
Cryptographic Primitives Based on Hard 
Learning Problems 

Avrim Blurns1 Merrick f i rs t**’  Michael Kearns2 Richard J. Lipton3 

Carnegie Mellon University, Pittsburgh PA 15213 
AT&T Bell Labs, Murray Hill NJ 07974 

Princeton University, Princeton, NJ 08544 

1 Introduction and Motivation 

Modern cryptography has had considerable impact on the development of com- 
putational learning theory. Virtually every intractability result in Valiant’s model 
[13] (which is representation-independent in the sense that it does not rely on an 
artificial syntactic restriction on the learning algorithm’s hypotheses) has at its 
heart a cryptographic construction [4, 9, 1, lo]. In this paper, we give results in 
the reverse direction by showing how to construct several cryptographic primi- 
tives based on certain assumptions on the difficulty of learning. In doing so, we 
develop further a line of thought introduced by Impagliazzo and Levin [S ] .  

As we describe, standard definitions in learning theory and cryptography do 
not appear to  correspond perfectly in their original forms. However, we show 
that natural modifications to  standard learning definitions can yield the desired 
connections. The particular cryptographic primitives we consider are pseudo- 
random bit generators, one-way functions, and private-key cryptosystems. We 
give transformations of hard learning problems into these cryptographic primi- 
tives with the desirable property that the complexity of the resulting primitive 
is not much greater than that of the hard-to-learn functions and distributions. 
In particular, our constructions are especially adept at preserving the degree of 
parallelism inherent in the hard functions and distributions. 

Note that  while it is well-known that some of the primitives above imply the 
existence of others (for instance, the equivalence of bit generators and one-way 
functions) [14, 71, we are interested in the separate results because the equiv- 
alences between primitives often do not preserve complexity measures such as 
circuit depth (parallelism). For instance, it is not known how to construct a bit 
generator in NC given a one-way function in NC. One of the main potential 
benefits of this line of research is that as “simple” function classes (for instance, 
DNF formulae) continue to elude efficient learning, our belief in the intractabil- 
ity of learning such classes increases, and we can exploit this intractability to 
obtain simpler cryptographic primitives. 

In addition to generic transformations, we describe a very simple pseudoran- 
dom bit generator based on the assumption that the class of parity functions 

* Supported in part by an NSF Postdoctoral Fellowship. 
** Supported in part by NSF grant CCR-9119319. 

D,R, Stinson (Ed.): Advances in Cryptology - CRYPT0 ’93, LNcs  773, PP. 278-291, 1994 
Q Springer-Verlag Berlin Heidelberg 1994 



279 

is hard to  learn in the presense of random noise (an assumption similar to  the 
intractability of decoding random linear codes). This generator is quite simi- 
lar t o  a proposed one-way function due to Goldreich, Krawczyk and Luby (31, 
who then obtain a generator by running the one-way function through a generic 
transformation. We show that the output of this one-way function is already 
pseudorandom. This stronger assertion is apparently already known to  some 
researchers in the cryptography community as a “folk theorem”. 

1.1 

In most learning theory models, a learning algorithm is required for every value of 
n to  learn all functions over (0,l)” that meet some (usually strong) constraints 
known to the algorithm. For instance, we might ask that the learning algorithm 
be able to  learn any DNF formula over (0, l}n with at  most n2 terms. Under such 
a definition, a failed DNF learning algorithm might still always be able to  learn 
any n2-term DNF provided n was even, and might learn all but a small scattered 
set of n2-term DNF formulae when n was odd. A “hard” learning problem with 
such an algorithm seems not especially useful for cryptography. 

We thus introduce an average-case model of learning that reduces these dis- 
crepancies between hardness for learning and the conditions required by cryp- 
tography, but otherwise preserves both the spirit and technical aspects of many 
existing models in learning theory. We then proceed to  demonstrate that this 
worst-case/average-case discrepancy was essentially the only barrier to a natu- 
ral correspondence between hard learning problems and many common crypto- 
graphic primitives. 

The Apparent Necessity of Average-Case Assumptions 

2 Preliminaries 

2.1 Learning Models 

The learning models we consider are models of learning boolean functions from 
labeled examples. 

Throughout the paper, 3, will denote a class of boolean functions over 
{O,l},, so each f E F, is a mapping f : { O , l ) n  -+ {O, l} .  We assume that 
each function in F,, is represented using some fixed and reasonable representation 
scheme. A representation scheme for 3, is a pair (Rn, €n), where ‘Rn C (0 ,  1}‘(,) 
for some fixed polynomial T ( n ) ,  and E,, : ‘R, ---t 3, is an onto mapping. 

We interpret a string u E R, as a representation of the function &(u) E 3,. 
Note that a function f E 3, may have many representations in 72,. Also, since 
R, contains only T(n)-bit strings, we are insisting that each function in 3, 
have a “short” representation. We shall see that the computational details of 
evaluating the representations are relevant to our study. We define 3 = {3n)  

and (72, &> = { (72,) En)}. 
In our average-case learning models, the unknown target function will be 

generated according to  some fixed distribution P,, over the function class 3 n  from 
the distribution ensemble P = {P,} over 3. When we have fixed a representation 



280 

scheme (R, E )  for 3, sometimes we instead prefer to  think of P, as a distribution 
over representations R,, which implicitly defines a distribution over 3,. 

Once a target function f E 3, is generated according to F, (which we 
s h d  denote f E P,), a learning algorithm will receive access to labeled ex- 
amples of f selected according to some fixed distribution V, over the input 
space {0,1}" from the distribution ensemble D = {D,}. Each example is a pair 
(z,f(z)) where x is drawn randomly according to 2)n (denoted z E Vn). If 
S = 21,. . . ,2, is a sequence of inputs from {0, I},, we use (S, f) to denote the 
sequence (XI, f(zl)), . . . , (zm, f(zm)) of labeled examples of f .  

Definition 1. Let 3 be a class of boolean functions, P a distribution ensemble 
over F, and ID a distribution ensemble over {O,l}*. For any 0 < E < 1/2, we 
say that  3 is €-predictable o n  average with respect to  P and 'D if there exists a 
polynomial time algorithm M (taking a labeled sample ( S , f )  and a test input 
Z) and a polynomial m(n) such that for infinitely many n, 

Pr [ M ( ( S ,  f), 5) = @)I 2 1 - 6- 
f EP" ,SED,m("),i EV, 

We call M an €-prediction algorithm (for 3 with respect to  P and V), and the 
function m(n) is the sample size of M .  

Note that  in this definition, a smaller value of E places a greater demand on 
the learning algorithm. We will want in particular to consider two extreme cases 
of predictability as follows: 

Definition 2. Let F be a clam of boolean functions, P a distribution ensemble 
over F, and 2, a distribution ensemble over (0, l)*.  We say that 3 is weakly pre- 
dictable on  average with respect to  P and 2) if there exists some fixed polynomial 
q(n) such that F is (1/2 - l/q(n))-predictable on average with respect to  P and 
ID. We say that 3 is strongly predictable o n  average with respect t o  P and 2, if 
for any polynomial q(n), F is l/q(n)-predictable on average with respect t.o P 
and ID. 

We will also consider these same learning models when the learning algo- 
rithm is provided with membership queries. Here the definitions of prediction 
on average remain unchanged, but in addition to  random labeled examples, the 
learning algorithm may receive the value f(z) on inputs x of its own choosing; 
the test input 2 is drawn after all queries are made to  prevent the algorithm 
from cheating by querying f(Z). 

2.2 
Distributions 

Measuring the Complexity of Representation Schemes and 

In order t o  quantify the complexity of our proposed cryptographic primitives, we 
need to  define complexity mewures for the representation scheme (a, E )  and the 
distribution ensembles P and 'D. As we have mentioned, we use uniform circuit 



281 

families to allow the most precise statements and to emphasize the preservation 
of parallelism in our constructions. We begin with the straightforward case of 
the input distribution ensemble D. 

Definition 3. Let 2, be a distribution ensemble over (0, l}*, and let D = {D,} 
be a uniform circuit sequence, where Dn takes d(n) input bits for some polyno- 
mial d ( n )  and outputs n bits. We say that D is generated by D if for every n, 
the output distribution of D, is exactly V,: that is, if we choose w uniformly at 
random from (0, l}d(n) then Dn(w) E (0, l}, is distributed according to  27,. 

We wish to  formulate a similar notion for the generation of the distribution P. 
For our cryptographic constructions, given a fixed representation scheme (R, E ) ,  
it will be easier to  think of the function distribution P, as being over the set 
Rn (rather than over function class F, itself), which then implicitly defines a 
distribution over 373 under En. In this case we can define what it means for P 
to be generated by a circuit sequence. 

Definition4. Let P be a distribution ensemble over R, C (0, l}"(,), and let 
P = (P,} be a uniform circuit sequence, where P, takes p(n)  input bits and 
outputs r (n)  bits for polynomials p(n) and T ( n ) .  We say that P is generated 
by P if for every n, the output distribution of P, is exactly 'P,: that is, if we 
choose w uniformly at random from (0, l}P(n) then P,(w) E Rn is distributed 
according to  P,. 

A distribution P over R that allows very rapid generation of function repre- 
sentations will not be especially useful to us if the representation of f makes it 
expensive to compute f(2). Thus, we make the following definition: 

Definition 5.  Let (R, E )  be an encoding scheme for F such that R, C (0, l } r (n) ,  
and let E = {En} be a uniform circuit sequence, where En takes r (n)  + n input 
bits and outputs a single bit. We say that (R,E) can be evaluated by E if for 
every n, on inputs r ~ f  E Rn such that f = &,(nf) E Fn and 2 E {O,l}", we have 
En(rfy2) = .f(2)- 

Finally, we will need to define circuit sequences that are formed from other 
circuit sequences in certain ways. If C = {C,} is a circuit sequence, we de- 
fine Cm = {Cz }  to  be the sequence of m-fold replication of the circuits in C. 
More precisely, the circuit Cp takes m * n inputs, and consists of m disjoint 
"copies" of C,: on inputs 51,. . . ,zm E (0, l},, the output CF(z1,. . . ,zm) is 
the concatenation of C n ( q ) ,  . . . , Cn(2,). 

If C and D are sequences of circuits, we define the sequence C O D  = {CnODn} 
i ~ s  follows: the circuit C,oD, has q(n) inputs for some polynomial q(n). Some or 
all of these inputs feed the fixed circuit D,, whose outputs (along with some or all 
of the inputs) in turn feed the fixed circuit C,. (Note that C, o D, is technically 
a s e t  of circuits since we have not specified exactly how the inputs are wired.) 
Similarly, if C,D and E are sequences of circuits, the sequence C o (D, E )  is 
that in which the circuit C, o (Dn, En) has some or all of its inputs fed to  the 



282 

fixed circuits D, and En in parallel, whose outputs (along with some or all of 
the inputs) in turn feed the fixed circuit C,. So, replication increases the circuit 
width, and the composition operation o increases circuit depth. 

2.3 Discussion 

Several widely studied function classes, such as DNF formulas, are believed to be 
hard to  learn even when the distribution 2) is uniform. There has been less formal 
work studying what hard function distributions look like because distribution P 
is not used in the standard models. The following, however, is a distribution on 
DNF formulas that seems to  defy all known methods of attack, and we believe 
that any method that could even weakly predict such functions over a uniform 
2, would require profoundly new ideas. 

Select at random two disjoint sets A, B c { 1,. . . , n} each of size log n. On 
input x, compute the parity of the bits indexed by A and the majority function 
of the bits indexed by B ,  and output the exclusive-or of the two results. This 
function can be represented by a polynomial size DNF formula (or decision tree) 
since the t ruth table has only 22'ogn = n2 entries. Because this P distribution 
seems hard even to  weakly predict over uniform V, it could be used for our bit 
generator in Section 3.1 (though learning becomes easy if membership queries 
are allowed, so the generator of Section 3.2 does not apply). 

3 General Results 

3.1 A Bit Generator Based on Hardness for Weak Prediction 

We begin by showing that a function class hard to  weakly predict on average 
can be used to  create a CSPRBG whose circuit depth is comparable to that of 
the function class plus that of generating the hard distributions. 

Definition 6. A cryptographically strong pseudorandom bit generator (CSPRBG) 
is a uniform circuit sequence = {on}, where Gn takes n bits of input and pro- 
duces g(n) > n bits of output, with the following property: for any polynomial 
time algorithm T that  produces a boolean output and any polynomial q ( n ) ,  
there exists an no such that for all n 2 no, 

We call the function e ( n )  = g(n) - n the expansion of 8. 

We first consider the spccial c u e  in which the input distribution ensemble is 
uniform. 

Theorem7. Let 3 be a class of boolean functions, (72,E)  a representation 
scheme f o r  3, P a distribution ensemble over 72, and U the uniform distri- 
bution ensemble over (0, l}*. Let (R,&) be evaluated by  the circuit sequence E ,  



283 

and let P be generated by the uniform circuit sequence P .  Then i f  3 is not weakly 
predictable on average with respect to P and U, there is a CSPRBG computed 
by the uniform circuit sequence Em(,) o P for some b e d  polynomial m(n). 

Proof. (Sketch) Informally, for any n, the bit generator 6, behaves as follows: 
it takes as input a random bit string, and uses some of these bits to  generate 
a function f E 3, according to the distribution P,. The rest of the input bits 
are used directly as m inputs, xl,. , . , xm E (0 , l )”  for f. The output of the 
generator consists of 21,. . . , xm followed by the m bits f (xl), . . . , f (Zm)- 

More formally, G, takes as input a random string of p ( n )  + m .  n bits. Here 
p(n) is the number of random input bits required by the circuit P, for generating 
a representation uf g 72, of a function f = €,(uf) E 3n7 where uf is distributed 
according to  P; rn will be determined by the analysis. The generator feeds the 
first p(n) input bits into P, to  obtain C T ~ ,  The remaining man random input bits 
are regarded as m random vectors 21, - . , x, E (0, l},. For each i the generator 
then feeds uf and zi t o  a parallel copy of En to  obtain E,(uf ,  xi) = ,f(xi). The 
output of the generator is then XI,. . . , z,, f (q), , , . , f (zm). It is easy to verify 
that  Q is computed by the circuit sequence Em o P. Since our generator produces 
g(n) = rn n + rn output bits, we obtain expansion provided that rn > p ( n ) .  

We now argue that 6 is in fact a CSPRBG. For contradiction, suppose that  
Q is not, and let T be a polynomial time algorithm such that 

for some polynomial q(n). For each i ,  let ti denote the probability that T outputs 
1 when its first i input bits are the first i bits of B(z) on random z, and the 
remaining input bits of T are truly random. Then we have It” - tg(,)1 1 l / q ( n ) ,  
and by a standard “probability walk” argument there must be an 1 5 z < g(n) 
such that  Iti - ti+ll 2 l / (n -  q(n)) (note that in fact i must be larger than m . n 
since the first m n bits of gn’s output are in fact truly random, having simply 
been copied from the input). Furthermore, we can find such an i (with high 
probability) by performing repeated experiments with T using random draws 
from P, and V,, and once such an a is found we can “center the bias” to  produce 
an efficient algorithm T‘ such that ti 2 1/2 + l/ql(n) and ti+, 5 1/2 - l/q’(n) 
for some polynomial g(n), 

Algorithm T’ thus has the following property: suppose we draw a function f 
randomly according to  P,, and draw m random n-bit vectors 21,. . . , x m  and we 
give TI the inputs xl, . . . , zm along with f(q), , . . , f (zi),  followed by an input 
bit bi+l that  is either f ( x i + l )  or a truly random bit, followed by g(n) - i - 1 
random bits, Then T’ can determine with probability significantly better than 
random guessing whether its i + 1st input bit bi+l is f (zj+l) or a truly random 
bit; we interpret an output of 1 as a guess that bj+l is random, and an output 
of 0 as a guess that bi+1 = f(x;+l). 

Now suppose we have access to  random examples according to  U, of a target 
function f drawn according to P,, and we also have a random test input 6.  



284 

Suppose we give to  T' the random strings 21,. . . ,xi, Z, x,+z,. . . , xm followed 
by f (zl), . . . , f (xi), followed by an undetermined input bit b i+ l ,  followed by 
g(n) - 2  - 1 random bits. Then it is easy to show by a simple averaging argument 
that the following strategy yields an algorithm for weakly predicting 3 with 
respect to P and U: with the other inputs as specified, we run T' both with 
b;+l = 0 and b;+l = 1. If both inputs cause an output of 0, or both inputs cause 
an output of 1, we flip a coin to  predict f ( 5 ) .  Otherwise, we predict that f(2) 

The following simple lemma relates the hardness of learning a function class 
with respect to  some input distribution ensemble to the hardness of learning a 
related function class with respect to the uniform distribution ensemble. 

Lemma 8.  Let be a class of boolean funct ions,  P a distribution ensemble over 
3, and 2, a distribution ensemble over (0, l}*. Let  the ensemble V be generated 
by the circuit sequence D ,  and let Fo D denote the class of func t ions  obtainable 
by  composing a f u n c t i o n  in Fn with the circuit D,. T h e n  f o r  a n y  e ,  if is n o t  
€-predictable o n  average with respect to  P and 21, t h e n  .Fo D is n o t  €-predictable 
o n  average with respect to P and the u n i f o r m  ensemble U over {0,1}*. 

is the value of bi+l that caused T' to output 0. 

PTOOf .  Immediate; we are simply letting the computation of the hard distribution 
0 

From Theorem 7 and Lemma 8, we can now easily obtain a bit generator 
from a learning problem that is hard with respect to some input distribution 
ensemble. 

ensemble 2) be part of the target function. 

Corollary9. Let 3 be a class of boolean functions, (R,&) a representation 
scheme f o r  3, 'P a distribution ensemble over R, and 2) a distribution ensemble 
over (0, l}*. L e t  (a, C) be evaluated by th.e circuit sequence E ,  let P be uni- 
formly generated by the circuit sequence P, and let 2, be uni formly generated by 
the circuit sequence D. T h e n  if 3 is not  weakly predictable o n  average with re- 
spect t o  P and D ,  there is  a CSPRBG computed by the u n i f o r m  circuit sequence 
( E  o D)m(n) o P f o r  some fixed polynomial m(n). 

3.2 

The pseudorandom generator just described takes p(n)  + m . R. truly random 
input bits to  m . n + m output bits, giving expansion e(n) = m - p(n) .  While we 
can let e ( n )  attain any desired value by choosing m = m(n) as large as necessary, 
the expansion ratio (the number of output bits divided by the number of input 
bits) will not exceed 1 + l/n. There are standard methods which can be used 
t o  amplify the expansion of any generator. However, these methods iterate the 
generator and therefore significantly increase the resulting circuit depth. 

By applying a result due to Nisan and Wigderson 1121 we can improve our 
generator to  obtain a much greater expansion ratio without a correspondingly 
large increase in circuit depth (or size). However, in order to prove security, we 
will need to assume that the class of functions is hard to  weakly predict on 

Improved Expansion via Nisan- Wigderson 



285 

average even when the learning algorithm is provided with membership queries. 
We now describe how this stronger intractability assumption allows us to  modify 
our generator to  obtain an expansion ratio on the order of n2 rather than just 
0(1) as before. 

The new CSPRBG G, takes as input a random string of p(n) + n2 bits. 
As before, p(n)  is the number of random input bits required by the circuit P,. 
(For simplicity we assume that the hard distribution V, over the inputs (0, l}, 
is the uniform distribution; similar improvements can be given for the general 
case as was done above.) Call the additional n2 input bits v = 211,. . . , vnz . It is 
described by Nisan and Wigderson [12] how to  uniformly construct a family of 
n4 sets S1,. , . ,S,4 such that: (1) S; c {vl,, . . ,vna}; (2) lSjl = n for all i; and 

Our new generator will work as follows: as before, the first p(n) bits are 
used to  generate a function f E 3, according to the distribution 'P,, and the 
remaining n2 bits v are copied to the first n2 output bits. Now, however, if we 
let fi denote the function f applied to the subset of v1,. . . , v,,a indicated by the 
set Si, the (n2 +i) th  output bit is fi(v). Thus, g, takes p ( n )  +n2 input bits and 
gives g(n) = n2 + n4 output bits, for an expansion ratio of L?(n2). Note that the 
sets Si are fixed as part of the generator description and thus are known to  any 
potential adversary. 

We now sketch the argument that if F is not weakly predictable on average 
even with membership queries, then G,, is a CSPRBG. To see this, suppose 
the contrary that 6, is not a CSPRBG. By standard arguments, there is an 
1 5 i 5 n4 and a polynomial time algorithm T such that 

(3) ISinSj l  5 logn for all i # j. 

exceeds 1 /2  + l/q(n) for some polynomial q(n). 
The function fi+l only depends on the bits in Si+l which without loss of 

generality we call v1,. . . , v,,. By an averaging argument we can find afixed setting 
z = z,,+1,. . . ,z,a E (0, l}na-n of the remaining bits v,+1,. . . ,V,P such that 

exceeds 1/2 + l/q(n) for some polynomial q(n). 
Now we describe how a learner who can make membership queries can weakly 

predict 3 on average. By the Nisan-Wigderson construction, each f j  other than 
fi+l *is actually a function of only logn bits in q,. .. ,v, (all other bits have 
been fixed) and we know which logn bits since the sets S; are fixed as part 
of the generator description. Thus the entire truth table of each f j  is of size 
polynomial in n, and can be determined by making only n membership queries 
to  f [the queries simply let the variables in Sj n{vl,  . . . , zl,,} assume all n possible 
settings while the remaining variables have their values fixed according to  z). 
To predict f(v) on a challenge input v the learner looks up the values of fj(vz) 
for 1 5 j 5 i and then outputs T(vz, fl(wz), . . . , fifivz)). This weakly predicts 
f;+l(vz) = f (v), and by contradiction proves our assertion that & is a CSPRBG. 



286 

3.3 A One-way Function Based on Hardness for Strong Prediction 

We now show that  under the weaker assumption that a class of functions is 
hard to  strongly predict on average, we can construct a one-way function whose 
circuit depth is comparable to  that of the function class plus that of the hard 
distributions. A related result is given by Impagliazzo and Levin [6]. 

Definition 10. Let F = {Fn} be a uniform sequence of circuits F, : (0,1}" + 

(0, l}a(nl for some polynomial s(n) .  We say that F is a one-way function if there 
exists a polynomial q(n) such that for any polynomial time algorithm T ,  there 
exists an no such that  for all n 2 no, 

Theoremll. Let 3 be a class of boolean functions, (R,&) a representation 
scheme for 3 ( R n  E (0, l}r(n)), P a distribution ensemble over R, and V a 
distrdbution ensemble over (0 ,  l}*. Let (R, E )  be evaluated by the circuit sequence 
E ,  P be generated by the circuit sequence P? and V be generated by the circuit 
sequence D. Then z f  3 i s  not strongly predictable o n  average with respect to  P 
and V, there is a one-way function F computed by the uniform circuit sequence' 
Ern(") o (p, Drncn)) f o r  some fized polynomial m(n). 

Proof. (Sketch) The construction is similar to that of the bit generator; the main 
differences are the polynomial m(n) and the analysis. The input to the one-way 
function Fn will consist of p(n)+m-d(n) bits, wherep(n) is the number of inputs 
to  P, and d(n) is the number of inputs to D,. The first p ( n )  bits are fed to  Pn to 
produce a representation af E R, of a function f E F,. The remaining m d ( n )  
input bits are regarded it9 m blocks w1,. . . , w, E {0, l}d("). Each 'uli is fed to 
a parallel copy of D ,  in order to  produce an zi E (0, l},; if the wi are selected 
randomly, then the xi are distributed according to  D,. Finally, each xi is given 
along with at to a parallel copy of E,, in order to obtain En(af,zi) = f(zi). 
The output of F,, is then 21,. . . ,z, followed by f(zl), . . . , f(zm). 

We begin the analysis by noting that if w ,  v' E (0, l)P(,) and w1,. . . ,wm, 
wi, . . . , w i  E (0, l}d(n) are such that 

F,(v,w~,. . . , wm) F,(V',W;, . . . , ~ h )  
we must have D,(w~) = Dn(w{) for all i. Let x; = Dn(wi). Now although it is 
not necessarily true that w = v', if we let ~f = P,(w) and njt = Pn(v') be the 
representations in R, of the functions f ,  f '  E 3,, by construction of F, it must 
be the case that f(xi) = f ' (z i )  for all i. 

Let q(n) be such that 3 is not 3/q(n)-predictable (with respect t o  P and 21). 
For any fixed f E 3,, the probability over m random examples from V, that 
there exists a function f' E 3, agreeing with f on those examples, but that has 
error greater than l/q(n) with respect to f and V, is at most lFnl(l - l/q(n)),. 
This probability is smaller than l/q(n) for m = Q(q(n)[Iogl3,,l + logq(n)]) ,  



287 

(which is polynomial in n since log lFnl <_ ~(n)). We set m such that  this is the 
case. 

Thus, suppose that F is not a one-way function. Then there exists an algo- 
rithm T with probability at least 1- l/q(n) of finding an inverse for Fn(V, ~ 1 , .  . ., 
w,) on random inputs. So given a test input 5 E 27, and m examples (zi, f(zi)) 
of f drawn according to  D,, we can simply give the string z1,. . . , zm, f(zl), . . . , 
f(zm) to  T. There is then probability at least 1- l/q(n) that T returns v’, w:, . . . , 
wk such that Fn(v’, w:, . , . , wk) = 21,. , . ,zm, f(z1), . . . , f(zm). If this occurs, 
then by the argument above there is probability at least 1 - l /q (n)  that P,(v‘) 
represents a function f’ with error at most l /q (n) ,  and we can simply compute 
f ’ (2) .  The probability that f‘(2) = f ( Z )  is at least 1 - 3/q(n),  violating the 

0 assumption that F is not S/q(n)-predictable. 

3.4 
Prediction 

A Private-Key Cryptosystem Based on Hardness for Weak 

In section we describe a simple and natural mapping from hard learning problems 
to  private-key cryptosystems. This mapping has the property that if a simple 
function representation (for instance, DNF formulas) is hard to  learn over a 
simple distribution (for instance, uniform) then encrypting and decrypting are 
both easy. Define the function En,a(Z)  = &(u, z). For example, if (R, E )  is 
a representation for DNF formulas, then En is a circuit that takes a string 
representing a DNF formula f and some z, and produces f(z) as output. En,,, 
however, is just a depth-2 circuit. 

A private-key cryptosystern is a tuple (G,E,D) of three probabilistic poly- 
nomial time algorithms, The key generator G takes as input ln, and outputs 
a key k of length n. The encryption algorithm E takes as input a message m 
and a key k, and produces ciphertext as output. The decryption algorithm D 
takes as input ciphertext and a key and produces a message. We require that 
D(E(m, k), I c )  = m. 

The private-key cryptosystems we will discuss are probabilistic schemes that 
encrypt one bit at a time, encrypting each bit independently from the previous 
ones, as in [5].  We use standard notions of chosen plaintext andfor ciphertext 
attack. Since we encrypt bits independently, we may say a system is secure if for 
any polynomial time algorithm T ,  polynomial q(n), and sufficiently large n, the 
probability that  after performing its allowed type of attack T correctly guesses 
the decryption of an encrypted random bit is less than 112 + l/q(n). 

Suppose F is a class of boolean functions, (R, E) a representation scheme for 
3, P a distribution ensemble over 72, and 2) a distribution ensemble over {0,1}*. 
In addition, suppose (a, E) is evaluated by the uniform circuit sequence E, and 
P and 2) are generated by the uniform circuit sequences P and D respectively. 
Assume that  the probability a random example from 27, is positive for a random 

‘ Here we depart from our policy of describing primitives as uniform circuit families 
since we intend to describe the private-key system informally. 



288 

function f from P,  is in the range [$ - $, f + i] (if this is not the case then F 
is weakly predictable). 

The cryptosystem based on 3, P, and 2) is as follows. The key generator G 
uses input 1" to generate P,. G then feeds p(n) random bits into P, to  produce 
a string r E 72,. String u is the key given to the encryption and decryption 
algorithms (so, technically, the security parameter is r (n) ) .  Let f be the function 
represented by u. 

The encryption algorithm E begins by generating circuits D, and En, and 
evaluating En on the private key to  create En,q. It encrypts a 1 by sending a 
random (according to 2)) positive example of f and encrypts a 0 by sending a 
random (according to D) negative example of f. This requires running D, on 
d ( n )  random bits to create an example x ,  and then computing E n , g ( ~ )  to  see 
if the example is uf the appropriate type, repeating the procedure if it is not. 
Notice that  the expected number of calls to D, and En,g is just 2 + o(1) by our 
assumption on 2). (This could be improved by encrypting many bits at a time). 

Decryption is even simpler than encryption. The decryption algorithm D 
begins by generating En,,, and then decrypts strings x by computing En,o(x) .  

Theoremla. If 3 is not weakly predictable on average with respect to P and 
V, then the cryptosystem (G,E,D) described above is secure against chosen 
plaintext attack. If furthermore .F is not weakly predictable with membership 
queries with respect to  P and D, then ( G ,  E, D) is secure against chosen plaintext 
and ciphertext attack. 

Proof. (Sketch) Suppose algorithm M can break ( G ,  E, D) with chosen plaintext 
attack for infinitely many n, and asks for the encryption of m(n) plaintext bits. 
The learning algorithm simply requests 3m(n) labeled examples (which with 
high probability will result iu at least m(n) positive examples and at least m(n) 
negative examples) and uses them to simulate E for M's  plaintext queries. It 
then feeds the test input 5 to M and uses M's response as the prediction. Since 
~ ( n )  is polynomial in n, and M responds correctly with probability at least 
1/2 + l / p o I y ( r ( n ) ) ,  this will be a weak prediction algorithm (for F with respect 
to P and a). 

If M makes chosen ciphertext queries, the learning algorithm, if it is allowed 
membership queries, can answer these in the obvious way as membership and 
ciphertext queries are equivalent here. Thus, if ( G ,  E, D) is vulnerable to  chosen 
plaintext and ciphertext attack, then 3 is weakly predictable with membership 
queries with respect to  P and 'D. 

4 A Bit Generator Based on Parity Functions with Noise 

Let S, denote the set of all parity €unctions over (0,l)"; specifically, for each 
of the 2" subsets S = {q,. . . , x i k }  C_ {q,. . . ,z,} there is a function fs E s n  

defined by 
~ S ( X I ,  * - .  xn)  = xil @ * * * @ 



289 

In this section we describe a simple bit generator whose security is based 
on the assumption that parity functions are hard to  learn in the presence of 
classification noise. This means that we add a parameter 0 < 7 < 1/2 to  our 
learning model called the noise rate, and now a learning algorithm, rather than 
always receiving a labeled example (z, f (z)) of the target function f ,  will instead 
receive a noisy labeled example ( 2 , l ) .  Here l = f(z) with probability 1 - 17 and 
1 = -f (z) with probability q where this choice is made independently for each 
requested example. Our specific hardness assumption is as follows. 

The Parity Assumption: For some fixed constant 0 < r] < 1/2,  there is no 
algorithm taking 6 and n as input that runs in time polynomial in 1/6 and n, 
and for infiniteIy many n does the following: Given access to noisy examples 
from the uniform distribution 24, on (0,l)” classified by an arbitrary fs E S, 
with noise rate r ] ,  it produces the set S with probability at least 1 - 6. 

Note that in comparison with our definitions in earlier sections, we have de- 
creased the strength of our assumption in a number of ways. First, on those 
values of n for which a learning algorithm “succeeds”, it must succeed for every 
function in S,,. We have thus eliminated the distribution P,,. Second, the learn- 
ing algorithm must now actually find the target concept with arbitrarily high 
confidence. Third, the learning algorithm must learn with a possibly large rate 
of noise in the labels. 

The parity assumption is closely related to  the problem of efficiently decoding 
random linear codes, which is a long-standing open problem. It is known that the 
problem of finding the parity function that minimizes the number of disagree- 
ments with an input set of labeled examples is AfP-hard [2] (and easy to  show it 
is MAX-SNP hard), and this optimization problem was used by McEliece [ll] as 
the core of a proposed public-key cryptosystem with informal security arguments 
in which the matrix of examples must be carefully chosen. Recent results [8] 
provide some evidence in favor of the panty assumption by proving that parity 
functions cannot be learned using a certain class of statistical algorithms that 
include all known noise-tolerant learning algorithms in the Valiant model. 

Based on the (unproven) parity assumption, we propose a simple pseudo- 
random bit generator. This generator is quite similar to  a proposed one-way 
function due to  Goldreich, Krawczyk and Luby [3], who then obtain a generator 
by running the one-way function through a generic trimsformation. Essentially, 
our contribution is to  prove that the output of this one-way function is already 
pseudorandom. This stronger assertion is apparently already known to  some 
researchers in the cryptography community as a “folk theorem”. 

The input seed to the generator 0 consists of s(n) = n + m n + ‘H(r])  * m 
random bits, regarded as a block sf of n bits, followed by m blocks 21,. . . , x m  
of n bits each, followed by a block sr of X ( 7 )  e r n  bits. Here m will be determined 
by the analysis, and E(q) is the binary entropy of the noise rate 7 in the parity 
assump tion. 

The block sf encodes a parity function fs E S,; each 1 in sf indicates a 
variable included in the subset S. As in our previous generator, q, . . . , x, are 
regarded as inputs to fs. The block sT encodes a longer m-bit noise vector sl,, 



290 

where 8:. has exactly 17 . mJ 1’s. Such an encoding can be shown to require s, 
to  be of length only %(q)  . m, and this encoding can be done in a number of 
standard ways. Thus, if we randomly choose s, among all R(q) m-bit vectors, 
then we randomly choose s’, from among all m-bit vectors with exactly 111 - m] 
1’s. 

g works as follows: it first uses sf to obtain the represented parity function 
fs. It then expands s, to  obtain s:. It next computes f(zl) ,  . . . , f (Xm),  and for 
each i lets t i  = f(xi) if the i th  bit of s’, is 0, and lets .fi = -.f(zi) if the ith 
bit of 9: is 1. The output of B is XI,. . . , x,, followed by 11,. . . ,im. Note that 
the output of is a noisy sample of f s ,  but where the number of noisy labels is 
exactly Lq . mJ,  rather than determined by m flips of a coin of bias q as in the 
parity assumption; this discrepancy will be dealt with in the proof of the coming 
theorem. 

B takes s(n) = n + m . n + X ( q )  * m random bits as input, and outputs 
t(n) = m - n + m bits, for expansion t(n) - s(n) = m(1- 31(q)) - n. Thus we 
get expansion provided we choose m > (1/(1- ‘H(7)) - n, which can be done so 
long as q < 1/2. 

Theorem 13. Under the parity assumption, 0 is a pseudorandom bit generator. 

Proof. (Sketch) The overall strategy is to  show that the parity assumption in 
fact implies the stronger assumption (the strong parity assumption) that panty 
functions are not even weakly predictable on average (in the presence of noise 
rate 7) with respect to the uniform distribution P, over S, and the uniform dis- 
tribution U,, over (0, l}n. The security of can then be shown from arguments 
similar to  that for the general bit generator outlined earlier. We must addition- 
ally show that the difficulty of learning with noise rate q implies the difficulty 
of learning when the m examples requested by the learning algorithm contain 
exactZy - mJ errors. 

To see that the panty assumption implies the strong panty assumption, con- 
sider an algorithm A that contradicts the latter. To break the parity assumption, 
we first randomize S by XORing the labels given to  examples with the classi- 
fication given by some random parity function S’. Given such examples, A will 
perform noticeably better than guessing on a test example 5. However, instead 
of giving to A these examples, we give to A examples in which we have replaced 
the i th  bit xi by a random bit in each. If xi was irrelevant t o  the classification 
(not in Sds’) the resulting distribution is indistinguishable from the original 
one, and A will still do better than random guessing. However, if xi E SAS‘, 
then there is now no correlation between the examples and the labels (the noise 
does not affect this) and so A cannot do better than random guessing. Thus, 
by repeating this process we can determine which variables are relevant to the 
classification and recover S, breaking the panty assumption. 

Finally, we must address the fact that our generator is always injecting a 
fixed fraction of label errors rather than using a coin of bias q. Suppose that the 
learning problem became easy provided that the noise model always injected ex- 
actly l9.rnJ errors into any sample of size m requested by the learning algorithm. 



291 

We could then run this “fixed-fraction” algorithm many times on its requested 
sample size m, where the m examples come from a source with probability q of 
noise independently on each example. The probability that exactly q . m labels 
are noisy is certainly a ( l / m )  regardless of the value of 7. So one of the runs 
of the fixed-fraction algorithm must succeed with high probability, and we can 

0 determine which run by hypothesis testing. 

Acknowledgements 

We are grateful to Russell Impagliazzo and Steven Rudich for many insightful 
comments and suggestions on this research. 

References 

1. Dana Angluin and Michael Kharitonov. When won’t membership queries help? In 
Proceedings of the Twenty-Third Annual A C M  Symposium on  Theory of Comput- 
ing, pages 444-454, May 1991. 

2. E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of 
certain coding problems. IEEE Transactions on  Information Theory, 24, 1978. 

3. 0. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom gen- 
erators. In 29th Annual Symposium on  Foundations of Computer Science, pages 
12-21, October 1988. 

4. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random 
functions. Journal of the A C M ,  33(4):792-807, October 1986. 

5. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. JCSS, 28(2):270-299, 
April 1984. 

6. R. Impagliazzo and L. Levin. No better ways to generate hard N P  instances than 
picking uniformly at random. In 91st Annual Symposium on  Foundations of Com- 
puter Science, October 1990. 

7. R. Impagliazzo, L. Levin, and M. Luby. Pseudorandom generation from one-way 
functions. In Proceedings o f t h e  Twenty First Annual A C M  Symposium on  Theory 
of Computing, May 1989. 

8. Michael Kearns. Efficient noise-tolerant learning from statistical queries. In PTO- 
ceedings of the Twenty-Fafth Annual A C M  Symposium on the Theory of Comput- 
ing ,  May 1993. 

9. Michael Kearns and LeslieG. Valiant. Cryptographic limitations on learning 
Boolean formulae and finite automata. In Proceedings of the Twenty  First An- 
nual A C M  Symposium o n  Theory of Computing, pages 433-444, May 1989. To 
appear, Journal of the Association for  Computing Machinery. 

10. M. Kharitonov. Cryptographic hardness of distribution-specific learning. In Pro- 
ceedings of the Twenty-Fifth Annual ACM Symposium o n  the Theory of Comput- 
i n g ,  May 1993. 

11. R. J. McEliece. A Public-Key System Based on  Algebraic Coding Theory, pages 
114-116. Jet Propulsion Lab, 1978. DSN Progress Report 44. 

12. N. Nisan and A. Wigderson. Hardness YE. randomness. In 29th Annual Symposium 
on  Foundations of Computer Science, pages 2-12, October 1988. 

13. L. G. Valiant. A theory of the learnable. Communications of the A C M ,  
27( 11):113&1142, November 1984. 

14. Andrew C. Yao. Theory and applications of trapdoor functions. In 29rd Annual 
Symposium on  Foundations of Computer Scaence, pages 83-91, 1982. 


	Cryptographic Primitives Based on HardLearning Problems
	1 Introduction and Motivation
	1.1 The Apparent Necessity of Average-Case Assumptions

	2 Preliminaries
	2.1 Learning Models
	2.2DistributionsMeasuring the Complexity of Representation Schemes and
	2.3 Discussion

	3 General Results
	3.1 A Bit Generator Based on Hardness for Weak Prediction
	3.2 Improved Expansion via Nisan-Wigderson
	3.3 A One-way Function Based on Hardness for Strong Prediction
	3.4PredictionA Private-Key Cryptosystem Based on Hardness for Weak

	4 A Bit Generator Based on Parity Functions with Noise
	Acknowledgements
	References


