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Abstract. This paper describes a new differential-style attack, which
we call the boomerang attack. This attack has several interesting ap-
plications. First, we disprove the oft-repeated claim that eliminating
all high-probability differentials for the whole cipher is sufficient to gu-
arantee security against differential attacks. Second, we show how to
break COCONUT98, a cipher designed using decorrelation techniques to
ensure provable security against differential attacks, with an advanced
differential-style attack that needs just 216 adaptively chosen texts. Also,
to illustrate the power of boomerang techniques, we give new attacks on
Khufu-16, FEAL-6, and 16 rounds of CAST-256.

1 Introduction

One of the most powerful cryptanalytic techniques known in the open literature
is differential cryptanalysis [BS93]. Differential analysis has been used to break
many published ciphers. It is understandable, then, that block cipher designers
are typically quite anxious to ensure security against differential style attacks.

The usual design procedure goes something like this. The algorithm designer
obtains somehow an upper bound p on the probability of any differential charac-
teristic for the cipher. Then the designer invokes an oft-repeated “folk theorem”
to justify that any successful differential attack will require at least 1/p texts to
break the cipher, which is supposed to allow us to conclude that the cipher is
safe from differential attacks.

Unfortunately, this folk theorem is wrong. We exhibit an attack—which we
call the boomerang attack—that can allow an adversary to beat the 1/p bound in
some cases1. In particular, if the best characteristic for half of the rounds of the
cipher has probability q, then the boomerang attack can be used in a successful
attack needing O(q−4) chosen texts. In some cases, we may have q−4 � p−1, in
which case the boomerang attack allows one to beat the folk theorem’s bound.
Also, boomerang attacks sometimes allow for a more extensive use of structures
than is available in conventional differential attacks, which makes boomerang
techniques more effective than the preceding discussion might suggest.
1 Note that Biham et al.’s impossible differentials [BBS98,BBS99] also disprove the

folk theorem. They show that if one can find a differential of sufficiently low proba-
bility, the cipher can be broken. However, the boomerang attack in fact lets us make
an sharper statement: even if no differential for the whole cipher has probability
that is too high or too low, the cipher might still be vulnerable to differential-style
attacks.
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Cipher (Rounds) Our Attack
Data Complexity Time Complexity

COCONUT98 (8) 216 CP 238

Khufu (16) 218 CP 218

CAST-256 (16) 249.3 KP 249.3

FEAL (6) 4 CP -

KP — known-plaintext, CP — adaptive chosen-plaintext/ciphertext.

Table 1. Summary of our attacks.

We give a surprisingly sharp example of this possibility in Sections 3–5 below,
where we show how to break COCONUT98 [V98] with just 216 chosen texts and
238 work, despite a proof that the best characteristic for the whole cipher must
have probability p ≈ 2−64. Our attack makes crucial use of a characteristic for
half of the cipher with probability q ≈ 2−4. This shows that the folk theorem
can fail spectacularly, even for real-world ciphers.

We also extend the boomerang attack to use techniques from truncated dif-
ferential analysis (see Section 6). As a result, we are able to analyze ciphers
which admit good truncated differentials. In Section 7 we show how to break
16 rounds of Khufu with 218 adaptive chosen plaintexts and ciphertexts and
very little work. We also consider CAST-256 in Section 9, where we show how
to break 16 rounds with 249.3 known texts2. Section 9 also briefly sketches the
inside-out attack, a dual to the boomerang attack. Finally, Section 10 discusses
some related work, and Section 11 concludes the paper. See Table 1 for our table
of results.

2 The Boomerang Attack: A Generic View

The boomerang attack is a differential attack that attempts to generate a quartet
structure at an intermediate value halfway through the cipher.

The attack considers four plaintexts P, P ′, Q, Q′, along with their respective
ciphertexts C, C ′, D, D′; we will defer describing how these are generated until
later. Let E(·) represent the encryption operation, and decompose the cipher into
E = E1 ◦ E0, where E0 represents the first half of the cipher and E1 represents
the last half. We will use a differential characteristic, call it ∆ → ∆∗, for E0, as
well as a characteristic ∇ → ∇∗ for E−1

1 .
We want to cover the pair P, P ′ with the characteristic for E0, and to cover

the pairs P, Q and P ′, Q′ with the characteristic for E−1
1 . Then (we claim) the

pair Q, Q′ is perfectly set up to use the characteristic ∆∗ → ∆ for E−1
0 .

2 See also Appendix B, where we show that CAST-256 would be much weaker if
the round ordering was reversed: in particular, boomerang attacks would be able
to break 24 rounds of this variant with 248.5 chosen texts. Please note that this
24-round boomerang attack does not apply to the real CAST-256 AES proposal.
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Let’s examine why this is so. Consider the intermediate value after half of
the rounds. When the previous three characteristics hold, we have

E0(Q) ⊕ E0(Q′) = E0(P ) ⊕ E0(P ′) ⊕ E0(P ) ⊕ E0(Q) ⊕ E0(P ′) ⊕ E0(Q′)
= E0(P ) ⊕ E0(P ′) ⊕ E−1

1 (C) ⊕ E−1
1 (D) ⊕ E−1

1 (C ′) ⊕ E−1
1 (D′)

= ∆∗ ⊕ ∇∗ ⊕ ∇∗ = ∆∗,

Note that this is exactly the condition required to start the characteristic ∆∗ →
∆ for the inverse of the first half of the cipher. When this characteristic also
holds, we will have the same difference in the plaintexts Q, Q′ as found in the
original plaintexts P, P ′. This is why we call it the boomerang attack: when you
send it properly, it always comes back to you.
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Fig. 1. A schematic of the basic boomerang attack.

We define a right quartet as one where all four characteristics hold simulta-
neously. The only remaining issue is how to choose the texts so they have the
right differences. We suggest generating P ′ = P ⊕ ∆, and getting the encrypti-
ons C, C ′ of P, P ′ with two chosen-plaintext queries. Then we generate D, D′ as
D = C ⊕ ∇ and D′ = C ′ ⊕ ∇. Finally we decrypt D, D′ to obtain the plaintexts
Q, Q′ with two adaptive chosen-ciphertext queries. See Figure 1 for a pictorial
depiction of the basic boomerang attack.
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In the remainder of the paper, we consider several concrete attacks using the
boomerang attack.

3 The COCONUT98 Algorithm

The COCONUT98 cipher [V98] may be of special interest to some readers be-
cause of its reliance on the recently-developed theory of decorrelation techniques
for block cipher design [V97,V98,V98b,GG+98]. Using decorrelation techniques,
[V98] proves that the full COCONUT98 cipher admits no good differential cha-
racteristics. Despite this fact, we observe that there are differential characteri-
stics of very high probability for half of the cipher, and we make extensive use of
these characteristics in our attack. This suggests that the decorrelation design
technique may fail to provide security against advanced differential attacks in
some cases if extra care is not taken. This is not to suggest that the decorrela-
tion approach is fundamentally flawed—indeed, decorrelation theory seems like
a very useful tool for the cipher designer—but rather that the theoretical results
must be interpreted with caution.

We briefly recount the description of the COCONUT98 algorithm. COCO-
NUT98 uses a 256-bit key K = (K1, . . . , K8). The key schedule generates eight
round subkeys k1, . . . , k8 as

i 1 2 3 4
ki K1 K1 ⊕ K3 K1 ⊕ K3 ⊕ K4 K1 ⊕ K4

i 5 6 7 8
ki K2 K2 ⊕ K3 K2 ⊕ K3 ⊕ K4 K2 ⊕ K4

The last four key words are used to build a decorrelation module

M(xy) = (xy ⊕ K5K6) × K7K8 mod GF(264)

where concatenation of symbols (e.g. xy) represents the concatenation of their
values as bitstrings.

Next, we build a Feistel network as follows. Let

φ(x) = x + 256 · S(x mod 256) mod 232

Fi((x, y)) = (y, x ⊕ φ(ROL11(φ(y ⊕ ki)) + c mod 232))
Ψi = F4i+4 ◦ F4i+3 ◦ F4i+2 ◦ F4i+1

where ROL11(·) represents a left rotation by 11 bits, c is a public 32-bit constant,
and S : Z8

2 → Z24
2 is a fixed S-box.

With this notation, COCONUT98 is defined as Ψ1 ◦ M ◦ Ψ0. In other words,
COCONUT98 consists of four Feistel rounds with subkeys k1, . . . , k4, followed
by an evaluation of the decorrelation module M , and finally four more Feistel
rounds with subkeys k5, . . . , k8.
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4 Differential Characteristics for COCONUT98

This section discusses the differential characteristics of COCONUT98. In the
following discussion, let ej = 2j be the 32-bit xor difference with just the j-th
bit flipped. (Subscripts are taken modulo 32, for convenience in modeling the
ROL(·, 11) operation.)

We note that the Feistel rounds of COCONUT98 admit very good differential
characteristics. The main observation is that ej → ej+11 by the Feistel function
with probability 1/2 when j ∈ J = {8, 9, . . . , 19, 20, 29, 30, 31}.3 Similarly, ej ⊕
ek → ej+11 ⊕ ek+11 with probability 1/4 when j, k ∈ J (j 6= k).

Using this idea, we can build many good characteristics for four rounds of
COCONUT98. For example, the characteristic

(e19, e18 ⊕ e8) → (e18 ⊕ e8, e29) → (e29, e18) → (e18, 0) → (0, e18)

for Ψ has probability 0.83 ·2−4 ≈ 2−4.3. Of course, by symmetry we also get cor-
responding backwards characteristics for decryption through four Feistel rounds.

This suggests that we ought to try to find some way to take advantage of
these high-probability characteristics for the half-cipher in our analysis. Howe-
ver, the task is not so easy as it might first look. If we try to mount a traditional
differential attack on the whole cipher, the decorrelation module M will imme-
diately cause serious difficulties. When the key words K7, K8 are unknown, it is
very difficult to push any differential characteristic through M . More precisely,
every differential δ → δ∗ for M with δ, δ∗ 6= 0 has average probability 1/(264−1),
where the probability is averaged over all possible key values. In short, the de-
correlation module prevents us from pushing a differential characteristic past M .

This is where the boomerang attack comes in handy: the boomerang quartet
property allows us to control the effect of the decorrelation module in the middle.

The crucial idea which lets the attack work is that M is affine, and thus for
any fixed key there are excellent characteristics ∇∗ → M−1(∇∗) of probability 1
for M−1. Take E0 = Ψ0 and E1 = Ψ1◦M . Then if ∇ → ∇∗ is a good characteristic
for Ψ−1

1 we will obtain a good characteristic ∇ → M−1(∇∗) for E−1
1 . It does not

matter that M−1(∇) is unknown to the attacker; the crucial property is that it
depends only on the key (and not on the values of the ciphertexts).

Let us estimate the success probability for this technique. We need two cha-
racteristics for Ψ0, and two for Ψ−1

1 , to hold. Thus, a simple estimate at the
probability p of success is

p ≥ Pr[∆ → ∆∗ by Ψ0]2 Pr[∇ → ∇∗ by Ψ−1
1 ]2

3 At first glance, it might appear that the probability is 1/8, because there are three
additions in the F function and thus three carry bits to control. However, the three
carries are not independent, and in fact we can handle three carries as easily as
one by noting that x 7→ (x + a mod 232) + b mod 232 (two carries) is equivalent to
x 7→ x + c mod 232 (one carry) where c = a + b.

The rotate does not destroy this property, so long as we avoid the most significant
bits, which explains our choice of J . Empirically, the probabilities are 0.47, 0.44, 0.38
for j = 18, 19, 20 and 0.47, 0.44 for j = 29, 30. For other values of j, the probability
is very close to 1/2.
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where ∆, ∆∗,∇,∇∗ may be chosen arbitrarily by the attacker to maximize p.
It turns out that this estimate can be refined a bit. We note that the same

attack works even if we do not predict the exact value of ∇∗ ahead of time, but
instead merely require that the difference after decrypting by Ψ1 is the same in
the two pairs P, Q and P ′, Q′. A similar observation also holds for ∆∗. Therefore,
we may sum over all values for ∆∗,∇∗, to obtain

p ≈
∑

∆∗
Pr[∆ → ∆∗ by Ψ0]2 ·

∑

∇∗
Pr[∇ → ∇∗ by Ψ−1

1 ]2.

For COCONUT98, this can be used to significantly increase the probability of
attack. Empirically, we find that ∆ = ∇ = (e10, e31) provides p ≈ 0.023 ·0.023 ≈
1/1900.

5 The Basic Boomerang Attack on COCONUT98

Next we show how to use the quartet property established above to mount a
practical attack on COCONUT98. We use a 1-R attack, so the criterion for
success is that Q ⊕ Q′ = (?, e31) where ? represents an arbitrary word. This
improves the success probability p by a factor of two, to 1/950.

It is immediately clear from this discussion that COCONUT98 can be easily
distinguished from an ideal cipher with at most about 950 · 4 = 3800 adaptive
chosen plaintext/ciphertext queries. However, we aim for more: a key-recovery
attack.

The key-recovery attack proceeds along relatively standard lines. In about
16 · 950 trials requiring 16 · 950 · 4 adaptive chosen plaintext/ciphertext queries,
we generate about 16 useful quartets. Note that the signal-to-noise is extremely
high, so we should be able to filter out all wrong quartets very effectively.

First, we recover K1. We guess K1, and peel off the first round. We use
the fact that if P, P ′, Q, Q′ form a quartet with the property above, then the
xor difference after one round of encryption must be (e31, 0) for both the P, P ′

pair and the Q, Q′ pair. This condition holds for 1/2 of the wrong key values.
Therefore each quartet gives one bit of information on K1 from the P, P ′ pair
and another bit of information from the Q, Q′ pair. With 16 useful quartets, we
expect K1 to be identified uniquely.

Next, we recover K2⊕K4 by decrypting up one round and examining the xor
difference in the C, D pair and in the C ′, D′ pair. The details are very similar to
those used to learn K1.

This allows us to peel off the first and last rounds of the cipher. Then we
repeat the attack on the reduced cipher. For instance, we can use about 8 ·144 ·4
more adaptive chosen plaintext/ciphertext queries to generate about 8 useful
quartets for the reduced cipher if we use the same settings for ∆, ∇, since then
the success probability p increases to about 1/144. Using these 8 useful quartets
for the reduced cipher we learn K3; and we repeat the attack iteratively until
the entire key is known.
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In all, the complexity of the attack is about 16 · 950 · 4+8 · 144 · 4+ . . . ≈ 216

adaptive chosen plaintext/ciphertext queries. The attack requires 8 ·2 ·32 ·232 =
241 offline computations of the F function, which is work comparable to that
required for 238 trial encryptions. The attack can also be converted to a known-
plaintext attack, but then the complexity increases dramatically to 252 texts.

The best conventional attack on COCONUT98 we could find was a meet-
in-the-middle attack that exploits a weakness in the key schedule. However, the
meet-in-the-middle attack requires approximately 296 trial encryptions, so our
chosen-text boomerang attack compares very favorably to it. See Appendix A
for more details on the meet-in-the-middle attack.

Fixing the cipher would require careful changes to its internal design. One
possible approach would be to replace the four-round Feistel network Ψ by a
transformation with much more strength against differential cryptanalysis (say,
16 rounds instead of 4). Another possible approach is to use a decorrelation
module in each round; this seems likely to prevent boomerang-style attacks, and
is in fact the approach proposed in the DFC AES submission [GG+98]. (Using
just a decorrelation module before the first round and after the last round is not
enough—differential-style attacks are still possible.)

It is clear that the mere use of decorrelation techniques is not enough to
guarantee security against differential-style attacks. At the same time, although
it does not provide the conjectured 264 security level, COCONUT98’s decorrela-
tion module does seem to improve the cipher’s security. Without a decorrelation
module, COCONUT98 would be vulnerable to conventional differential attacks
requiring on the order of 28 chosen texts, so in this case the decorrelation module
seems to have approximately squared the security level of the base cipher.

6 Extensions to Truncated Differential Analysis

So far we have confined the discussion to conventional differential characteristics,
but it seems natural to wonder whether boomerang attacks can also be made
to work using truncated differentials. The answer is yes, but there are some
difficulties.

The pitfall with extensions to truncated differentials is that

Pr[∆ → ∆∗ by F ] = Pr[∆∗ → ∆ by F−1]

always holds for conventional differential characteristics, but can fail to hold
for truncated characteristics. Note that our analysis in earlier sections assumed
that if ∆ → ∆∗ by the first half of the cipher, then ∆∗ → ∆ holds with the
same probability for the inverse of the first half of the cipher. For truncated
differentials, this assumption in general is not correct.

A more accurate formula for the success probability p of a boomerang attack
with truncated differentials is

p ≈
∑

w⊕x⊕y⊕z=0

Pr[∆ → w by E0] × Pr[∇ → x by E−1
1 ] ×

Pr[∇ → y by E−1
1 ] × Pr[z → ∆ by E−1

0 ].
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This formula is rather unwieldy, but fortunately it can often be simplified sub-
stantially to

p ≈ Pr[∆ → ∆∗] × Pr[∇ → ∇∗]2 × Pr[∆∗ → ∆] ×
Pr[w ⊕ x ⊕ y ∈ ∆∗ | w ∈ ∆∗, x, y ∈ ∇∗].

If the truncated differentials ∆∗,∇∗ are linear (i.e. closed under ⊕), as is usually
the case, the last term in the formula above is easily computed.

7 Khufu

We describe a boomerang attack that breaks 16 rounds of Khufu [Mer90] with
218 adaptively chosen plaintext/ciphertext queries and a comparable workfac-
tor. This is an improvement over the best previous result, a differential attack
on Khufu-16 needing 231–243 chosen texts (depending on whether one wants a
distinguishing or key-recovery attack) [GC94].

In our boomerang attack, we exploit that there are excellent truncated dif-
ferentials available for both halves of the cipher. For the first half of the cipher,
we use

∆ = (0, 0, 0, a, b, c, d, e) → (0, 0, 0, a, 0, 0, 0, 0) = ∆∗,

which holds with probability 2−32 in the forward direction and probability
1 in the reverse direction. We will hold a fixed throughout the attack. For
the inverse of the last half of the cipher, we use ∇ = (0, 0, 0, a, 0, 0, 0, 0) →
(0, 0, 0, a, f, g, h, i) = ∇∗, which holds with probability 1. Also, due to a careful
choice of ∇∗, ∆∗, we have Pr[w⊕x⊕y ∈ ∆∗ | w ∈ ∆∗, x, y ∈ ∇∗] = 1. Thus 2−32

of the quartets chosen according to these differences will form right quartets.
One can use structures to reduce the number of texts needed. Choose a pool

of 216 plaintexts (L, Ri) with L held fixed and Ri varying. Also, form another
pool of 216 plaintexts as (L′, R′

j) where L′ = L ⊕ (0, 0, 0, a) and R′
j varies. For

each ciphertext C obtained by encrypting one of these 217 plaintexts, we decrypt
D = C⊕∇ to get the plaintext Q. We look for Q, Q′ with a difference of (0, 0, 0, a)
in the left half of the block; such a pair probably indicates a right quartet. This
choice of structures is expected to provide about one right quartet, although one
wrong quartet will probably also survive the initial filtering phase.

Once we have a (suggested) right quartet formed by (L, Ri) and (L′, R′
j),

we can use it to obtain more right quartets at little cost. We form another
210 quartets by choosing P = (L ⊕ (α, β, 0, 0), Ri), P ′ = (L′ ⊕ (α, β, 0, 0), R′

j)
where α, β take on 210 possible values; C, C ′, D, D′, Q, Q′ are generated from
P, P ′ as before. Now each such quartet is guaranteed to be a right quartet (if
(L, Ri), (L′, R′

j) formed a right quartet) because we have successfully bypassed
the first round. Thus, any wrong quartets which survived the earlier filtering
phase are easily eliminated. Furthermore, given 210 right quartets we expect to
be able to form 210 equations of the form S1(x) ⊕ S1(y) = z for known values
of x, y, z, and this should be sufficient to recover S1 up to a xor by a 32-bit
constant. Then the 8-round reduced cipher can be broken trivially.



164 D. Wagner

In total, this attack on Khufu-16 requires 218 + 4 × 210 ≈ 218 adaptively
chosen texts. The workfactor is minimal.

8 FEAL

One can also apply boomerang techniques to FEAL. There are 3-round diffe-
rential characteristics with probability one [BS93], so we immediately obtain an
efficient boomerang attack that distinguishes FEAL-6 from a random permuta-
tion with only four adaptive chosen plaintext/ciphertext queries. (This elegant
observation is due to Eli Biham [Bih99].)

9 Inside-Out Attacks

In this section, we sketch a description of the “inside-out attack,” which may be
viewed as a dual to the boomerang attack. The difference is that the boomerang
attack works from the outside in while the inside-out attack works from the
inside out.

In the inside-out attack, we search for pairs of texts which contain a desired
difference ∆ at the intermediate value after half the rounds. We hope that the
differential ∆ → ∆′ for E1 and the differential ∆ → ∆∗ for E−1

0 both hold.
In this case, we will have recognizable differences ∆∗ and ∆′ in the plaintexts
and ciphertexts of the pair. If we accumulate enough pairs with the difference
∆ halfway through the cipher, we should be able to find at least one right pair
where both differentials hold.

To illustrate these ideas in action, we analyze 16 rounds of CAST-256. CAST-
256 [Ada98] is a generalized Feistel block cipher, whose simplicity makes it a nice
test-bed to explore the properties of generalized Feistel round structures.

We briefly recall the definition of CAST-256 here. The 128-bit block is divided
into four 32-bit words, and a Feistel function F : Z32

2 → Z32
2 is used to update

the block. There are two types of rounds, which we shall call “A rounds” and “B
rounds” in a choice of terminology inspired by Skipjack. An A round encrypts
the input block (w, x, y, z) to (z, w, x, y ⊕ F (z)), and a B round encrypts to
(x, y, z ⊕ F (w), w). Note that A ≈ B−1; by this we mean that the structure of
the inverse of a B round is the same as the structure of an A round, not that
they are true functional inverses. With this terminology, the CAST-256 cipher
structure is defined as B24 ◦ A24, i.e. 24 A rounds followed by 24 B rounds.

The CAST-256 structure admits many nice truncated differentials. In our
boomerang attack, we will use ∆ = (0, 0, 0, a) → (0, b, c, a) = ∆′, which holds
with probability 1 for 8 B rounds, and ∆ = (0, 0, 0, a) → (0, d, e, a), which holds
with probability 1 for decrypting though 8 A rounds.

The signal-to-noise ratio of the inside-out attack will be reasonably good,
because right pairs can be recognized by a 96-bit filtering condition.

To implement the attack, we collect 249.3 known texts encrypted under 16
rounds of CAST-256. By the birthday paradox, we expect to see three right pairs
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among those texts, which can be readily recognized. (We also expect to get three
wrong pairs, but they should be eliminated in the next phase.) Then we search
over the last round subkey. Each guess at the 37 key bits entering the last round
suggests 25 possible values for the 37 key bits entering the next-to-last round;
the three right pairs allow us to uniquely recognize the correct values for the last
two round subkeys. The first two round subkeys can be recovered by analogous
techniques. Finally, the attack may be repeated on the reduced-round cipher.

To sum up, we see how to break 16 rounds of CAST-256 with an inside-out
attack that needs just 249.3 known texts and very little work. This attack is
independent of the definition of F function or key schedule, and depends only
on the round structure.

There are two implications of our analysis. First, it indicates that CAST-256
reduced to 16 rounds would not be adequately secure. Since CAST-256 with 48
rounds is 2–2.5 times slower on high-end CPUs than the fastest AES candidates
[SK+98], this suggests that CAST-256’s security-to-performance ratio may not
be as high as some other contenders. On the other hand, security clearly must
take precedence over performance, and here our analysis provides some support
for the CAST-256 design. We have seen that CAST-256’s round ordering is
ideally-suited to resist boomerang attacks (see Appendix B), and due to the
sheer number of rounds, it seems very hard to extend our inside-out attack to
the full cipher.

10 Related Work

The boomerang attack is closely related to many other ideas that have pre-
viously occurred in the literature. As a result, there are many different ways to
think about the boomerang attack. In this section, we will try to survey the
possibilities.

The boomerang attack is related to the differential-linear attack of [HL94]. In
a differential-linear attack, one covers E0 with a truncated differential ∆ → ∆∗,
covers E−1

1 with a linear approximation Γ → Γ ∗, and finally covers E1 with
a second approximation Γ ∗ → Γ ; there is also the additional requirement that
Γ ∗ · x be constant for all x ∈ ∆∗. From this perspective, one could think of the
boomerang attack as a “differential-differential” attack (if the reader will indulge
a slight abuse of terminology).

A similar observation is that the boomerang attack is closely related to
higher-order differential techniques [Lai94,Knu95]. As noted in Section 6, the
pairs P, Q, P ′, Q′ don’t actually need to follow ∇ → ∇∗: it is sufficient that
E−1

1 (P )⊕E−1
1 (P ′)⊕E−1

1 (Q)⊕E−1
1 (Q′) = 0, and this may be viewed (in a very

approximate sense) as a higher-order differential of order two. In this way, the
boomerang attack can be considered as an intermediate step between conventio-
nal differential and higher-order differential attacks.

Another precursor of the boomerang attack is the “double-swiping” attack
[KSW97], a differential related-key attack on NewDES-1996 that can, in retro-
spect, be viewed as a boomerang-style attack (with minor adjustments to take
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advantages of related-key queries, as allowed in [KSW97]’s extended threat mo-
del).

One of the interesting features of the boomerang attack is that it is apparently
very well-suited to the analysis of ciphers that use asymmetric round functions4.
Asymmetric round functions can be classified into one of two types: the A round,
which has better diffusion in the forward direction than in the reverse direction,
and the B round, which has better diffusion in the reverse direction. We note
that when the first half of the cipher is built of B-type rounds and the last half
is built of A-type rounds, boomerang attacks seem to be especially dangerous
because they allow one to probe from both endpoints at the same time.

This supplies some intuition for how the boomerang attack works. It would
not be unreasonable to think of the boomerang attack as a differential meet-
in-the-middle attack that uses differentials to work from the outside in; the
interesting bit is what happens where the differentials “meet” in the middle of
the cipher.

One disadvantage of the boomerang attack is that it inherently requires
the ability to perform both adaptive chosen-plaintext and adaptive chosen-
ciphertext queries at once, a rare requirement to find in a practical attack. We
are aware of only two other attacks with this property: (1) the adaptive chosen-
plaintext/ciphertext attack on the 3-round Luby-Rackoff cipher, which is also
used to good effect in some of Knudsen’s work [Knu98] on Luby-Rackoff ciphers
with more rounds, and (2) Biham et. al’s yo-yo game [BB+98], which is closely
related to their more-famous miss-in-the-middle attack [BBS98,BBS99].

The relation between the boomerang attack and the miss-in-the-middle attack
is a close and interesting one. It seems that the boomerang attack is little more
than a chosen-plaintext/ciphertext version of the miss-in-the-middle attack. In
particular, if Pr[∆ → ∆∗] = Pr[∇ → ∇∗] = 1 and ∆∗ ∩ ∇∗ = ∅, then the same
pair of differentials can be used to obtain either a miss-in-the-middle attack
(using the impossible differential ∆ → ∇) or a boomerang attack.

This paper showed that in some special cases the boomerang attack can im-
prove on the miss-in-the-middle attack, if adaptive chosen plaintext/ciphertext
queries are available. However, this seems to be the exception rather than the
rule. For several ciphers—including Skipjack and CAST-256—miss-in-the-middle
attacks penetrate through more rounds than boomerang attacks [BBS98,BBS99].
Though a thorough comparison of the two types of attacks continues to elude
us, we hope that this work will stimulate further research into the interaction
between these two attacks.

11 Conclusions

We have described a new way to use differential-style techniques for cryptanalysis
of block ciphers. Our attacks can break some ciphers that are immune to ordinary
differential cryptanalysis, and can provide a powerful new way to analyze ciphers
4 See Appendix B for a concrete example of this.
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with asymmetrical round structures. To protect against these attacks, cipher
designers should ensure that there are no good differentials for the first or last
half of their cipher.
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A Meet-in-the-Middle Attack on COCONUT98

The very simple key schedule used in COCONUT98 exposes it to meet-in-the-
middle attacks. The problem is that there are only 96 bits of entropy in the first
four round subkeys, and a similar property holds for the last four round subkeys.
Therefore, with just four known texts and about 296 offline work, one can break
COCONUT98 using standard meet-in-the-middle techniques5. The workfactor
of this attack is disappointingly low for a cipher with a 256-bit key.

When the key is chosen non-uniformly, e.g. from a passphrase, this attack
can be even more deadly. If we assume a key entropy of 4 bits/byte (probably
a gross overestimate for most passphrases), the workfactor of the meet-in-the-
middle attack can be reduced to approximately 248 trial encryptions. This is
much faster than exhaustive keysearch.

B A CAST-256 Variant

In this section, we consider a simple CAST-256 variant obtained by exchanging
the order of the A rounds and the B rounds. (In other words, the variant cipher
5 Specifically: Obtain four known text pairs Pj , Cj for j = 1, 2, 3, 4. Guess K3, K4. For

each possibility for K1, store (Ψ0(P0) − Ψ0(P1))/(Ψ0(P2) − Ψ0(P3)), K1 in a lookup
table keyed on the first component. Finally, for each possibility for K2, we compute
(Ψ−1

1 (C0) − Ψ−1
1 (C1))/(Ψ−1

1 (C2) − Ψ−1
1 (C3)) and look for a match in the lookup

table.
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uses the B rounds first.) The primary contribution is that such a variant can be
readily analyzed using boomerang attacks.

Please note that this attack does not apply to CAST-256 (only to a variant
with a different round structure)6. Since the designers of CAST-256 already
knew of the need to apply the A rounds first [Ada99], we feel that the variant
does injustice to the spirit of the CAST-256 design. We focus on CAST-256
primarily because it makes such a simple, clean platform for analysis of novel
round structures. We believe our attack on this CAST-256 variant gives new
insights into the properties of various ciphers with generalized Feistel round
structures [NSA98,BC+98,GLC98,Yuv97,NW97,Saa98], so we hope the analysis
is of independent interest.

The sheer number of rounds makes it hard to mount good attacks on the
full 48-round CAST-256. In this section, we show that boomerang attacks with
complexity 248.5–265 are possible on 24–25 rounds of the variant cipher. These
attacks do not appear to extend to the original CAST-256 round ordering, so we
believe this provides some additional justification that CAST-256 is using the
right round ordering.

A simple attack on 24 rounds. We use the truncated differential ∆ =
(0, 0, 0, a) → (b, c, d, a) = ∆∗ for the 12 B rounds (where a may take on any non-
zero value, and b, c, d are arbitrary). For the inverse of the last half of the cipher,
we use a similar truncated differential: namely, ∇ = (0, 0, 0, e) → (f, g, h, e) =
∇∗.

Using the machinery developed in Section 6, the computation of the suc-
cess probability is straightforward. Both of these truncated differentials have
probability 1, and ∆∗ → ∆ has probability 2−96. Finally, we note that

Pr[w ⊕ x ⊕ y ∈ ∆∗ | w ∈ ∆∗, x, y ∈ ∇∗] = Pr[a ⊕ e ⊕ e′ 6= 0] = 1 − 2−32,

so the overall success probability is p ≈ 2−96.
We start the attack by choosing 232 plaintexts Pi where the first three words

are held fixed and the last takes on all 232 possibilities, and we obtain the
corresponding ciphertexts Ci. For each such ciphertext Ci, we generate 216.5

new ciphertexts Di,j by varying the final word. Then we decrypt each Di,j to
obtain the corresponding plaintext Qi,j . This gives us 263 choices for P, P ′ from
the pool of plaintexts Pi and another 233 choices for D, D′ from the Di,j . In all,
there will be 296 possible quartets to choose from. About p ≈ 2−96 of them will
form right quartets, so we expect to see one right quartet. The excellent filtering
available (we can filter on all 128 bits of Q ⊕ Q′) allows us to eliminate all the
wrong quartets with high probability.

This immediately gives a way to distinguish the 24-round CAST-256 variant
from a ideal cipher with 248.5 adaptively chosen texts and a low workfactor.

A key-recovery attack on 25 rounds. The same ideas can also be used
to develop key recovery attacks. For instance, we can break the 25-round variant
obtained by prepending one more B round at the beginning with 265 chosen
6 See also Section 9, which analyzes 16 rounds of the real CAST-256 cipher (without

any re-ordering of the rounds).
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texts and a similar amount of work. Due to lack of space, we give only a very
brief sketch of the attack: we bypass the first round with structures, and then in
the analysis phase we guess the first-round subkey, peel off the first round, and
check for the existence of right quartets.

Discussion. It is worth comparing our results to what is attainable with
conventional truncated differential cryptanalysis. In the case of this CAST-256
variant, boomerang attacks seem to compare favorably for up to 24 rounds, due
to the asymmetric round structure, but for more than 25 rounds conventional
techniques are at least as good as the boomerang.

The astute reader will have noticed that our truncated differentials ∆ →
∆∗ (for the 12 B rounds) and ∇∗ → ∇ (for the 12 A rounds) can be readily
concatenated to obtain a truncated differential ∆ = (0, 0, 0, a) → (0, 0, 0, a) = ∇
of probability 2−96 for the entire cipher. The resulting 24-round differential will
have probability 2−96, and can be used in a conventional truncated differential
attack that distinguishes the 24-round CAST-256 variant from a ideal cipher
with 265 (non-adaptive) chosen plaintexts. Note that you can also get a miss-
in-the-middle attack on the 24-round variant with the same techniques, since
(0, 0, 0, a) → (0, 0, 0, a′) is an impossible differential when a 6= a′. This gives an
attack that uses 265 chosen plaintexts and not much work.

Thus, our 24-round boomerang attack (248.5 adaptive chosen-plaintext and
chosen-ciphertext queries) seems better than the conventional truncated differen-
tial attack (265 chosen plaintexts) or the miss-in-the-middle attack (265 chosen
plaintexts), but it loses its advantage at 25 rounds.

One reason why the boomerang attack succeeds against the CAST-256 va-
riant is that CAST-256 rounds exhibit a definite asymmetry. In both Skipjack
and CAST-256, the A rounds have weaker diffusion in the reverse direction than
in the forward direction, while the B rounds are stronger in the reverse direc-
tion. Thus, the combination of A and B rounds makes conventional differential
attacks harder than usual: whether we attack the cipher or the inverse cipher,
we will have to push a differential through 12 “strong rounds”. In contrast, the
boomerang attack allows us to follow the path of least resistance in both direc-
tions, because we cover the B rounds with a differential running in the forward
direction and cover the A rounds with a differential running in the reverse di-
rection. This makes the boomerang attack especially well-suited to the analysis
of a cascade of B rounds followed by A rounds.

By the same line of reasoning, boomerang techniques would be especially
weak at analyzing the real CAST-256 cipher, where the A rounds precede the B
rounds. A boomerang attack on CAST-256 would be attacking the cipher at all
of its strongest points, and thus boomerang techniques would be a particularly
poor tool for analyzing the real CAST-256 round structure.
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