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Abstract. This paper gives a team description of Osaka University
“Trackies” for RoboCup-98, and related research issues. We focus on
behavior learning of our goalie robot which has an omnidirectional vi-
sion system. A Q-learning method is applied by defining substates from
visual information of the ball and the goal. To reduce the learning time,
we propose an attention control method for an omnidirectional vision by
means of an active zoom mechanism. We perform computer simulation
and real robot experiments to show the validity of the proposed method.

1 Introduction and the Team Description of Osaka
University “Trackies-98”

One of major issues in robotics is to make a robot adapt itself to changes in
dynamic environments. We are interesting in how a robot acquires a behavior in
dynamic environments and how robots cooperate without explicit communica-
tion in the context of cooperative distributed vision [1]. For the first step of an
application of cooperative distributed vision, we have build a goalie robot with
an omnidirectional vision system and applied a Q-learning method. In order to
reduce search space for learning, we propose an attention control method into
the omnidirectional vision by means of an active zoom mechanism. In this paper,
we summarize our method and experimental results.

Followed the team description of Osaka University for RoboCup-98, the rest
of the paper is organized as follows. First, we examine the relationship between
the target position in the omnidirectional view in terms of the focal length and
the distance between the robot and the target. Then, we set up a control low
to realize a zoom servoing, Finally, we design the state space for the robot to
acquire the desired behavior based on the reinforcement learning scheme.

1.1 The Team Description of Osaka University “Trackies-98”

The team of Osaka University “Trackies-98” consists of four heterogeneous at-
tackers and a goalie (see Figure 1). Three attackers have been replaced from the
team “Trackies-97” which has following features;
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1. The team consists of four homogeneous attackers and a goalie.

2. Every robot is controlled by its remote host computer via radio link.

3. An attacker has a CCD camera fixed on its body without any active mech
anism and its shooting behavior is acquired by a Q-learning method.

4. The goalie has an omnidirectional vision and its behavior is hand-coded.

Details are given in [8].

(a) attacker with no active (b) attacker with a pan-
camera ning camera

(c) self-contained attacker (d) goalie

Fig. 1. Robots of Osaka University “Trackies” team

Attackers of “Trackies-97" have three major problems;

1. the cooperative behavior has not been realized.
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2. the robot is easy to lose the ball and difficult to find it since the camera has
a narrow view angle and no pan or tilt mechanism.
3. the control of the robot is not reliable because of noises on radio links.

Therefore, we have build three types of attackers shown in Figure 1 (a), (b), and
(c) to cope with these problems. Since we are interest in cooperation without
explicit communication, we do not use a global vision system and an inter-robot
communication system to share/exchange information between robots.

The robot in Figure 1 (a) is the one used as an attacker of “Trackies-97".
We apply a genetic programming method so that robots acquire a cooperative
behavior. Since robots have no inter-robot communication system, they need
recognize other robot’s behavior through its vision system. We perform a com-
puter simulation for a pass behavior by two robots. Details are discussed in [9]
and [10]. The robot in Figure 1 (b} has a pan mechanism to extend a view angle.
A Q-learning method is applied to acquire a shooting behavior with panning
motion of the camera. The robot in Figure 1 (c) is a completely sel{-contained
type which includes a CPU board, an image capture board, and motor drivers.
The behavior of the robot is hand-coded. The robot shown in Figure 1 (d) is the
goalie whose behavior is acquired by a Q-learning method which is described in
the rest of this paper.

2 The Task and the Robot System for a Goal Keeping
Behavior

Several applications of the omnidirectional vision have been proposed, such as
autonomous navigation [2], visual surveillance and guidance [3], video conference,
virtual reality, and site modeling [4]. These methods have focused on its opto-
geometric features to reconstruct 3-D scene structure. Qur approach differs from
their applications in two fold: we do not reconstruct any geometric structure
from the omnidirectional views. Rather, we use it as a sensory system for a
goal defending mobile robot. We apply Q-learning method [7] with a state space
consisting of ball and goal images.

We introduce an active zoom mechanism into the omnidirectional vision in
order to accelerate the learning. We implement a zoom servoing [5] so that the
target image can be captured at the constant position when the target moves
on the ground plane. This servoing is realized by controlling focal length of the
camera. Due to the active zoom mechanism, the target motion in the radius
direction can be canceled, and only circular motions around the image center
can be observed. This simplifies the image processing and target tracking.

Our robot is shown in Figure 2(a) where an omnidirectional vision system
is installed onto the 2-DOFs non-holonomic vehicle such that its optical axis
can be coincident with the axis of vehicle rotation. The robot is controlled by
a remote host computer via radio link. Figure 2(b) shows actions of the robot.
The remote computer sends motor commands to control the robot motion.

An omnidirectional vision system consists of a conic mirror and a TV cam-
era [2] of which optical axis is aligned with the vertical axis of the mirror as
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Fig. 2. The robot

shown Figure 3(a). The projection onto the image plane is determined by the
the shape of the mirror and the camera configuration parameters (height of the
camera, distance between the mirror and the lens, and focal length) which are
designed according to individual purposes. Our omnidirectional vision system
has a hyperbolic mirror and a sample of its image is shown in Figure 3(b). The
omnidirectional image is transmitted to the remote computer via video trans-
mitter and processed on it.

virtual axis
i

mirror

(a) projection (b) a sample image

Fig. 3. Projection and a sample image by an omnidirectional vision



320 Sho’ji Suzuki et al.

We set up a simplified soccer game according to the RoboCup context [6).
The task of the robot is to block a ball in front of the goal, that is, a goalie task

(see Figure 4). In order to keep the goal, the robot has to track the moving ball
and move to appropriate position.

Fig. 4. The task of the robot

3 Learning by a Robot with an Omnidirectional Vision
System and an Embedded Zoom Control

3.1 Active Zoom Control on the Omnidirectional Vision

The coordinate system and parameters are shown in Figure 5(a). Let P(R,8, Z)
and p(r, ) denote a point in the environment and a projected point of P in the
image plane, respectively. We assume that the object is on the ground plane,
therefore Z becomes a constant and P is uniquely projected onto p. The relation
between P and p is given by,

Z=Rtana+c+h,

¢ _ b + 2 ¢ + 2bc 1 d
YT 2T 2 R osa’ ™ (1)
__f
T = 1
tan vy
where a and b are the parameters of the hyperbolic mirror, g—:— - %72 = -1, and

¢ =+va? + b h is the height of the sensor. In our system these parameters are
a? = 233.3,6% = 1135.7 and h = 250[mm)].

We add an attention control on an omnidirectional vision by controlling focal
length of the camera in order to reduce the search space of the learning for
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Fig. 5. The basics of the hyperbolic mirror

behavior acquisition. In general, an attention control is realized by tracking an
object in the image plane, which is implemented by controlling pan and tilt
angles of the camera. However, in an omnidirectional vision system, matching
of the object with the target image is not simple. Therefore, we propose an
attention control by observing the object in a certain distance from the center in
the image plane. The change of the distance of the target in the image is tracked
by changing focal length of the camera as shown in Figure 6.

Figure 5(b) shows the relation between the distance of the object in the
image from the center 7, the distance of the object in the environment R, and
the focal length of the camera f. We control the focal length of the camera with
a following equation;

up = K(Trg —"r), (2)

where uy is the change of the focal length of the camera, Irq is the desired
distance in the image, Ir is the current distance in the image. For example, if Iy
is smaller than Ir4 it comes closer by increasing f as shown in Figure 6.

3.2 Learning of a Goal Keeping Behavior

We apply Q-learning, one of major reinforcement learning methods, to acquire
a goal defending behavior. The state space needs to be defined from the image
observed from the robot [7]. We define the substates as shown in the first column
in Table 1. The second column shows the numbers of quantization for each
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Fig. 6. Attention control on the omnidirectional vision

substates. In addition, the numbers of the quantization of the substates without
the zoom servoing are shown.

Eoom servoing ﬂwithlwithout|
direction of the ball in the image || 8 8
change of the direction of the ballf| 3 3
distance of the ball in the image - 3
change of the distance of the ball || - 3
direction of the goal in the image || 8 8
distance of the goal in the image 2 2
[total number of the state [[3456] 320

Table 1. Substates

In the case of no zoom servoing, the states are defined in terms of the direc-
tion and the distance of the ball and the goal in the image. We define 8 substates
for the direction of the ball as shown in Figure 7(a) and 3 substates (far, medium
and near) for the distance as shown in Figure 7(b). In addition we define tem-
poral changes of the direction and the distance, (clock wise, counter clock wise,
no change) and (farther, nearer, no change), respectively. The numbers of the
substates for the direction of the goal is &, the same quantization for the ball,
and substates of the distance is 2 (far and near). The total number of states is
3456(=8 x 3 x 3 x3 x8x2).

In the case of active zoom servoing, substates for the distance of the ball and
its temporal change are not necessary since the distance in the image is constant.
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The direction of the ball and the goal are defined in the same manner as above.
The distance of the goal is far and near, however, the observed image of the
goal changes when the attention control is used. The distance of the goal can
be represented by a monotonic function in terms of the actual distance between
the robot and the ball. The total number of states is 320(= 8 x 3 x 2 x 8).
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Fig. 7. Substates

4 Experiments

First, we performed a computer simulation to acquire a goal defending behavior.
Figure 8(a) shows the environment and the initial positions of the robot and
the ball. The environment is built according to the RoboCup middle league
regulations. The size of the field is 4575[mm] in width and 4110{mm)] in length
which is equivalent to the half size of the regulations. The goal size is 1500[mm]
in width and 600[mm] in height and the diameter of the ball is 200[mm]. The
goal and the ball are painted in blue and red respectively for easy detection.

The ball is located on a half circle defined by the center of the goal and two
corners, and the robot is located inside the circle randomly. The ball rolls toward
the goal at a constant velocity. One trial terminates when the ball comes into
the goal or goes out from the field. Figure 8(b) shows the task success rate with
the learned behavior. When the attention control is used the robot learn quicker
than the case without the attention control.

After learning in the simulation, the acquired behavior is implemented on
the real robot. Figures 9(a)-(f) show a sequence of the real behavior, when the
robot succeeded in blocking the ball in front of the goal.
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Fig. 8. (a)Initial position and (b)Result

5 Conclusions and the Result of RoboCup-98

We have proposed an attention control for an omnidirectional vision by con-
trolling focal length of the camera and implemented it on a mobile robot. We
have applied Q-learning method for acquisition of a goal defending behavior and
shown that the attention control effectively worked to reduce the learning time.
In this paper, we have shown a case that an embedded servo worked effectively
for learning of the robot. However, we have not considered on a trade-off between
installing a servoing mechanism and reduction of the learning time. This is the
future work.

Though the team “Trackies-98” is third place in the middle size robot league,
we are not satisfied the performance of our robots. From the view point of
learning, we have not treated a behavior in an environment with opponents.
This is the next issue.

This work was supported by the Cooperative Distributed Vision project in
the Research for the Future Program of the Japan Society for the Promotion of
Science (JSPS-RFTF96P00501).
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