i, M(X;)  = 0, or equivalently only if p ( z )  
divides M ( z ) .  The probability of such an  event is at most as the number of possible 
irreducible factors of M ( z )  divided by the total number of irreducible polynomials 
of degree n, i.e. at  most 
Case 11: Let c # 0. In order for hp,*(M)  to equal c,  we need D M , ~  to be non- 
singular and s be the unique vector that  is mapped by BDM,pB-l into c. The 
vector s assumes this value with probability of &, and therefore h p , s ( M )  = c 
happens with at most this probability. 

and then our 

= +. 

In  either case the probability that hPlS(M) = c is a t  most 
construction is *-balanced. 0 

PRACTICAL CONSIDERATIONS. Most of the remarks in Section 3.1 regarding prac- 
tical implementation of CRC's hold here. We just stress that  the decoupling of 
the LFSR from the data and having a shift register without modifications between 
internal stages (see Figure 1) permits significant parallelism and pipelining in the 
LFSR implementation which is crucial for achieving very high speeds and can be 
advantageous relative to the CRC construction. Notice that the LFSR-based con- 
struction can be used also for the same non-cryptographic applications where the 
CRC is regularly encountered. 
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