High-Speed LLANs: New Environments for
Parallel and Distributed Applications

Patrick Geoffray Laurent Lefevre CongDuc Pham Loic Pryllif
Olivier Reymann' Bernard Tourancheau Roland Westrelin

RHDAC, Université Lyon 1, Claude Bernard
TLIP, Ecole Normale Supérieure de Lyon
e-mail: bip-team@lhpca.univ-lyonl.fr

Abstract. As the technology for high-speed networks has incredibly
evolved this last decade, the interconnection of workstations at gigabits
rates and low prices has become a reality. These clusters, based on reg-
ulars workstations (e.g. PCs), can now be used in place of traditional
parallel computers with no possible comparison on the prices! In this
article, 3 applications (high performance computing, distributed shared
memory system and parallel simulation) that were traditionally executed
on expensive parallel machines are ported on a Myrinet-based cluster of
PCs. The results show that the performances of these new architectures
can be very close to those obtained on state-of-the art parallel computers.

1 New technologies for parallel applications

For a long time parallel computers were the solution for people with high com-
putation needs. If the processing units of such massively parallel processors can
now be taken from the commodity market, the interconnection networks and
the software are still highly customized. While sequential computers have al-
ways seen a dramatic cut down in their prices every year, parallel computers
took the opposite direction because of the decreasing demand.

However, there are not so many solutions for having more computation power:
one has to use several processors. The choice resides on how to make the par-
allel system: from custom or standard products. If the first choice was before
justified by the low-quality of products from the commodity market, this is not
the case any more. There is the possibility to go a complete step farther by
building parallel systems entirely from standard components. Processing units
are just regular workstations or PCs that can be bought in any supermarket
for a few thousands of dollars, interconnection networks are also taken from the
high-speed regular market of LANs (local area network) such as Gigabits Eth-
ernet, ATM, and Myrinet. These architectures are often referred to as Network
Of Workstations (NOW). Several research teams have launched projects dealing
with NOWSs used as parallel machines. Early experiments with TP-based imple-
mentations have shown disappointing performances so the goal of most of these
teams is to design the software needed to make clusters built with commodity
components and high-speed networks really efficient. The NOW project of UC

P. Amestoy et al. (Eds.): Euro-Par'99, LNCS 1685, pp. 633-642, 1999.
Springer-Verlag Berlin Heidelberg 1999

634 Patrick Geoffray et al.

Berkeley [1] was one of the first one. Its main contribution is the Active Messages
[12] layer that provides high performance access to the network. In this sense, it
is very similar to the BIP software we are developing on our cluster.

The objective of the paper is two-folds: (i) to show experiments on different
types of LANs with several communication softwares and (i1) to compare our
Myrinet-based test-bed with the BIP software to traditional parallel computers.
To do so, 3 applications covering very different areas of distributed and parallel
computing are ported on NOWs with a focus on Myrinet-based networks. The
paper is organized as follows: Section 2 presents the high-speed environment
based on a Myrinet network and the BIP communication software. Section 3
compares state-of-the-art parallel computers and our Myrinet test-bed with the
NAS benchmarks. Section 4, 5 and 6 presents the applications (high performance
computing, distributed shared memory system and parallel simulations) that
were ported on Myrinet. Conclusions are given in Section 7.

2 The high-speed LAN environment based on Myrinet

The Myricom LANI[3] target was chosen for its performance over the Gbits/s, its
affordable price and its software openness (all the software and specifications are
freely available for customers). There are several features that make this kind of
technology much more suitable than a traditional commodity network:

the hardware provides an end-to-end control flow that guarantees a reliable
delivery and alleviates the problem of implementing in software the reliability
on top on an lossy channel. As message losses are exceptional, it is possible
to use algorithms that focus on very low overheads in the normal case,

— the interface card has a general purpose processor which is powerful enough
to handle most of the communication activity without interrupting the main
processor. In particular, it provides an efficient overlapping of communication
and computation.

— the interface card has up to one megabyte memory for buffers. As the network
being as fast as the computer bus, this memory isolates transfers on the
network from transfer on the bus.

2.1 BIP

BIP stands for Basic Interface for Parallelism. The idea was to build it with a
library interface accessible from applications that will implement a high speed
protocol on the Myrinet network. BIP provides only a protocol with low level
functionalities. Although specialized parallel applications could interface directly
with it, it is intended as the base of other protocol layers like IP, and higher level
APIs like the well established MPI and PVM. All the applications described
later on in this paper actually use our MPTI implementation based on top of BIP
Highly optimized, the raw communication performance for BIP is about 5us la-
tency one-way. With large messages, the bandwidth goes up to 125MByte/s. The

High-Speed LANs: New Environments for Parallel and Distributed Applications 635

MPT layer adds about 5us for small messages As will show the other examples
in the paper, this allows applications to scale more by allowing the use of a finer
grain of computation BIP is described in more details in [11]

2.2 Experimentation platform

Our test bed for the experiments presented in the next sections consists of 8
nodes, each with an Intel Pentium Pro 200 MHz, 64MBytes of RAM, a 440FX
chipsets and a myrinet board with LANai 4 1 and 256Kbytes of memory The
test bed is provided by the LHPC (Laboratoire pour les Hautes Performances
en Calcul), a cooperation between ENS Lyon and Matra Systéme Information

2.3 Running the NAS benchmarks

The NAS parallel benchmarks are a set of parallel programs designed to compare
the performance of supercomputers Each program try to test a given aspect of
parallel computation that could be found in real applications These benchmarks
are provided both as single processor versions and parallel codes using MPI We
selected 3 different benchmarks and compiled them with MPI BIP They are then
run on 1, 4 and 8 nodes of our Myrinet cluster described previously Table 1 gives
our measurements and comparisons with several parallel computers Data for
parallel computers come from http://science.nas.nasa.gov/Software/NPB

IS (Integer Sort) sorts 8388608 keys distributed on the processors The test
uses a lot of small message communications and needs few processing power

LU solves a finite difference discretization of the 3D compressible Navier Stokes
equations A 2 D partitioning of the 64 x 64 x 64 data grid is done Communi
cation of partition boundary data occurs after completion of computation on
all diagonals that contact an adjacent partition We have a relatively large
number of small communications of 5 words each

SP solves three sets of uncoupled systems of equations of size 64 x 64 x 64, first
in the x, then in the y, and finally in the z direction This algorithm uses a
multi partition scheme The granularity of communications is kept large and
a few messages are sent

The speedup values summarized in table 1 show the very good performances
of MPI BIP and Myrinet Super linear speedups in our case can be explained
by the large cache size and the super scalar architecture of the PPro Reported
super linear speedups for the Sun Enterprise show that a super linear speedup is
no exception The favorable super linear speedup for the LU test may be related
to the fact that this test has been compiled with £2c that apparently produce
a slower code than a commercial Fortran software The behavior of MPI BIP is
excellent both for small messages and large messages The speedup for the IS
test with MPI BIP is always better than those obtained on parallel machines
However, when a lot of computational power is needed (SP), a gap appears
between traditional parallel machines and our cluster: the weak floating point
unit of the PPro 200 shows its limits!

636 Patrick Geoffray et al.

MPI-BIP on (IBM SP |Cray SGI Origin |[Sun Enter-
PPro 200 (66/\/\7N) T3E-900 2000-195 prise 4000
Mop/slSpeedup Mop/s|Speedup Mop/s|Speedup Mop/s|Speedup Mop/s|Speedup
IS @ 4 proc | 2.44 4.5 2.2 3.1 3.2 N/A 2.1 3.8 1.6 3.8
IS @ 8 proc | 2.11 8.8 2.0 5.6 3.8 | N/A 2.4 8.6 1.5 6.9
LU @ 4 proc|23.68 6 59.0 3.7 67.6 N/A 96.8 N/A 36.9 4.1
LU @ 8 proc|22.73| 11.6 | 57.2 7.1 66.4 N/A 103.3 N/A 37.3 8.4

[SP @4 proc[10.10] 34 [42.1] 3.6 [43.0] N/A [60.3] N/A [250] 3.7 |

Table 1. Performance for NAS Benchmarks on various platforms.

3 High performance computing: the Thesee application

Thesee is a 3D panel method code, which calculates the characteristic of a wing
in an inviscid, incompressible, irrotational, and steady airflow, in order to design
new paragliders and sails. Starting from a sequential version [6], Thesee has
been parallelized using the ScaLAPACK][2] library routines to be run on NOWs.
The parallelization process has been done in a systematic manner to keep the
development cost low. 3 parts have been identified:

— Part P1 is the fill-in of the element influence matrix from the 3D mesh. Its
complexity is O(n?) with n the mesh size (number of nodes). Each matrix
element gives the contribution of a double layer (source + vortex) singularity
distribution on facet i at the center of facet j.

— Part P2 is the LU decomposition of the element influence matrix and the
resolution of the associated linear system (O(n?)), in order to calculate the
strength of each element singularity distribution.

— Part P3 is the speed field computation. Its complexity is O(n?) because
the contribution of every node has to be taken into account for the speed
calculation at each node. Pressure is obtained using Bernoulli equations.

Each of these parts are parallelized independently and are linked together
by the redistribution of the matrix data. For each part, the data distribution is
chosen so as to insure the best possible efficiency of the parallel computation.
The ScaLAPACK library uses a block cyclic data distribution on a virtual grid
of processors. This solution provides a good load-balance because the proces-
sors receive matrix elements from different locations of the original matrix (as
opposed to a classical full block decomposition). Communication overheads are
reduced to a minimum by preserving the row and the column shape of the matrix
(most of communication of 1D arrays can then happen without a complex index
computation). Tests are run beforehand to choose the best grid shape and the
best block size of the data distribution for our problem on each of the platforms.
In the parallel version of Thesee, we used the following parameters for the data
distribution of the LU factorization: the block size is 32 x 32 and the processor
grid shape is a 1D-grid that gives the best overall computation timings.

High-Speed LANs: New Environments for Parallel and Distributed Applications 637

3.1 Performance results

We ran tests with 3 different interconnection networks on 2 different platforms:
(7) Ethernet and ATM network of SUN Sparc5 85MHz with Solaris and (i)
Ethernet and Myrinet network of Pentium Pro 200MHz under Linux On both
systems, PVM and MPI were used For IP over Myrinet, the LAM implemen
tation of MPI is used Otherwise it is the MPI BIP user level implementation
based on MPICH The overhead for MPI or PVM is similar regarding the small
set of primitives involved

The efficiency of the fill in of the influence matrix (part 1) and the speed field
computation (part 3) is roughly the same on each configuration The code for
these parts is “embarrassingly” well suited for parallel execution and thus the
speed up is almost linear On the other hand, the LU factorization that involves
a lot more communications is highly dependent on the network software and
hardware performances

For space consideration, only results for Ethernet vs Myrinet are shown in
the paper For Ethernet and ATM, the test shows that high speed networks
designed for long distance communication are not well suited to system oriented
communication Although ATM provides more throughput, the gain obtained is
small because the initialization time for each communication on this network is
similar to the one on Ethernet Unfortunately, this initialization time represents
the larger part of the communication delay

Timings (seconds) [speedups]
System size| PVM/IP /Ethernet| PVM/IP/Myrinet[MPI/BIP /Myrinet
(on SUN Sparc) |(on Pentium Pro)| (on Pentium Pro)

Sequential 902 x 902 100
2 Proc 902 x 902 96 [103] 67 [149 50 [197
4 Proc 902 x 902 10 2 [0 97] 471210 31[324
Sequential 1722 x 1722 87 4
2 Proc 1722 x 1722 564 [154 | 443[197] | 381 [2.29]
[4Proc 1722 x 1722 459[190] | 281[310] | 213[4.09] |

Table 2. Timings and speedups with Myrinet (using the best block size)

Comparison between Ethernet and Myrinet Table 2 presents the timings
results obtained on the Myrinet test bed along with the BIP software Since the
communication/computation ratio is rather high, we expect better performances
than those obtained with ATM The best results are achieved with MPI BIP
and we can see that IP based implementation can not fully exploit the low
latencies of the Myrinet hardware With MPI BIP, the low latency for a basic
send communication (9us for this case) has an incredible impact on the speedup
when compared to the Ethernet run Super linear speedup with 4 processors can
be explained by a better cache hit ratio in the parallel version of the code As
the matrix is distributed cyclically on the processors, the computation occurs
on blocked data that fits better in the cache during the LU decomposition,
leading to a better use of the processor’s pipeline units One more reason is an

638 Patrick Geoffray et al.

increase in the overlapping of computation over communications in the parallel
LU decomposition since the communication cost is greatly reduced with the
BIP /Myrinet platform.

4 Distributed Shared Memory System (DSM)

The purpose of DSM is to implement, on top of a distributed memory archi-
tecture, a programming model allowing a transparent manipulation of virtually
shared data. Thus, in practice, a DSM system has to handle all the communica-
tions and to maintain the shared data coherence. We have developed an object-
based DSM system called DOSMOS (Distributed Objects Shared MemOry
System) that allows processes to share in a transparent way a set of objects
distributed and replicated over distant processors. DOSMOS integrates novel
features:

— DOSMOS Processes: a DOSMOS application is composed of two types of
processes: Application processes (A.P.) contain and execute application
code; Memory processes (M.P.) manage the whole DSM system, i.e. they
provide A.P. with the objects they request and maintain data coherence.

— Array allocation: DOSMOS allows to manipulate both basic type variables

(integer, float, char. ..) and distributed arrays which can be split into several
“system objects”, replicated among the processors. Various splittings are
provided: by row, by column, by block and by cyclic block.
Weak comnsistency protocols: for efficiency and scalability purposes, DOS-
MOS gives the opportunity to duplicate shared objects. These replicas have
to be kept coherent. DOSMOS implements a weak protocol: the release con-
sistency which provides two synchronization operators: acquire and release

— Hierarchical structuring of the application processes: processes can
be grouped into groups and sub-groups in order to optimize the management
of the data coherence.

Previously developed on top of PVM and experimented on Ethernet net-
works [8], DOSMOS is now available on top of MPI and experimented on MPI-
BIP on top of Myrinet networks.

4.1 Gram-Schmidt Application

We based our experiments on the Gram-Schmidt application which has been
completely studied on Ethernet in [4]. We propose four parallel implementations
of the Gram-Schmidt application (Fig. 1) :

Trivial version: with no splitting of matrix and use of strong consistency
protocols. Accesses to shared object are sequentialized.

— Release Consistency and Object Splitting: this version takes the benefit of
splitting the large matrix in small adapted shared objects.

Speedup

High-Speed LANs: New Environments for Parallel and Distributed Applications 639

— Synchronization 1: also based on Release Consistency protocols and matrix
splitting but the matrix object is also used for synchronization of processes.

— Synchronization 2: this optimized version requires an independent object to
synchronize processes.

4.2 Experiments

Figure 1 demonstrates the benefit of using a high-speed LAN for a DSM sys-
tem like DOSMOS. Improvements added to the original algorithm are not linked
with the application performances. Due to low latencies provided by the Myrinet
network combined with MPI-BIP, applications with small improvements provide
better speedups than highly optimized versions (synchro2). However, fast com-
munications are not enough for trivial applications (trivial version in Fig. 1).
Figure 2 shows the scalability provided by DOSMOS on top of MPI-BIP By
increasing the problem size, we also increase the efficiency of applications which
benefit from large bandwidth provided by the Myrinet network.

Speedups for version of Gram Schmidt Application Speedups for Gram Schmidt Application

1 2 3 4 1 2 3 ¢
Number of processors Number of processors

Fig.1. Various improvements of Fig.2. Speedup of Gram-Schmidt by in-
Gram-Schmids. creasing the problem size.

DSM systems require low-latency networks to provide high performance to
applications. Figure 3 shows that DOSMOS can provide high performance dis-
tributed objects when combined to low-latency communication protocols like
MPI-BIP (the sequential time is computed by using one DOSMOS AP and one
MP). However, management of distributed objects (consistency, synchroniza-
tion...) adds a latency to each distant access combined with the latency of the
network (Figure 4). Distant operations concern A.P. which access a shared ob-
ject managed by their M.P. while Long Distant operations involve one A.P. and
two M.P. to access distant objects. The access to a distant object requires a
ping-pong communication between two nodes (which takes around 25us with
MPI-BIP). An additional latency is added by DOSMOS to manage complex ob-
jects (like arrays) to provide splitting and a transparent access to distributed
arrays. As can be seen, the latency added by DOSMOS is kept reasonable and
still compatible with the need of high performances by the applications.

640 Patrick Geoffray et al.

Execution times of Gram Schmidt Application depending of network

" PVMon Ethemet ——
MPL-BIP on Myrinet -~

J |Operati0n |Latency|
||Distant Read Simple Obj. 55
||Distant Read Complex Obj. 140

| |Long Dist. Read Simple Obj. | 103
Long Dist. Read Complex Obj.| 340
||Long Distant Acquire 95

Time (s)

,,,

' * ot ‘Fig. 4. Latency in ps added by DOSMOS
to shared object access.

Fig. 3. Gram-Schmidt with Ethernet and
Myrinet Networks.

By using a DSM model, programming a parallel application is made easier
but the added overheads usually penalizes the users. These experiments on a
high-speed LAN show that designing a parallel application with a DSM system
like DOSMOS can merge together ease of programming with high performances.

5 Parallel simulation of communication networks

With the emerging of Asynchronous Transfer Mode (ATM) technology, the per-
formance evaluation of future large scale B-ISDN networks based on ATM is a
great challenge. Parallel simulation techniques have been proposed during the
last 2 decades to reduce the simulation time. These methods fall in two cate-
gories: the conservative approach [5] and the optimistic approach [7].

The parallelization process of the network model consists in spatially parti-
tioning the entire network in n regions and to assign each region to a proces-
sor. Cells transfer from one region to another are represented by timestamped
messages exchanged between the processors. The messages synchronization is
performed conservatively. The system under study includes a routing algorithm
with the introduction of link cost and dynamic routing functions that provide
load-balancing routing features. The simulation of a routing algorithm implies
to simulate (i) the mechanism that consists in constructing and updating the
routing tables and (i¢) the flow of cells that is handled by the network [10].

From the parallel simulation perspective, this application presents a very
small granularity and requires a lot of small messages to be exchanged between
processors (as opposed to more traditional high-performance computing appli-
cations where the computation part is larger). These messages are either model
messages, e.g. cell exchanges between ATM switches, or synchronization mes-
sages, e.g. null-messages from the conservative kernel. Therefore the application
typically requires very low latencies from the communication system. Previous
tests on LANSs such as Ethernet were quite disappointing and so far only parallel
computers were capable of showing interesting speedups.

High-Speed LANs: New Environments for Parallel and Distributed Applications 641

5.1 Experimental results

In order to compare parallel computers and NOWs, experimental results on a
Cray T3E and a Myrinet cluster are presented. The Cray is provided by the In-
stitut du Développement et des Ressources en Informatique Scientifique (IDRIS)
and consists of 256 processing nodes interconnected by a very low latency 3D
torus. Each node on the Cray is a DEC Alpha EV3 with 128 Mo memory run-
ning at 300Mhz. The communication libraries are the native SHMEM (SHared
MEMory) and MPI. The first one provides a latency of approximately 7us while
MPI shows a latency of 13us. The experimental NOW consists of Pentium Pro
200MHz interconnected by the Myrinet network described previously. The com-
munication stack we used is native BIP and MPI-BIP The latency is about
10ps with BIP and 17us with MPI-BIP (for the message size of our application,
70 bytes). Table 3 summarizes the results for a 78-switch network model. The
simulation time has been set to 500,000 time slots that represent 0.31s of the
real system. More than 50 millions of events are simulated.

np.|time SHMEM (s)|speedup SHMEM |time MPI (s)|speedup MPI
1 488 - 488 -

4 131 3.72 253 2.07

8 72 6.77 133 3.66

np.| time BIP (s) speedup BIP |time MPI (s)|speedup MPI
1 321 - 321 -

4 139 2.30 210 1.52

8 59 5.44 88 3.64

Table 3. Comparison between Cray T3E and Myrinet cluster.

As can be seen, the sequential version run faster on a Pentium Pro 200MHz
than on a DEC Alpha EV5 300MHz. The main advantage of using standard
products is the availability of the most recent processors. As we stated before,
parallel computers were interesting because they typically use customized high
performance interconnection networks. The low latency on the Cray has a direct
impact on the performances of the simulator. Using BIP on Myrinet exploits
the small latency provided by the network and therefore the parallel simulation
shows very interesting speedups compared to the cost of the hardware used. We
have no doubt that this kind of architecture is very promising because of its
excellent performance/price ratio.

6 Conclusions

Networks of workstations represent a serious alternative to expensive parallel
computers. In this paper, we mainly focus on a Myrinet-based cluster with the
BIP software for optimized low-level communications. Although the technology
has been ready for some time, it is still used only in a confidential manner outside
of the high-speed network research community. Also, even if a lot of people use

642 Patrick Geoffray et al.

clusters, a vast majority of them stay with the traditional IP-based implementa-
tions of PVM or MPI. Experiments have shown that if the hardware technology
has the potential for high performance communications, the communication soft-
ware layer must be well designed to fully deliver the maximum of performances
to the application. One of the principal aims of this paper is to show through a
number of applications the maturity of the more recent technologies, and to pro-
vide data to help them widespread to the end-users. Generalizing the use of the
faster systems available will provide to the end-user community a way to reach
a higher level of scalability, and to make parallel solutions usable for a wider
range of applications, especially those that require a fine grain decomposition.

References

1. Anderson, T. E., Culler, D. E., Patterson, D. A., the NOW Team: The Case for
Networks of Workstations. IEEE Micro Magazine, February 1995.

2. Blackford, Choi, Cleary, d’Azevedo, Demmel, Dhillon, Dongarra, Hammarling,
Henry, Petitet, Stanley, Walker, and Whaley: ScaLAPACK Users’ Guide. STAM,
1997. http://www.netlib.org/scalapack/

3. Boden, Cohen, Feldermann, Kulwik, Seitz, Seizovic, and Su. MYRINET: A Gi-
gabit per second Local Area Network. IEEE-Micro, 15:29-36, February 1995.

4. Brunie, L., Restivo, N., Reymann, O.: Programmation d’applications paralleles
sur systémes a mémoire distribuée partagée et expérimentations sur réseaux
hautes performances. In Calculateurs Paralléles, 9(4), pages 417-433.

5. Chandy, K., Misra, J.: Distribution Simulation: A Case Study in Design and
Verification of Distributed Programs. Trans. on Soft. Eng., 5(5) 440-452.

6. Giraudeau L., Perrot G., Petit S., Tourancheau B.: 3-d air flow simulation soft-
ware for paragliders. TR 96-35, LIP-ENS Lyon, 69364 Lyon, France, 1996.

7. Jefferson, D. R. : Virtual Time. ACM Trans. on Prog. Lang. and Sys., 7(3) (July
1985) 405-425.

8. Lefévre, L.: Parallel programming on top of DSM Systems : An Experimental
Study. In Parallel Computing - Environments and Tools for Parallel Scientific
Computing III, 23(1-2), pages 235-249. April 1997.

9. Mainwaring, A. M., Culler,
D. E.: Active messages: Organization and applications programming interface.
http://now.cs.berkeley.edu/Papers/Papers/am-spec.ps, 1995.

10. Pham, C. D., Brunst, H., FPdida, S.: Conservative Simulation of Load-Balanced
Routing in a Large ATM Network Model. In Proceedings of PADS’98, May 26-29
1998, Banff, Canada, pp142-149.

11. Prylli, L., Tourancheau B,: BIP: a new protocol designed for high performance
networking on myrinet. In Parallel and Distributed Processing, IPPS/SPDP’98
bt 1388 of LNCS, pages 472-485. Springer-Verlag, April 1998.

12. von Eicken, T., Culler, D. E., Goldstein S. C., Schauser, K. E.: Active Messages:
a Mechanism for Integrated Communication and Computation. Proc. of the 19th
Int’'l Symp. on Comp. Architecture, May 1992.

	High-Speed LANs: New Environments for Parallel and Distributed Applications
	New technologies for parallel applications
	The high-speed LAN environment based on Myrinet
	BIP
	Experimentation platform
	Running the NAS benchmarks

	High performance computing: the Thesee application
	Performance results

	Distributed Shared Memory System (DSM)
	Gram-Schmidt Application
	Experiments

	Parallel simulation of communication networks
	Experimental results

	Conclusions
	References

