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Abstract. We construct a proof system for any SP statement, in which 
the proof is a single message sent from the prover to the verifier. No other 
interaction is required, neither before nor after this single message is sent. 
In the “envelope” model, the prover sends a sequence of envelopes to the 
verifier, where each envelope contains one bit of the prover’s proof. It 
suffices for the verifier to open a constant number of envelopes in order 
to verify the corrertness of the proof (in a probabilistic sense). Even if the 
verifier opens polynomially many envelopes, the p m f  remains perfectly 
zero knowledge. 
We transform this proof system to the “known-space verifiern model of 
De-Santis e t  al. [7]. In this model it suffices for the verifier to have space 
S,,, in order to verify proof, and the proof should remain statistically 
zero knowledge with respect to verifiers that use space at most S,,, . We 
resolve an open question of [7], showing that arbitrary ratios S,,,,, /S,,, 
are achievable. However, we question the extent to which these proof 
systems (that of [7] and ours) are really zero knowledge. We do show that 
our proof system is witness indistinguishable, and hence has applications 
in cryptographic scenarios such as identification schemes. 

1 Introduction 

We construct a proof system for the NP-language 3-SAT. The common input is a 
3-CNF formula $I. Prover P tries to convince the veriiier V that T$ is satisfiable, 
without revealing additional information. The prover in our proof system need 
not be stronger than polynomial time, provided that he is given a satisfying 
assignment for y5. We place a limitation on the space S of the verifier. Namely, 
Smin < S < S,,,, where Smin is the amount of space that suffices in order 
t o  verify the  proof, and S,,, is a bound on the  space used by V, so t h a t  if 
S < S,,, then V does not learn “too much” (in a sense to be defined shortly). 
We stress t h a t  S is polynomial in the  input length. The proof itself is given as 
one message sent from P to  V .  There is no interaction between P and V other 
than this one message sent by P. 

Our work was motivated by the work of De-Santis. Persian0 and Yung 171. 
They construct such a proof system for an NP-complete language. An open 
question that they pose concerns the ratio Smaz/Smin: known as the tolerance of 
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the proof system. In their proof system, SmozlSmin is bounded by 2. Hence, the 
proof system can be employed only if the space of the verifier can be characterized 
within a very narrow range (not only the space of the truthful verifier, but also 
the space available to  potential cheating verifiers). De-Santis et al. ask whether 
the tolerance of such proof systems can be improved. We answer this question 
in the affirmative. We construct a proof system scheme, parameterized by k, 
where Ic may be polynomially related to the length of $. For any desired value 
of k, our proof system scheme gives a proof system for 3-SAT with tolerance 

Our original intention. waa to show that  our proof system is zero knowledge 
(see Definition 2). However, we could not prove this. We could not prove the zero 
knowledge property even for the protocol in (71. We will return to  this issue in 
Sect. 1.4. Falling short of proving the zero knowledge property, we show that our 
proof system is witness indistinguishable. This property, which is weaker than 
zero knowledge, suffices for some cryptographic applications (see Sect. 1.5). It 
remains a major open question if a one message proof systems can be zero knowl- 
edge with respect to a known space verifier (under some reasonable definition of 
the concept of zero knowledge). 

SmaxlSmin = k. 

1.1 Definitions and Statement of our Results 

The output of an algorithm A on input x is denoted by d(z), which can be a 
random variable if A is a randomized algorithm. 

Let R = (2, w) be a relation testable in polynomial time in which the sizes 
of x and w are polynomially related, and let LR be the NP-language associated 
with it. (E.g., x may be a satisfiable 3-CNF formula, w its satisfying assignment, 
and LR the language 3-SAT.) In a proof system (P, V) both prover P and verifier 
V are probabilistic polynomial time. They both see a common input 2, for which 
P tries to convince V that x E LR. The truthful proqer is given a witness w such 
that ( x , ~ )  E R as auxiliary input. The size S of the work space available to  
the verifier is known to satisfy Smin < S < Smaz. The verifier V may also have 
auxiliary input y of polynomial length (e.g., leftover information from executions 
of previous protocols). We do not require that  IyI < S,,,. 

Definitionl. Language LR has a one message proof system (P ,  V )  with error 
E if the foUowing holds: 

1. Completeness: the truthful prover can convince the truthful verifier to  accept 
true statements. If (z,w) E R, then V(z, P(z ,  w)) accepts. 

2 .  Soundness: even a computationally unbounded cheating prover has only 
small probability of convincing the truthful verifier to accept false state- 
ments. If z 

The proof system is a proof of Icnowuledge if there exists a polynomial time 
“knowledge extractor” M such that for any 2 and rn, if Pr[V(x,m) = accept] > 
E ,  then (2, M(x, m)) E R. 

L, then for any message m, Pr[V(x,m) = accept] < E. 
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In the following definitions of zero knowledge and witness indistinguishability, 
one may assume that at the end of the protocol the verifier outputs the contents 
of its work space (it “dumps” its memory). 

Deflnition2. A one message proof system for LR is perfectly (statistically, 
computationully) zero knowledge if for any (possibly cheating) verifier V with 
work space S < S,,,, there exists an expected polynomial time simulator 
M, such that for any ( z , w )  E R, and any auxiliary input y, the  distributions 
V(z, y, P(z ,  w)) and M ( z ,  y) are perfectly (statistically, computationally) indis- 
tinguishable. 

Definition 3. A one message proof system for LR is perfectly (statistically, com- 
putationally) witness indistinguidable if for any (possibly cheating) verifier V 
with work space S < S,,,, for any x E LR, for any ktnesses w1 and w2 that 
satisfy (z,w1) E R and (z,w2) E R, and any auxiliary input y, the distributions 
V ( x ,  y, P ( z ,  w1)) and V(z, y, P ( z ,  w2)) are perfectly (statistically, computation- 
ally) indistinguishable. 

Theorem4. For any polynomial ratio Smaz/Smin = k, there i s  a slutistically 
witness indistinguishable one message proof of knowledge for $-SAT (and hence 
for any NP-statement) with tolemnce k .  

We remark that theorem 4 requires no cryptographic assumptions. 

1.2 Related Work 

Interactive proof systems and the concept of zero knowledge were introduced by 
Goldwasser et al. [14]. In the [14] model the verifier is probabilistic polynomial 
time, with no restrictions on its space. In Goldreich et al. [13] and Brassard et 
ai. [4] it was shown that under certain computational complexity assumptions, 
all NP-languages have zero knowledge interactive proofs. Interaction seems to be 
an essential ingredient for zero knowledge. Goldreich and Krawczyk [15] prove 
that at least two rounds of messages are required for zero knowledge proofs 
for languages not in BPP, if the zero knowledge property is proved by blackboz 
simulation. The need for interaction can be replaced by the assumption that the 
prover and verifier share a common random string. In this model, non-interactive 
zero knowledge proof systems can be constructed under certain cryptographic 
assumptions [3, 121. 

The study of interactive proof systems with space bounded verifiers was ini- 
tiated by Condon [5]. Dwork and Stockmeyer [8] studied zero knowledge aspects 
when the verifier is a finite automaton. Kilian [17] constructed a proof system for 
any language in PSPACE, which is zero knowledge with respect to a log-space 
verifier. The model studied in our paper, that of one message known space veri- 
fier, was introduced by De Santis et ul. [7]. Its goal was to  achieve zero knowledge 
in one message, no cryptographic assumptions, and with respect to  reasonably 
strong verifiers. It turns out that the main issue concerned is obtaining a one 
message proof, since Kilian’s protocol uses interaction extensively, but does not 



require cryptographic assumptions, and can easily be adapted to  the scenario of 
known space verifier with polynomial space bounds. 

1.3 

It is convenient to  consider the following envelope scenario. An envelope is an 
idealized version of bit  commitment. The prover can commit to a bit by placing 
it inside an envelope, and sealing the envelope. Thereafter, the prover cannot 
change the value of the bit. The verifier cannot see the value of the committed 
bit until she explicitly opens the envelope. 

In the envelope scenario, in order to convince the verifier that x E LR,  the 
prover sends his proof hidden in a sequence of L sealed envelopes. If the prover 
is truthful, then whichever envelopes the verifier chooses to open, the verifier 
accepts. If z LR, then it suffices for the verifier to open &in envelopes (where 
lmin < L )  in order to  have non-negligible probability of rejecting. The proof is 
zero knowledge with respect to  verifiers that open no more than emaz envelopes 
(where emin < em,, < !). The tolerance of the proof system is Lma+/lm;n. 

We first construct a zero knowledge proof system for $SAT in the envelope 
scenario. Our construction is based on the concept of randomized tableau, first 
introduced by Kilian [16]. We modify his original constructs so as to  get control 
of the tolerance of the proof system, and so as to improve efliciency. The details 
of our protocol appear in Sect. 2. 

Once we have a protocol in the envelope scenario, we transform it to a proto- 
col in the known space scenario. For this we replace the ideal bit commitments 
based on envelopes by a computational form of bit commitment based on in- 
ner products, as introduced by Kilian [17] and modified by De Santis et  d. [7]. 
The idea is as follows. Let Smin denote the minimum space of the verifier, and 
let b N Smin/Lmin. P commits to the value of a bit .zi by selecting two vet- 
tors ~11(zi),~12(zi) E { O , l } b  at random, subject to vl(zi) 0 wZ(zi) = zi, where 
e denotes the inner product operation (the inner product of two vectors is the 
sum mod 2 of the and of the respective bits). In order to  send the sequence 
of 1 bits ( z ~ , Q ,  ..., z ~ } ,  the prover first sends the sequence v1(z1), ‘uI(z~), ... , 
vl(zt) ,  and then the sequence v~(x1) ,  ~ ( z z ) ,  ... , Z I ~ ( Z ~ ) .  The verifier can “open” 
Lmin committed bits by first saving their respective 211 vectors (this requires 
space roughly bC,i, N- &in), and then performing the inner products with the 
respective v2 vectors online. Intuitively, the desired property that  the verifier 
cannot open more that !,,, of the committed bits follows from the fact that in 
space S,,, ci b1,,, the verifier cannot save more than tmaz of the VI vectors, 
and hence lacks sufficient information to recover the values of C,,, + 1 bits at 
the time that the u2 vectors arrive. 

Main Ideas in our Const ruc t ion  

1.4 

There is no problem in showing that the protocol in the envelope model is 
zero knowledge. This is true also of the protocol constructed in the [7] paper. 
Hence intuitively, it seems that also the protocol in the known space model 

The Problems with Zero Knowledge 
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is zero knowledge. This intuition is supported by the following communication 
complexity game. Player A receives in private a random vector ‘u1 E (0, l}b and 
player B receives in private a random vector vz E {O,l}b. Player A can send 
a message of s bits to  B .  How large should s be so that the probability that 
player B computes z = 211 0212 is significantly greater than 1/2? Clearly, if s = b, 
then A can send ttl t o  B,  and B can compute z. However, if s is significantly 
smaller than b, then B’s probability of guessing the value of z is essentially 1/2, 
as proved in [6]. Returning to  our scenario of known space verifier, this implies 
that  the verifier needs to  store almost b bits of information regarding the vector 
v l (z i ) ,  if she is later t o  open the committed bit zi. Hence if the verifier’s space 
is limited to S,,,, it seems that  she cannot store sufficient information in order 
to recover more than L,,, of the committed bits. 

The above intuitive argument was formalized in [7] in the following way. They 
considered a game in which each player receives k random vectors (each of b bits), 
player A sends a single message of s bits, and player B has to compute the d u e  
of the k respective inner products. [7] prove that unless s N kb, there is only 
negligible probability that B computes correctly all k inner products. From this 
[7] conclude that  the verifier cannot recover more then C,,, of the committed 
bits, which would seem to imply that the proof system is zero knowledge in 
the known space model. However, this line of argument does not address the 
following issues: 

1. It still has t o  be established that in order for the verifier to get meaningful 
information, she must explicitly open committed bits. Perhaps after seeing 
P’s proof, the verifier can output the lexicographically first satisfying assign- 
ment for +, without outputting any of the committed bits zi. (Its hard to 
imagine how such a thing can be done, but it was not shown that it cannot 
be done.) 

2. There is side information available to the verifier. The committed bits z1, 

... , z ~ ,  encode a satisfying assignment for $I. They are not truly random and 
independent bits and this causes dependencies among the vectors v1(z1), ... 
,%(ZL), W(.Zl), * * ‘  , % ( Z t ) .  

We were unable to complete the argument to  a full rigid proof that the 
protocol is zero-knowledge. The following are the types of problems we have 
encountered. 

1. Communication complexity arguments alone do not seem to suffice, as they 
only address the space of the verifier. The verifier has polynomial space, and 
this suffices for her in order to find a satisfying assignment for $. Thus obvi- 
ously, communication complexity arguments cannot exclude the possibility 
that  V eventually outputs a satisfying assignment for $J. 

2. If one attempts t o  construct a simulator for V ,  then one encounters the 
following problem. In all previous protocols that we know of (e.g [14]), it is 
clear from the protocol which of the committed bits are revealed. This fact 
is later used in constructing the simulation. But in our model, there is no 
indication of which bit commitments the verifier chooses to open (if any). 
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3. The most successful way of proving that a protocol is zero knowledge is by 
blackbox sinadation, in which the simulator M treats the possibly cheating 
verifier as a blackbox, and studies its input/output relations at intermediate 
steps of the protocol. However, a one message proof system leaves no room 
for blackbox simulation. In fact, it can be shown that only languages in BPP 
have a one message proof system that is blaclcbox-simulation zero knowledge. 
We know of only one case in which something different from blackbox sim- 
ulation was used in order t o  prove that  a protocol is zero knowledge. This 
was done in an interactive scenario where both verifier and simulator where 
restricted to  logarithmic space [17], but does not seem to apply in our con- 
text. 

We regard it as a highly challenging open question to  prove that a one mes- 
sage proof system is zero knowledge, with respect to some reasonable definition 
of zero knowledge. 

1.5 Witness Indistinguishability 

We prove that our protocol is witness indistinguishable (in the known apace 
model). Our proof is based on communication complexity arguments, and takes 
into account the dependencies between the committed bits. See Sect. 4 for de- 
tails. 

The concept of witness indistinguishability first received comprehensive treat- 
ment in 1111 (though it was used implicitly also in earlier works). It turns out 
that if certain easy to meet restrictions are placed on the distribution of in- 
puts to the protocol, then any witness indistinguishable protocol is also witness 
hiding - at the end of the protocol the verifier cannot compute any witness to 
the input statement, unless she could do so before the protocol began. Witness 
hiding is a natural property to  consider in the context of proofs of knowledge. 
If a proof of knowledge is witness hiding, then the verifier of the proof cannot 
use it t o  become a prover later, since becoming a prover requires knowledge of 
a witness to  the input statement. Witness hiding proofs of knowledge can serve 
it4 identification schemes in the spirit of 191. For more information on the theory 
of witness indistinguishability and witness hiding see [ll], and for applications 
see [lo, 121. 

2 The Protocol 

Consider a predicate $ E 3-CNF. Prover P claims he has a satisfying assignment 
w for +, and wishes to prove this to the verifier V. We describe the protocol for 
doing so in several stages (the protocol we describe is a simplified version of 
the protocol, a somewhat more efficient version of the protocol is noted upon in 
Sect. 3 and will appear in the full version of our paper). First we describe a trans- 
formation of .JI into a different predicate 4, where each variable is represented 
by K variables, where K = 8 ( k )  (k being the tolerance). Then we convert this 
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predicate into a Permutation Branching Program (PBP) format, Next we con- 
struct a Random Computation Tree (RCT) for the PBP, to compute the value of 
the PBP, while hiding intermediate results. Next we describe the protocol in the 
pure envelope scenario, and show how the prover can prove his claim, with no in- 
teraction, and zero-knowledge. The final stage, the implementation of envelopes 
in the non-interactive bounded-space scenario, was described in Sect. 1.3. 

2.1 Splitting the Variables 

Let 
m m 

@ = A ci = A(Li,l v ~ i , 2  v ~ i , 3 )  9 

Li,l E {Sj}?=l u {qg1 . 

i= 1 i=l 

where 

We replace each variable Xj of @ by the ezclusive “or” of K new variables. 
yj,  aymb~li~uIIy, and set ;C;. = # @ (eqZz ~ 1 ) .  
9 = (A c!) 

K For each xj of +, set xj = 
Set 

ml 

i=l 

where C: is the symbolic representation of Ci with each literal replaced by 
its symbolic representation as an exclusive “or” of K variables. 

The new predicate rE has a satisfying assignment iff $J has one. Furthermore, 
any satisfying assignment for 9 induces one €or $J, and any satisfying assignment 
for $J induces several ones for !P, in a natural way. 

2.2 Permutation Branching Program Format 

Next, we describe how to transform each clause of P into a Permutation Bmnch- 
ing Program (PEP) format. For the general case, Barrington [Z] describes such a 
transformation yielding polynomial size programs with permutations in Ss. For 
our case, however, we can achieve more efficient representation, with permuta- 
tions in Sa and linear size programs. 

A 3-PBP, B,  of length I ,  over the set of Boolean variables Y, is an  ordered 
list of triplets 

where vj E Y, and u ~ , u ~ ,  are permutations in 5’3. For a given assignment f : 
Y + (0, l}, the program B yields the value 

B = ( (21’7 4 4), * . - 1 kl> 4, .:>,1 

1 

i=l 

We say that  B accepts f if d ( B ,  f )  = e, where e is the identity permutation. 
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Given a clause C,! we show how to transform it into a PBP B(Ci) such that 
B(C,!) accepts f iff f is a satisfying assignment. Furthermoreif it does not accept) 
then it yields some fixed permutation T .  

Set 

For C: = (Lil V Li, V L i 3 ) )  and p = 1,2 ,3 ,  define B,P of length K 

if LIP corresponds to a positive occurrence of variable xi,, and 

if L:, corresponds to  a negative occurrence of variable xi,. 
Define 

where B o 8' is the concatenation of B and B'. 
We claim B(C,') is the desired PBP. 

Lemma5. Let f be an assignment to the y,", '8, then 

where ?r = (1 3 2). 

Proof: Consider Bf.  By construction) 

The same holds for B? and BQ, with x2 and 7r3. Calculation now shows that  if 
any of the Bf's yields e then so does the full B(C,'), and otherwise B(C;) yields 
a. I 

Clearly, the representation of B(Ci) is linear in that of (7:. In fact the repre- 
sentation is rather concise: for a clause Cl of length 3K, B(Ci) has 10K entries. 
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Fig. 1. An RCT for t = 8 

2.3 Randomized Computation Trees 

Consider a PBP, B. For a given assignment f, we have val(B, f) = uj 
(where the U j  depends on the assignment f ,  and the PBP B) .  W.1.o.g. assume 
t is a power of 2. Define the following tree structure: take a full binary tree with 
t leaves, and replace each node of height I by a chain of length 2' + 1. The root 
node is not replaced. A picture of this structure for t = 8 is depicted in Fig. 1. 
Call the lowest node of each chain a combining node, and the other nodes chain 
nodes. To the right and the left of each chain node we place a permutation. 
Neighboring nodes share permutations (see Fig. 1). We call these permutations 
hiding permutations. For a node, w, denote by LP(w) and RP(w) its left and 
the right hiding permutations, respectively. The outer permutations, on each 
side, are fixed to  be the identity permutation (e). Other permutation are chosen 
randomly. 

We define the values a t  the nodes of the computation tree recursively. For a 
combining node w ,  denote its left and right children by WL and WE, respectively. 
For a chain node w, denote its child by WC. The value of a node is defined: 

vd(w) = Val(WL) Val(WR) w is a combining node. (1) { val(v$ ui = LP(w)-'. val(wc) I RP(w) w is a chain node. 

For a given permutation branching program B ,  assignment f ,  and set of hid- 
ing permutations R, we denote the corresponding Random Computation D e e  
(ACT), by T = I(B, f ,  R). 

For a node w, let R-path(w) be right-most path leading from the node down 
to  a leaf, and let L-path(w) be the left-most path leading from a leaf to the 
node. Let Span(w) be the sequence of leaf nodes under w, in order from left to  
right. Then 

w is the 6th leaf. 
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where all products are taken in order. Thus, the Random Computation Tree 
is a computation tree for B,  with intermediate values “padded” by random 
permutations. Specifically, at each levcl of chain nodes the value is padded by 
one additional permutation from the right, and one from the left. The root node 
is padded only by the identity permutations, and hence, 

vd(root) = vd(B, f). 

All other nodes are padded by random permutations. 

2.4 The Protocol in The Pure Envelope Model 

Let w be the witness available to  P. Formally w : {zj} -+ (0,l)  is a truth assign- 
ment to  the variables of $. For each variable z j ,  P chooses at a random truth 

Next, for each PBP B(C,!), P chooses at random a set of hiding permutations, 
and prepares the corresponding RCT ?;.. In all appearances of a variable zj, the 
same values for the PI’S are being used. Next, for all the yj’s, prover P puts 
the assignment values for these variables in separate envelopes. In addition, for 
each RCT, 3;, corresponding to the PBP B(C,’), P puts the value of each interior 
node in a separate envelope, as well as the set of all hiding random permutations, 
each permutation in a separate envelope. 

All envelopes are now sent to the verifier. The verifier can open between four 
and K - 1 envelopes. The verifier performs a correctness test: 

assignment, denoted by f, for ( y j ,  ... ,yF), subject t o  $,=,f(y~)  K = w(zj).  

Correctness test: The verifier chooses a t  random one RCT 7, and one non- 

1. The value val(w) was correctly constructed. V opens the related en- 

2. If w is the root node then val(w) = e (implying that the corresponding 

leaf node w E 7. For this node the verifier checks that: 

velopes and checks that vaJ(w) satisfies eq. (1). 

clause is satisfied). 
If any of these tests fail, the verifier rejects, otherwise, she accepts. 

The above envelopes contain permutation in S3. Each permutation can be 
represented by 3 bits. Confining ourselves to single-bit envelopes, we have the 
prover send each permutation in a sequence of 3 envelopes. We assume the 
verifier can open between Cmjn = 12 and L,,, = K - 1 of these envelopes’. The 
tolerance of the system is k = K/12. 

Lemma6. T h e  above protocol i s  a perfectly zero knowledge proof of knowZedge 
for 3-SAT in the envelope model. 

Kilian (private communication) remarks that em;,, can be reduced to 3. However, 
for a given tolerance, this reduction entails a degradation in the error probability 
and complexity. Consequently, this does not provide a more efficient protocol in the 
known space Scenario. 



95 

The proof of this lemma is omitted due to space limitations. It is based on 
the construction of a simulator M that sends “empty” envelopes to V .  For any 
set of less than K envelopes that V chooses to  open, M supplies “contents’, to 
these envelopes, with a distribution that is perfectly indistinguishable from the 
distribution that  would arise if a real prover was sending the envelopes. 

The envelope protocol is transformed into a protocol for the bounded space 
scenario its described in Sect. 1.3. 

3 Cheating Probability 

Suppose I I ,  $i 3-SAT. The proof-message sent by P, induces an assignment w : 
{zj} -+ {0,1} of the variables of $. Let Cj be a &use not satisfied by w 
(there must be at least one such clause). Suppose that for the correctness test, 
verifier V chooses to  test (the RCT associated with Ci). Then there is at least 
one node w E X for which the test fails. The number of nodes in an RCT is 
5 20KlogK = O(k1og k), where k is the tolerance. Thus, for a given clause Ci, 
not satisfied by w ,  Pr[correctness test fails] 2 l/O(klogk). Let m be the total 
number of clauses in $J, and let m be the maximum number of clauses which can 
be satisfied simultaneously. We obtain 

m - m  - * p = Pr[V accepts] 5 1 - ( m O(k1ogk) 
For any $ $2 SAT this probability is 5 (1 - l/O(nklogk)). By [l], for II ,  E 
MAX-SNP, the fraction m/(m - h) = 0(1), and hence the probability in (2) 
gives 5 (1 - l /O(klogk)).  The error probability can be further reduced by 
sequential repetition of the protocol. With t sequential repetitions the acceptance 
probability decreases to  pt .  Clearly, the repeated protocol still remains a one 
message proof. Note that in the envelope model sequentid repetition requires 
that the bounds on the number of envelopes V can open 5 i 5 L,,,) 
must hold for each repetition separately. For the lmown space scenario, this 
automatically holds. 

Finally we note on a method to further reduce the cheating probability (and 
consequently the complexity of the protocol for any b e d  security parameter). 
Consider again the envelope model, and suppose that the RCT’s are sent one by 
one, and that for each RCT, verifier V can open between 12 and K- 1 envelopes. 
In this case V can test each RCT separately. Thus, for each non-satisfied clause, 
Ci, V will detect that  Ci is not satisfied with probab&ty 2 l/O(klogk). Thus, 

However, this later protocol, a8 described above, is not zero-knowledge, even in 
the pure envelope setting (a sequence xj may be sent many times, until al l  its y!’s 
are revealed). In order to  preserve the zero-knowledge property, further modifica- 
tion to  the construction are introduced. We omit the details here. When proving 
witness indistinguishabfity, this modified protocol introduces extra complexities 
in the analysis. The proof we give in the next section is for the original protocol. 
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4 Proof of Witness Indistinguishability 

We now sketch the proof that the proof system is statistically witness indistin- 
guishable in the known space model. 

As corollary of Lemma 6 and of the theory of witness indistinguishability 
[ll], we have: 

Corollary 7. The proof system is perfectly witness indistinguishable in the en- 
velope model. 

We shall use the above corollary in our analysis of the known space model. 

n - length of input statement. 
w1, w2 - possible witnesses to  the input statement. 
f - number of envelopes. 
lmin - number of envelopes that V needs to open. 
Lma, - number of envelopes that V is allowed to  open. 
b - number of bits per envelope in the inner product representation. 
S - space of verifier. 
Smin - space guaranteed to be available to  V .  We assume Smin > n. 
Sma, - space guaranteed not t o  be available to  V .  
2 = . Z ~ , Z Z ,  ..., zz - message sent by P in envelope model. 
R - number of possible values of 2 consistent with a single witness. 
T J ~ ( . z ~ ) ,  w 2 ( ~ i )  - vectors of b bits, z t l ( q )  0 ~ ( z i )  = Zi .  

m - message sent by P in the known space model. 
ml - first part of message (only the 'u1 vectors). 
m2 - second part of message (only the 'u2 vectors). 
In the envelope model, d messages Z consistent with a specific witness are 

equi-probable. We require that for every zi, v1(Zj) # O*. 
The protocol is repeated sequentially many times, with independent random 

bits for the prover, so as t o  decrease the error probability. It suffices to  prove 
that  a single ikration is witness indistinguishable, since in our model we allow 
the verifier to have auxiliary input, and hence witness indistinguishability is 
preserved under repetition. 

Consider any two witnesses w1 and U J ~ ,  and construct the following matrix 
M. The rows of M are labeled by messages ml and the columns by messages m2. 

Hence M has ( 2 b  - l)! rows and 2'' columns. For each entry Mij interpret i and 
j as ml and 7n2 respectively, and set Mij = 1 if i, j is a message that corresponds 
t o  P using w1, M,j = -1 if i, j is a message that corresponds to P using w2, 
and Mij = 0 otherwise. Then each row of M has exactly R2-z2bz entries that 
are 1, and R2-z2bt entries that are -1. If P is using w1 (wz, respectively) as 
a witness, then in effect his message m corresponds to  a random 1 entry (-1 
entry, respectively) in M .  

We model the scenario a4 a communication complexity game. m = (m1,mz) 
is picked with uniform probability from the nonzero entries of M. Alice sees ml 
and Bob sees m2. Alice sends to  Bob a message of length S. Bob outputs either 

We use the following notation: 
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1 or -1. We want t o  bound Pr[B(m)  = M(m)]. The probability is taken over 
the random choice of m = (ml,m2). (The optimal strategy for Alice and Bob is 
deterministic.) 

Lemmas. If in fhe communication game Pr[B(m) = M(m)]  = 1/2+o(nW(')) ,  
then the protocol i s  statistically witness indistinguishable. 

Proof: V's behavior can be simulated in the communication complexity game. 
AEce simulates V(ml>, then sends the contents of the workspace of V to Bob 
(at most S bits), and Bob completes the simulation on m2. If V can distinguish 
between WI and 202, then so can Alice and Bob. 

It remains t o  analyze the communication complexity game. Alice sends one 
of 2' possible messages. This partitions the rows of M into 2s horizontal blocks. 
Bob holds a column. We need to  prove that with high probability, this column 
is balanced along the block (sum of entries is approximately 0). 

A block is heavy if it contains at least 2b'--S-a rows. The probability that a 
random row is in a heavy block is at least 1 - 2-" (ignoring the negligible factor 
of (%)' due t o  the fact that  w1 # O b ) .  We show that for heavy blocks, most 
columns are balanced. 

Consider an arbitrary row T ,  and a random column c. Then 

P T [ M ( T ,  C )  = 11 = Pr[M(r ,  C )  = -11 = R2-' 

Consider now a heavy block B. Take a random column c and consider the 
random variable X, = CrEB M(r,c). Since Pr[M(r,c) = 11 = P r ( M ( r , c )  = 
-11, then the expectation satisfies E[X,] = 0. To show that most columns are 
nearly balanced we will bound wur[X,], and use Chebyshev's inequality, PT[IX- 

vur[XC] = E [ ( X  - E[X])'] = E[X2] = ~,,,,, E[M(rI, c)M(r2,  c)]. To bound 
this last sum we use the fact that  the protocol is perfectly witness indistin- 
guishable in the envelope model, and hence knowledge of the contents of L,,, 
envelopes gives no information on whether P is using W I  or w2. 

Consider two rows TI, 7 2  E B. Each string ~i is composed off vectors, each of 
b bits. It follows from the witness indistinguishability property in the envelope 
model that: 

E[X]I > 71 I 9. 

Lemma9. If rl and T Z  agree on no more than 1- matching uectors, then 
E[M(Tl, c)M(rz ,  41 = 0. 

Hence 
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Using 4R2-'(cma:+1) < 1 we obtain that var[Xc] < (B12-"~,-2~'2-~. By 
Chebyshev inequality, P T [ X ,  > rlBl] 5 2b'/2aem-2by2(BJ. 

Call a column biased if X, > 7lBl. There are at most 22be/2bLm0x2-b 7 191 
biased columns. The total number of nonzero entries in biased columns is at 
most 22bL/2b'ma22b72. The total number of nonzero entries in the block B is 
at least (B)2bcR/2L. Thus the probability that m is chosen in a biased column 
is at most 2b'2L/2bema~y2(BIR2b < 2S2Q2'/72R2b2b'm~z. By our choice of lmaz 
it will follow that  there are at least JB12bcR/2'+1 nonzero entries in non-biased 
columns. Hence the probability that B guesses M ( m )  correctly when m is chosen 
in a non-biased column is bounded by 1/2 + *. B 2'+l 

If follows from the above that 

Choosing cr = n + 2, 7 = 2-(nfL+3), Cmoz = Lr+4nS3Lt10, b we obtain that 
Pr[B(m) = M ( m ) ]  < 1/2 + 2-". Observe that this last choice of C,,, can be 
made, despite the fact that L is super linear in L,,,. Recall that emin is some 
universal constant, as derived from our protocol, and that f = O(nL,,, logC,a,). 
Recall also that  Smin > n, and that b N Smin/Cmin. For S,,, = nC (where c 
is some constant), a good choice for L,,, can always be found, provided that 
Smin > > ~n log 72. 
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