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Abstract. There are numerous subexponential algorithms for comput- 
ing discrete logarithms over certain classes of finite fields. However, there 
appears to be no published subexponential algorithm for computing dis- 
crete logarithms over all bite fields. We present 'such an algorithm and 
a heuristic argument that there exists a c E SZ>o such that for all suf- 
ficiently large prime powers pR, the algorithm computes discrete loga- 
rithms over GF(p") within expected time: 

ec(lo8(P") 10s h 3 ( P " ) ) 1 ' ~  

1 Introduction 

Given a,p in a finite field, the discrete logarithm problem is to calculate an 
z E Z>O - (if such exists) such that: 

Interest in the discrete logarithm problem first arose when Diffie and Hell- 
man proposed a public key cryptographic system based on the complexity of 
this problem[DH]. Additional systems using discrete logarithms have since been 
proposed, including ElGamd's crypto-system[Ell]. Recently the goverment has 
proposed using a system of this type as a standard. These present systems are 
based on finite fields of special form for which subexponential algorithms already 
exist. However, it is likely that these systems can be generalized to work with 
arbitrary finite fields. Previously, no subexponential algorithms existed for all 
such fields. We present such an algorithm along with a heuristic argument that 
there exists a c E 32>0 such that for all sufficiently large prime powers p", the 
algorithm computes discrete logarithms over GF(p") within expected time: 

ec(log(Pn) log log(P"))"2 

There exist several algorithms which for all primes p E Z>o compute discrete 
logarithms over GF(p) in time subexponentid in p (e.g. [Adl, Gol]). Further, 
for all primes p E Z>O, there exists algorithms which for all n E Z>O computes 
discrete logarithms over GF('pp") in time subexponentid in p" (for p = 2, this 
was first shown by Hellman and Reyneri [HR] and improved by Coppersmith 
[Co]; however, these approaches appear to  generalize to  an arbitrary prime p ). 
D.R. Stinson (Ed.): Advances in Cryptology - CRYPT0 '93, LNCS 773, pp. 147-158, 1994. 
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ElGamaJ [El21 has given an algorithm which for all primes p E Z>O compute 
discrete logarithms over GF(p2) in time subexponential in p2. Previously, the 
most general subexponential algorithm appears t o  be that  of Lovorn [Lo] which 
computes discrete logarithms in GF(pn) for log(p) 5 

Our subexponential method for all finite fields actually consists of two al- 
gorithms. They both may be described as ‘index calculus’ methods [WM, Od]. 
The first algorithm is for the case n < p .  Here, GF(p”) is represented by O / ( p )  
where 0 is a number ring and ( p )  is the prime ideal generated by p. An ele- 
ment of O/(p) is considered ‘smooth’ iff when considered as an element of 0, 
the ideal it generates factors into prime ideals of small norm. The second al- 
gorithm is for the case n 2 p. Here, GF(p”) is represented by (Z/pZ[z])/(f) 
where f E Z/pZ[z]  is irreducible. An element of ( Z / p Z [ z ] ) / ( f )  is considered 
‘smooth’ iff when considered as an element of Z/pZ[z] it factors into irreducible 
polynomials of small degree. The second algorithm is rather ‘routine’. The first 
algorithm makes use of the notions of singular integers and character signatures 
which were introduced in the context of integer factoring [Ad2]. The first algo- 
rithm can be thought of as reducing the computation of discrete logarithms in 
GF(p”) to  the computation of discrete logarithms in several fields of the form 
GF(p‘) where p’ E Z>O is prime. 

2 Preliminaries 

In this section some basic facts are presented. 

2.1 

Here, some notions about presented in [Ad21 about integer factoring are gener- 
alized. 

Singular Integers and Character Signatures 

Definition: For all number fields K with ring of integers 0, for all s E Z>O, and 
for all v E 0, v is an s-singular integer (with respect to  0)  iff there exists an 
ideal I C 0 such that (u )  = P. 

Let K be a number field with ring of integers 0, unit group E and ideal 
class group C. Let s E Z,O and let u,7 be s-singular integers. Define u x 7 
iff there exists cr,p E 0 such that Q’CJ = p37. ‘k” is an equivalence relation 
on s-singular integers, and the set of equivalence classes form a group G(s) of 
exponent dividing s with identity I ( s )  = {aaIa E 0 )  under the operation: 

There is a homomorphism II, from G(s) onto the group C(s) = {clc E 
c & cs = [(l)]}. 

[a1 A (I1 
where (a )  = I a .  
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The kernel of $J, Ker($) = {[u]Iu E E }  and consequently Ker($J) S E/EB. 
Hence 

(*) G(s) 2 E / E *  @ C(s) 

Definition: For all number fields K with ring of integers 0, for all s E Z>O, 
for all prime ideals P,,Pz,. . . , P, c 0, for all l l , l 2 , .  .. , 1 ,  E 0 and for all 
n E 0: if for i = 1,2 ,... , z ,  (v) + Pi = (l),sl(N(Pi) - 1) and 1, + Pi is a 
primitive sth root of unity in OIP,', then the s-character signature of n with 
respect to < P1,11 >, < Pz, 12 >, . . . , < P,,l, > is: < el,eZ,. . . , e ,  > where for 
i = 1 , 2 , .  . . , t, B ( ~ ( ~ ~ ) - ~ ) / ~  E lf '  mod Pi and e i  E 2;;. 

Now assume that K is Abelian over Q, then it follows from the Cebotarev 
density theorem that for all s E Z>O, for all prime ideals PI ,  Pz, . . . , P, c: 0, and 
for all c E G(s),  there exists a v E 0 such that [g] = c and for i = 1 ,2 , .  . . , z ,  
(a) + Pi = (1). For < P1,Il >, < Pz,Iz >, . . . ,< P,,!, > as above, let the map 
8 take c to the s-character signature of u with respect to < PI ,  El >, < Pz, 12 > 
, , . . , < P,, 1, >. 8 is well defined on G(s) and is a group homomorphism into 
q3:==, 2s. 

2.2 Subfields of cyclotomic fields 

Let q E Z>o be prime and let nlq - 1, then there exists a unique field Kq,,  E 
Q(c,), the qth cyclotomic field, such that [K,,, : Q] = n. The following are well 
known [Ed]: 

1. The ring of integers of Kp,n, 04," = Z[r]o,71,. .. ,7,-1], where for i = 
= C [pa, where the sum is taken over the set 

i mod n where ind(a) denotes the index of 
0,1,. . . , n - 1, 7, = 
of a E 27, such that i nd (a )  
a in Z/qZ* with respect to  a fixed generator. 

<g-1  

2. Kqln = Q(Q)  (however, there exist q,n such that Oq,, # Z[70]). 
3. The minimum polynomial for 70 over Q is f = fg,n = nrgt(z - 7i) 
4. If p E Z>O is prime and p is inert in Kq+, then Oq,,,/(p) is a finite field with 

p" elements and 

n-1 

R = Rq,n,p = {c u ~ ' I ] ~ ~ u ~  E 22,; - = 0,1 , .  . . ,n - 1) 
i = O  

is a complete set of representatives. 

Arithmetic in Kqtn may be done as follows (our description is essentially that 

Elements in Oq,n will be represented in terms of the integer basis 70, 71, . . ., 

First, for i , j ,  k E Zy, 

of Edwards [Ed] which in turn is derived from Kummer). 

7,-1. 
<n-1 calculate Ci , j ,k  E Z such that: - 
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n-1 

%7]j = C i , j , k T k  
k=O 

then multiplication in O,,, is straightforward. 
Prime ideals of Oq,n will be represented as follows. Let s # q be a rational 

prime and let f be the order of s in Z/qZ*. Let e = (q -  l)/f, then the splitting 
field of s is Kple. Let g = ( e , n ) ,  then s splits into g distinct prime ideals of 
residue class degree n/g in O,,,,. 

Let h E Z/sZ[z] be an irreducible factor of fqtq-1 = 2Q-I + . . . + 2 + 1 (the 
qth cyclotomic polynomial) and let (T be a generator for GAL(Q(C,)/Q) (the 
construction which follows produced the correct outcome for all choices of c). 

For i = 1,2,. . . ,g, let S; C Oqrq-l be the prime ideal generated by s and 
(h(Cp))uir and let Si = &noq+. Then (s) = JJ!==, S; is the prime decomposition 
of s in O,,,. 

- 

For i = 1,2,. . . ,g, j = 0,1,. . . , e - 1, calculate ui,j E 2;; such that - 
+ 

u;,j = qq+,j mod S; 

(such ui,j always exist [Ed]). Let U = {ui, j l j  = 0,1,. . . , e - 1) (V is the set of 
roots of f q +  mod 9 and is independent of i), Let $; = JJuEU,ufui,j (u-qi,j>. 
For i = 1,2,. . . , g, < s, $i > will represent the prime ideal Si of O,,n lying above 
8.  

Let a E Oqln, and let a E Z>o. - Then: 

Wff> 
iff 

The penultimate statement follows from Galois theory by noting that a E 
K,,,,. The last statement is essentially the first proposition of section 4.10 [Ed]. 
Hence there is a computationally efficient method for determining the power of 
S; which divides (a). 

Next consider singular integers and character signatures in K,,,. Let s E 
Z>o. By Dirichlet's unit theorem, E / E 8  can be written as the direct sum of at 
most n cyclic groups. Because the class number of Kq+ is less than or equal 
t o  the class number of Q ( 6 )  ([Wa], Thrm l O . l ) ,  which is less than or equal 
to gq3 (Ne], it follows that C(s) can be written as the direct sum of a t  most 
p3 logz(q) cyclic groups. By (*) above, G(s) can be written aa the direct sum of 
at most n + q3 loga (p) cyclic groups. Let H = 7~ + q3 loga ( q )  + 1. If q, 02,. . . , GH 
are s-singular integers then there exist S E Oq,n and b l ,  b z ,  . . . , ba E Z$ such 
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that  GCD(bl, b 2 , .  . . , b ~ )  = 1 and nj"=, u? = 6'. Further, if O1 = O(a1),82 = 
e(az) ,... ,OH = O(u,) are the s-signatures of ul,u2 ,... ,UH with respect to  
some < P1,Il >, < Pz,Zz >, . . . , < P,, I ,  > then Cj"=, b j e j  = 0. Finally, given 
the prime factorization of 8 and given the s-signatures t+,&,. . . , 8 ~ ,  it can be 
shown that there exists an algorithm t o  calculate a sequence of bj's,  such that xi"=, b j e j  = 0. This algorithm requires time at  most O(H2z10g3(s)). 

2.3 S m o o t h  numbers 

It will be helpful in the running time analyses which follow to note that for 
all 7 E %:;, 6 E %>o, L E L,[7,6] and c E Z>O: 

(10dx)")L E Lz [7, 61 

For all a,7 E %fi with a: < 7, for all /?,6 E R>o, LO E L,[7,S] and L1 E 
L,[cr,p], there exists an L2 E L , [ ~ - - ( Y ,  ( 7 - - ( ~ ) 6 / @ ]  such that for all N E %>o, the 
probability that a positive integer less than or equal to Lo(N) is L1(N)-smooth 
is at least 1/L2(N)  (Ll(N)-smooth means all positive prime divisors are less 
than or equal t o  L l ( N ) .  

Notation 

assumed that f = C;='=, aix' where for i = 1 ,2 , .  . . ,n, ai E 2;;. 
For all p , n  E Z>o with p prime, if we write f E Z/pZ[x] then it will be 

- 

3 Algorithm I 

This algorithm will be used for discrete logarithms over GF(p") when p > n. 
First, the discrete logarithm problem over GF(p") will be reduced to the 

discrete logarithm problem over special finite fields of the form Oq,n/(p) (see 
Preliminaries section). 

Let p E Z>o be prime and fi E Z / p Z [ z ]  irreducible, monic of degree n. Then 
( Z / p Z [ s ] ) / ( f ~ )  is a finite field with pn elements. Let a1, E Z/pZ[x] of degree 
less than n such that [all generates ( Z / p Z [ z ] ) / ( f 1 ) *  and p1 $ 0 mod f1. (If a1 
is not a generator, randomly choose one, and solve for both a1 and PI . )  Hence 
there exists an 2 such that 0 5 x 5 p" - 1 and a:? mod fi. Assume that 
p, fi, a1 , p1 are given and x is sought. Then one may proceed a follows: 

Using the construction in [AL] find an f E Z / p Z [ z ]  irreducible of degree n in 
random time polynomial in log@) and n (assuming ERH). Hence (Z/pZ[x])/(f) 
E (Z/pZ[x])/(fi). Using [Le] calculate a2 and /?z E Z/pZ[x] of degree less 
than n such that  [a21 is the image of [a,] and [pz] is the image of [pl] under 
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this isomorphism. Hence our original problem is reduced to  the problem: given 
p ,  f, a2, p 2  with [a21 generating ( Z / p Z [ z ] ) / ( f ) *  and ,& $ 0 mod f, calculate x 
such that  0 5 x 5 pn - 1 and a$ z ,& mod f .  

By the construction in [AL] (also see [BS]), there exists a 2. E Z>o such that 
f = fqln for some prime q E Z>O with q 5 & ~ ~ ( ( l o g ( n p ) ) ~  (assuming ERH). Since 
f is irreducible in Z/pZ[x], it follows that p is inert in Kq,,. There exists the 
following isomorphism from ( Z / p Z [ s ] ) / ( f )  to  O,, , / (p>:  

where for i = 0,1,. . . ,n - 1, qi,n,o = CTzi d i , j q q , n , j ,  where d i , j  E 2. 
Calculate a3,,& E 0 such that gas] is the image of [ag] and [p3] is the image of 

[p2] under this isomorphism. By reducing coefficients modulo p find a, /3 E Rq,n,p 

such that a E a3 mod p and p = p3 mod p .  Hence the original problem becomes 
that of calculating x such that 0 5 x 5 p n  - 1 and ax G ,f3 modp. 

Below, a family of algorithms { A y } y E ~ , o  is presented. It will be argued that 
for sufficiently large g, A, on all inputs q ,n ,p ,a , /3  such that  p , q  E Z>O are 
prime, n < p ,  nlq - 1, q 5 En*(l~g(np))~, p inert in K,,,, and a, p E R,,nrP with 
[a] generating O,,n/(p)* and p f 0 modp, outputs z such that 0 5 z _< p" - 1 
and cyz 5 p mod p .  

Let LO E ~ , [ 1 / 2 , 4 7 3 ] .  

Algorithm A,, 

Stage 0 input q,n,p, a,/? 
Stage 1 Set N = pYn. Set (the 'smoothncss bound') B = Lo(N) .  Set H = 

n + q3 10g2(q) + 1. 
Stage 2 Calculate T = (111 is a prime ideal of 0, q $ I and I lies over a rational 

prime < B } .  Let w = #T and let < I , , I 2 , .  . . ,I, > be an ordering of T. 
Stage 3 Set j = 1. While j 5 H :  

Stage 3(a) Set z = 1. While E 5 w + 1: Choose random T ,  s with 0 5 
T , S  5 p" - 1 and calculate 7 E RQ,n,p such that 7 = d o 8  mod (p ) .  If 
(7) = T]T~=lI~i (i.e. if the ideal generated by 7 is B-smooth) then set 
7 j l r  = 7 ,  T j , z  = T ,  S j , z  = S, ~ j , ~  =< el,  e2,. . . , e, > and z = t + 1. 

such that GCD(u1, u2, 
. . . , a,+l) = 1 and aivj,; =< O , O , .  , . , O  > mod pn - 1. Calculate 

Stage 4 For j = 1,2,. . . , H ,  calculate 0, the (p" - 1)-signature of uj with 
respect to < S1,ml >, < S2,mz >, . . . , < S 2 ~ , m 2 ~  >. For j = 1 ,2 , .  . . , H ,  
k = 1,2,. . . ,2H, Sk C o,,, is a prime ideal such that (cj) + s k  = (1) , 
(p" - I )JN(Sk)  - 1 and m k  is a primitive (pn - root of unity in O/Sk.  

such that GCD(bl,bz ,..., b,) = 1 
and CjZ1 b j 9 j  r< O,O, .  . . ,O > mod(p" - 1). 

<p"-1  Stage 3(b) Calculate a l , a z ,  ... ,a,+l E Z,, 
- 

w+l 

c. - - n y + l  r=l 7j , i .  ai Set j = j + 1. 

<p"-1  Stage 5 Calculate b l ,b2  ,..., bH E Z2, 
H 
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Stage 6 Calculate k = c,"=, xyz(~j,iaibj) and I = c,"=, Cy=y(Sj,;aibj). If 

Stage 7 If (E,pn - 1) # 1 then go to stage 3, Else calculate and output 2 

akpJ f 1 mod ( p )  then go to stage 3. 

- k / I  modp" - 1 and halt. 

4 Analysis of Algorithm I 

In this section computational details of Algorithm I will be described and there 
will be an analysis of the expected number of steps required by the algorithm 
on all inputs q , n , p ,  rr,p such that p ,  q E Z>O are prime with n < p ,  nlq - 1, q 5 
E 7 ~ ~ ( l a g ( n p ) ) ~ ,  p inert in Kq,n, and a,  E Rq,n,p with [a] generating O , , , / ( p ) *  
and p $ 0  mod p .  For convenience the argument will be for pn sufficiently large. 

To begin, consider the expected number of steps required by a single pass 
through each of the stages of the algorithm. 

The time required for stages 0,1,6 and 7 are dominated by the time required 
by other stages. 

Stage 2: Test all numbers less than or equal to B for primality. For each 
prime s # q found, calculate the representatives < s,+i > of the prime ideals of 
Oq,,, lying above s and add them to T (see Preliminaries section). 

Using random polynomial time primality testing [SS, AH] and random poly- 
nomial time finite field polynomial factorization [Be] and observing that because 
of the size constraints on q,  orders can be computed naively, it follows that there 
exists an 151 E L,[1/2, m] such that the expected number of steps for a pass 
through stage 2 is at most L I ( N ) .  

Further, since each rational prime has at most n primes lying over it in Oqln, 
it follows that there exists an Lz E L,[1/2, m] such that w = #T 5 LZ(N).  

Stage 3(a): A 7 will be tested for B-smoothness by the following method: 
First the norm of 7 will be calculated and tested for B-smoothness. Those y 
which have B-smooth norms will then be factored as ideals (see Preliminaries 
section). 

A bound on the norm of 7 will be needed. 

n-1 

7 = C giqir 
i = O  

where 0 5 g; 5 p - 1  for i = 0,1, .  . . ,n-  1. Hence 7 is the sum of q -  1 terms 
each of the form g<i  where 0 5 g 5 p - 1 and c E 2;;. - This is also the form of 
the n conjugates of 7. Hence the norm of 7 = naEGal(K, ,Q) 7" is the sum of 
(q  - 1)" terms, the largest of which has absolute value p". By the constraints on 
q and n, it follows that there exists a yo E Z>o such that N ( 7 )  5 pVon 5 N for 
all algorithms A, with y 2 yo. Henceforth assume that y 2 yo. 

Making the usual assumption [LLMP] that the probability that N ( 7 )  is B- 
smooth (the exception of the prime q is inconsequential) is equal to  the proba- 
bility that a random positive integer less than N is B-smooth, (see Preliminaries 
section) there exists an LB E L,[1/2, m] such that the probability that -y is 

q n  
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B-smooth is at least l /L3(N) (B-smooth means that all prime ideals dividing 
(7) have norm less than or equal to B). Since w B-smooth 7's are needed, it 
follows that there exists an L4 E L,[1/2, f i ] such that the expected number of 
7's which must be generated and tested for B-smoothness is at most L * ( N ) .  

The norm of each 7 may be tested for B-smoothness naively. Hence there 
exists an L5 E L,(1/2,3/.\/2] such that the expected number of steps required 
for a single pass through stage 3(a) will be at most &(If). 

<p"-1 Stage 3(b) There must exist ul,a2,. . . , u,+l E Z,, such that GCD(a1, 

there exists an algorithm which will find u1, u 2 , .  . . , a,+l in O(w3 log2(pn)) steps. 
Hence there exists an L6 E L,[1/2,3/&] such that the expected time for a single 
pass through stage 3(b) is a t  most LB(N). 

Stage 4: Check numbers of the form 1 + u(q(p" - 1)) until primes sl, s2,  

. . ., S 2 H / n  are found. For k = 1,2,. . . ,2H/n, let g k  E ~ 2 : ~  generate Z/skZ* 
and let g E Zj: generate Z/pZ*. For k = 1,2,. . . ,2H/n, I = 1,2 , .  . . ,n: Let 
g k , i  oq,q-l be the prime ideal generated by s and C,"l - c k ,  where ck E 

g,"(P"-')) mods  and dl = 9' mod q .  Let S k , l =  Sk,lnoq,n. S k , l , ~ k , 2 , .  . . , Sk,n are 
the (distinct, residue class degree 1) prime ideals of Oq,n lying above s k .  Since 
sk 5 1 mod q(p" - I), it follows that (p" - l))(N(Sk,l) - 1) and N(Sk, i )  > B.  
Since for j = 1,2 , .  . . ,a, (crj) is B-smooth, it follows that (uj)  + Sk,l = (1). Let 
mk = mod S k .  Then the 2 H  pairs < S k , J , m k  > will be as required for Stage 
4. 

Assume that approximately the 'expected' number of primes will be found in 
an arithmetic progression: assume that for all m, b E Z>o, with b > r n l ~ g ( m ) ~ :  
#{all + am < b & 1 + am prime) > b/rnlog(b)2. Letting v = 2 H / n  and m = 
q(pn-l), then all of thew primes needed above can be found by checking less than 
v  log(^)^ l ~ g ( m ) ~  a's and each prime s found will be less than m ~ l o g ( v ) ~  l ~ g ( m ) ~ .  
The constraints on n and q imply that there exists a c1 ,q  E Z>O such that 
v  log(^)^ l ~ g ( r n ) ~  < (nlog(p))"I and m ~ l o g ( v ) ~  l ~ g ( r n ) ~  < p"(nlog(p) )cs .  Hence 
the required primes can be found and tested for primality [AH, SS] in a negligible 
number of steps. 

Generators for z / S k z *  are abundant ([AH], Lemma 4). Checking a candidate 
g to determine whether it i s  a generator will be done by factoring s-1 and testing 
that for all primes t l s  - 1, g(u-')/t $ 1 mod s. The factorization can be done 
using an 'L[1/2,1]' factoring method (e.g. [Le2]). A similar argument shows that 
a generator for Z/pZ* can be found in a negligible number of steps. 

z / s k Z  where the isomorphism is induced by <,"l H C k .  Hence 
the calculations of the (p" - 1)-signatures of the uj's is a set of discrete logarithm 
problem over Z/sbZ .  Using the bounds on 2E and the primes s together with 
an 'L[1/2,1]' discrete logarithm algorithm for finite prime fields (e.g. [Po]), it 
follows that there exists an L7 E L,[1/2,1] such that the expected number of 
steps required for a single pass through stage 4 is at most L7(N). 

Stage 5: The required b l ,  b 2 , .  . . , b H  can be shown to always exist and can 
be found in time 0 ( H 3  10g3(pn - 1)). Using the bounds on q, it follows that the 

- 
az, ..., a,+l) = 1 and Ci=l w f l a  j w . .  J , z  - =< 0,O ,... ,O > mod(pn - 1). Further, 

- 

- 

Oq,n/Sk,l 
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number of steps required for a single pass through stage 5 is negligible. 
It will next be shown that the expected number of passes through stages of 

the algorithm is negligible. Stages will be repeated only if required in stage 6 or 
stage 7. 

Stage 6 will cause stages of the algorithm to be repeated only if akP' $ 
1 mod (p). One has: 

By the construction, the r j ' s  are (p" - 1)-singular integers. By the arguments 
<p"-1 in the Preliminaries section there exists a 6 E Oqrn and b l ,  bz,  . . . , b H  E Z20 

such that  GCD( bl , bz , . . . , b H )  = 1 and n j=l gF = 6P"-l. G(p" - 1) is a group of 
index dividing p" - 1 which is the direct product of at most H - 1 cyclic groups 
(see Preliminaries section), The signature homomorphism 8 maps G(p" - 1) into 
a group which is the direct product of 2 8  cyclic groups of order p" - 1. It 
is reasonable to assume that this map is an embedding and hence that  these 
b l ,  b z , .  . . , ba are the ones found in stage 5 .  It follows that: 

4 

Stage 7 will cause stages of the algorithm to be repeated only if (Z,p"-1) # 1. 
However, (Z,p" - 1) = 1 with probability 4(p" - l)/(pn - 1) 2 l/clogpn where 
c E RZ>o is independent of p and n ([AH], Lemma 4). Briefly, this can be argued 
as follows: Since from stage 3(b) CCD(al,ua, .. . ,a,+l) = 1 and from stage 5 
GCD(b1, b 2 , .  . . ,a,) = 1 it follows that for all primes t dividing pn - 1, there 
exist i E 2:;" and j E 2s: such that aibj is relatively prime to  t .  Consider 
7.. EZ arjpipsj,i, and observe that for all s E ZS:n-l, there exists a unique 
T E Zl<;"-l such that 7j,i E a'@'. Hence sj,i is 'random' mod t and consequently 
1 = xgl x y s ( S j , i a i b j )  is also 'random' mod t. 

Recalling that in algorithm A,, N = p,", it follows that there exists a CI E 
R>o and an LI E L,[1/2,c1] such that for all sufficiently large 9,  the expected 
number of steps required by Algorithm A, is L1(pn) on all inputs q,n,p,a,P 
such that  p ,  q E Z>O are prime, n < p, nlq- 1, q 5 En4(log(np))2, p inert in Kq,n, 
and a, /3 E Rq,n,p with [a] generating Oq,"/(p)* and /3 f 0 modp. Hence there 
exists a CI E 9i>0 such that the expected number of steps required by Algorithm 
I (when n < p) is: 

39' - 
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Finally, it is clear from stages 6 and 7 that the output of the algorithm is x 
such that a2 = @ mod p .  

5 Algorithm I1 

This algorithm will be used for discrete logarithms over GF(p") when p 5 n. 
Algorithm I1 is a generalization of the algorithm for GF(2") by Hellman and 

Reyneri discussed in Coppersmith [HR, Co]. 
It is assumed that the inputs to  the algorithm are p ,  f, a,P such that p E Z>o 

is prime, f E Z / p Z [ z ]  is monic, irreducible of degree n 2 p ,  and a, /J E Z / p Z [ z ]  
of degree less than n with [a] E (Z/pZ[x])/(f), and [a] a generator of the 
multiplicative group and /3 f 0 mod f .  

For purposes of brevity, we have not included analysis of Algorithm 11. Lovorn 
[Lo] gives detailed analysis of a similar algorithm. 

Algorithm 11 

Stage 0 input f , p , a , @  
Stage 1 Set n =degree o f f ,  m = L f i ]  
Stage 2 Calculate T = { f i l f i  E Z / p Z [ x ] ,  deg(fi) 5 m, fi irreducible and 

monic}. Let w = #T and let < f1, f 2 , .  . . , f w  > be an ordering of T. 
Stage 3 Set z = 1, While z 5 w + 1: Choose random r ,  s with 0 5 T ,  s 5 p n  - 1 

and calculate 7 E Z / p Z [ x ] ,  of degree less than n such that 7 E cyr'pB mod f .  
If 7 = 7 ny=l flea where 7 is the leading coefficient of y (i.e. if 7 is m-smooth) 
then set yz = y, r ,  = T ,  s, = s, vz =< e l ,  e2, .  . . , e, > and E = z + 1. 

Stage 4 Calculate q, a2, ,  . . , a,+1 E Z,, such that GCD(a1, aaf, . . ., uw+l)  

= 1 and 
Stage 5 Calculate k = Z:=','(T~U~) and I = z:-3;'(siai). Calculate s E 2;; 

such that s G akP' mod f .  
Stage 6 Calculate y E Z:;-' such that &(P" -l)/b-l)) 
Stage 7 If (Z,pn - 1) # 1 then go to Stage 3, Else calculate and output x = 

( ~ ( ( p "  - l ) / ( p  - 1)) - k)/l mod p" - 1 and halt. 

<p"-1 
- 

wi-1 ajvi E< O,O,. I . ,O > mod (p" - 1). 

s mod f .  
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Discussion 
Little effort wils made to 'optimize' the algorithm presented here. It is possible 

to improve the running time in several ways. Sparse matrix methods can be 
used to  find some dependencies[Wi]. A better bound on q in Algorithm I can 
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be argued heuristically. Smoothness of norms can be tested using the ‘elliptic 
curve methods’ [Le]. The integer factoring done in various parts can probably 
be avoided if necessary or ‘L[1/3]’ methods can be used (e .g .  [AH, LLMP]). The 
use of Algorithm I1 can perhaps be avoided altogether by adopting Algorithm 
I t o  a more general setting. Alternatively the ‘L[1/3,c]’ method of Coppersmith 
[Co] might be adapted for the case n 2 p .  

It terms of running time there appear to  be several natural open problems: 

- Do there exist a c E Z>o and an algorithm for discrete logarithms over 

- Does there exist an  algorithm for discrete logarithms over GF(p”) with 

- Does there exist an algorithm for discrete logarithms over GF(pn) with prov- 

- Do there exist a c E Z>O and an algorithm for discrete logarithms over 

GF@“) with provable expected running time in L,[1/2, c]? 

heuristic expected running time in L,[1/2, l]? 

able expected running time in L,[1/2, l]? 

GF(p”) with heuristic expected running time in L,[1/3, c]? 
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