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Abstract. A computer disk drive’s motor speed varies slightly but irreg- 
ularly, principally because of air turbulence inside the disk’s enclosure. 
The unpredictability of turbulence is well-understood mathematically; it 
reduces not to computational complexity, but to information losses. By 
timing disk accesses, a program can efficiently extract at least 100 inde- 
pendent, unbiased bits per minute, at no hardware cost. This paper has 
three parts: a mathematical argument tracing our RNG’s randomness 
to a formal definition of turbulence’s unpredictability, a novel use of the 
FFT as an unbiasing algorithm, and a “sanity check” data analysis. 

1 Introduction 

Secure PRNG design commonly rests on computational complexity [a, 5 ,  6 ,  13, 
241, but none of the underlying problems has been proven to  be hard. Specialized 
hardware can provide naturally random physical noise, but has disadvantages: 
dedicated devices tend to  be expensive; natural noise tends to  be biased and 
correlated; hardware failure can silently suppress randomness; and physical ran- 
domness is only an article of faith. Our random number generator, which is 
based on disk-speed  variation^,^ addresses each of these problems. Timing data  
are very low-cost, easily whitened , reliable, and mathematically noisy. 

I/O randomness is well-known in cryptography [17], and a spinning-disk RNG 
was used even 50 years ago [ll]. Still, our approach is subtly novel, because a disk 
drive combines three important features most economically. First, the OS detects 
and reports disk faults, so that silent randomness failures are unlikely. Second, 
unlike most other 1/0 devices, the disk can be secured from outside influence 
and measurement. Last ,  nonlinear dynamics gives us an a priori mathematical 
argument for our generator’s randomness. This has not been possible for other 
noise sources, which rely on a posteriori statistical measurements. 

This paper has three parts. First, we trace the disk’s speed-variations to  
air turbulence, and we show why these variations can show only short-term 
correlations. Second, we show that the FFT removes bias and correlations from 
the disk’s timing-data. Third, we describe our “sanity check” analysis of some 
timing-data and Ihe resulting random numbers. 

* Affiliations during this work: MIT Project Athena, MIT Stat. Ctr., MIT LCS, resp. 
Disk drives use brushless DC motors [lo, 181, so these speed variations are indepen- 
dent of the AC line frequency. 
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2 Turbulence in Disk Drives 

In this section, we review studies demonstrating turbulent air flow in disk drives. 
Oversized mockups have clarified the various turbulent flow regimes inside a disk 
drive, and have shown how rotational speed, disk spacing, and cooling flow affect 
the flow [l]. The apparatus was a stack of l-meter glass disks, spun in a water 
tank at low speeds (5 - 60 rpm). A close-fitting cylindrical shroud enclosed 
the disks, and 50 cm.-diameter hubs separated them, to closely model typical 
modern disk drives of various sizes. Dye and bubbles made the flows visible, and 
a rotating video camera recorded the results. Our disk’s speed and configuration 
were similar to  those studied. 

Turbulence arose at the readlwrite heads and their support arms, in Coriolis 
circulation between the disk surfaces, and in Taylor-Couette flow at the disks’ 
rims. Crucially, the T-C flow pumped turbulence into the Coriolis flow. Numer- 
ical simulation of disk flow showed similar turbulence patterns [21], and yielded 
an estimate of 3% for the consequent fluctuations in the windage torque. This 
is clearly large enough to influence the disk’s speed. 

Spectral measurements of the fluid velocity showed both sharp peaks and 
broadband features [l], reflecting weak turbulence: very noisy motion with a 
periodic component [3]. The spectra were taken at various rotational speeds, 
but, the peaks always contained only a small proportion of the spectral power, 
rising only a factor of 2-3 above the white-noise background. This broadband 
spectral component was maximized at Reynolds numbers near those commonly 
found in disk drives. 

The classic Taylor-Couette (T-C) flow experiment models a disk drive’s dom- 
inant turbulence pretty well: a tall cylinder spins inside a fluid-filled glass sleeve, 
which displays the fluid’s toroidal convection. Laser-Doppler velocimetry exper- 
iments have precisely measured the fluctuating convection in T-C flow [9]. The 
flow changed from periodic to quasiperiodic, and then abruptly to  weakly tur- 
bulent, as the fluid’s velocity was gradually increased. This development was 
consistent with a formal model of weak turbulence in simple quasiperiodic sys- 
tems: 

Theorem 1 (Newhouse, Ruelle, Takens, 1978 [14]). “Let ‘u be a constant vector 
field on the torus Tn = Rn/Zn. If n 2 3 ,  every C2 neighborhood of v contains 
a vector field v‘ with a strange Axaom A attractor. I f  n 2 4,  we may take C” 
instead of C2.” 

Here, the torus T” does not represent the toroidal T-C vortices directly, but is 
a simple dynamical system’s phase space. “Axiom A”5 refers to  a formal defini- 
tion of dynamical systems that show a close mixture of periodic and turbulent 
behavior. (For the definition of Axiom A flows and attractors, see [15].) 

The finite-dimensional Axiom A formalism can’t apply directly to  Navier-Stokes 
infinite-dimensional phase flows. The machinery of inertial manifolds, though, has 
shown that bounded-velocity flows have finite-dimensional attractors [20]. 
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Even weak turbulence is sufficiently random for our purposes, because it 
shows sensitive dependence on initial conditions (SDIC). (Theorem 1’s Axiom A 
result implies SDIC.) Somewhat formally, a phase-space flow ft  : S --+ S has the 
SDIC property if 3 an attractor A c S s.t. Vx E A ,  V small U 3 2, the diameter 
of f t  (V) increases exponentially with time [15]. Informally, to  completely forecast 
a system that shows SDIC, we must specify its parameters and initial conditions 
with infinite precision; measurement limitations limit the forecast to short-term 
accuracy [3]. Thus, it is not computational complexity, but information losses in 
measurement, that prevent effective prediction in such physacal systems. 

3 Converting Access-Times to Random Numbers 

In Section 2, we showed that the disk’s speed variations show sensitive depen- 
dence on initial conditions (SDIC). Even so, the disk’s access-times are still 
strongly structured, biased, and correlated, so they clearly cannot directly simu- 
late a tossed coin. Some solutions to this problem [4, 231 make assumptions that 
don’t fit our noise source. Semi-randomness [16, 22, 81 successfully formalizes 
imperfect randomness, but is restrictively pessimistic because it requires two 
sources. This motivates our use of the FFT. In this part of our paper, we show 
that the FFT is a good unbiasing algorithm, and that SDIC justifies this use of 
the FFT. In presenting these results we follow Brillinger [7]. 

Let ( X I , .  . . , X k )  be a vector of random variables. The joint cumulant of kth 
order, cum ( X I , .  . . X k ) ,  is defined as the coefficient of ik t l  , , . t k  in the Taylor 
series expansion of the logarithm of the characteristic function of ( X I ,  . . . Xk) 
about the origin. For a stationary time-series X t  with E IXtl < 00, we define 
the joint cumulant function of order k to be 

k 

c x  ... x ( t l , . . . , t k - l )  = cz lm(Xt , , . . . ,X t ,  _ , ,Xo)  (1) 
The cumulant is thus the mean of a polynomial function of k staggered copies 
of the time-series Xt, and its parameters t i  describe the copies’ offsets. The 
cumulants represent the dependencies present in X t  . The requirement that these 
dependencies fall off over time is known as a mixing condition. Our use of the 
FFT as an unbiasing algorithm rests on the following mixing assumption. 

Assumption2. The time series X t  possesses moments of all orders and its 
cumulant functaons satisfy 

t l  t k - 1  

In our case, the disk-timing data X t  are bounded, so the cumulants do exist. 
Define the power spectrum and the finite Fourier transform, respectively, as 

oo 

t=-oo 

T-1  

t = O  
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where V denotes a T-vector ( X O ,  . . . , X T - ~ ) .  Then 

Theorem 3 (Brillinger, 1981 [7]). Let X t  be a stationary t ime series which sat- 
isfies Assumption .!?, and let , . . . , & be distinct values in the interval [O, 2n] 
s . t .  X j  # 0 ,  A ,  2 ~ .  Then as T + 00, the values G(Xj) converge a.symptotically 
to independent (complex) normal random variables with mean 0 and variances 
equal to 2nTfxx (X j ) .  

As an immediate consequence it is clear that the phase angles d j  = arg (4 (X j ) )  
are asymptotically independent and uniformly distributed on the interval [0 , 2n]. 

Theorem 3 is a generalization of the Law of Large Numbers. Like the L.L.N., 
it grants perfect normality only in hhe limit as T --+ 00, so the spectral distribu- 
tions are only approximately normal. Another price of the theorem’s generality 
is that the output distribution converges only pointwise to the desired joint nor- 
mal. Lacking convergence-rates, we must measure how well the spectra approach 
normality, so that we can choose a practical spectrum-length T .  

To feed the FFT, we filtered and decimated our raw disk-periods to re- 
move some obvious quantization structure. We discarded the FFT’s predictable 
spectral lines at Xo, X T / ~ ,  X T I ~ + ~ , .  . , , A T .  Note that if we take from this al- 
gorithm more bit,s than we feed into it, we run the risk that the mapping 
arg(d;r)) : V + [ 0 , 2 ~ ) ~ / ~  can be inverted, even if we only keep part of the 
spectrum as random numbers. 

We claim that disk accesstimcs satisfy Assumption 2. No statistical test can 
justify such a claim, so we will argue instead that the cumulants’ decay follows 
from SDIC. The N.R.T. theorem ensures exponentially-damped autocorrelation 
[14], but says nothing about higher-order correlations. 

The mixing condition is formally very different from SDIC, but their mean- 
ings are similar: loosely, both put limits on how measurements can aid prediction 
of the system’s long-term behavior: 

- SDIC means that measwred initial conditions are insufficient; 
- mixing means polynomial functions of past measurements are insufficient. 

To see that SDIC implies our mixing condition, suppose that a cumulant of order 
k fails to decay, so that arbitrarily long-term dependencies can exist among k 
measurements of the time series. Then n < k early measurements can suffice to 
predict some function of lc - n later measurements’ values, for some arbitrar- 
ily large separations between the two groups. The n early samples, though, all 
have limited accuracy, and cannot specify the underlying system’s state with 
infinite precision. Thus, we’ve contradicted the SDIC property: the first n sam- 
ples specify a range of initial conditions, whose consequences are recurrently and 
significantly parallel. 
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4 Statistical Analysis 

In this section we summarize two data analyses, as “sanity checks.’’ We tested: 

- our measured access-times, to ensure that noise was present. 
- the RNG’s product, for several deviations from randomness. 

We call these measurements sanity checks, because our argument for the disk’s 
value as a noise-source actually rests on the mathematical properties of the 
disk’s air turbulence, and not on our observations. These tests’ failure would 
have disproven our claim that the disk’s motion reflects turbulent flow. 

For our measurements, we used an IBM RT/PC desktop workstation and a 
Micropolis 1320 series 40 Mb hard disk with nonremovable 5.25 inch media. A 
permanent-magnet brushless DC motor turns the disk spindle at a nominal rate 
of 3600 r.p.m. The motor’s phase-locked loop stabilizes the rate to f 0.03’36, 
which amounts to a positional accuracy of 5 psec. [19]. 

The workstation’s operating system was MIT Project Athena’s port of 4.3bsd 
UNIX, with machine-dependent routines from the IBM Academic Information 
Systems release. For our tests, we debugged the UNIX kernel’s microtime() 
subroutine, and we modified the disk-scheduler software to record the time at  
each disk-access’ initiation and completion. We were particularly careful to avoid 
disturbing the spindle’s speed with head motion. During experimental sessions, 
the workstation ran “standalone,” isolated from the MIT network, with no time- 
synchronization software or other inessential processes running. Sessions lasted 
from 30 minutes to  8 hours. To measure disk-speed fluctuations, we repeatedly 
read a chosen disk block, and recorded each access-completion time. This entails 
so little software overhead that we could read the block on every rotation, so 
the completion-time differences gave a running account of the disk’s period. The 
RT’s 1024 Hz. hardware clock limited our measurement precision to -1 msec. 

Our measurements were consistent with the 5 psec variation. We considered 
a variety of influences whose timing effects might resemble rotational latency: 

~ delays within the disk controller, 
- bus arbitration, 
- instruction and 1 / 0  caching effects. 

We believe that the RT’s very simple disk controller and interrupt mechanism 
make these effects negligible. Our analysis of 1.7 million disk-periods showed 
that some noise was present in the variation, its auto-correlation fell off within 
5 seconds, and its entropy amounted to about 100 bits/minute [12], enough for 
2,600 highly random DES keys/day. 

From 100,000 access-times, and using an FFT vector-length T = 1000, we 
gathered -50,000 complex-valued spectra, and found that 

- the real and imaginary parts passed various Q-Q plot normality tests; 
- the angles passed various runs tests, and their a.c.f showed no correlation; 
- the angles’ 64 bits were pairwise uncorrelated. 

We by no means intend these tests to be definitive, because we take it for granted 
that a posteriori arguments for randomness are inconclusive. 
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5 Conclusion 

Experiments by ourselves and others show that the disk’s speed fluctuates mea- 
surably because of air turbulence and other factors. Our random number gener- 
ator uses the FFT algorithm to convert the measured variations into uniformly- 
distributed and independent variables. In a “worst-case” experimental scenario, 
we have measured 100 bits/min of entropy in a quiescent disk’s speed variation. 

We have also sketched a mathematical justification for our claim that our 
generator’s product is truly random. In summary, 

1. Disk drives have Taylor-Couette turbulence [l]; 
2. The N.R.T. theorem applies to Taylor-Couette turbulence [9]; 
3. N.R.T. theorem 
4. SDIC 3 cumulants decay [Section 31; 
5 .  Cumulants decay =+ independent, normal spectra [7]. 

Sensitive dependence on initial conditions [14]; 

Turbulence’s unpredictability is formally and experimentally well-founded in 
nonlinear dynamics. The SDIC criterion ensures that disk access-times satisfy a 
statistical mixing condition, which in turn ensures that the time-series’ spectra 
are nearly independent, nearly normal variables. Sanity check statistical analy- 
ses, of disk periods and their spectra, are consistent with our argument. 

Our experimental scenario is unrealistically constrained, but yields enough 
random bits to meet a large installation’s key-service needs. We believe we could 
amplify this high-quality entropy by allowing the head’s motion, the disk sched- 
uler, and spindle-speed variations to influence each other synergistically. Other 
hardware noise-sources offer more bandwidth, but this one costs nothing, so our 
“per bit” price is very competitive. 
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