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Abstract. This paper presents an implementation of MPI on a cluster
of Linux-based, dual-processor PCs interconnected by a Myricom high
speed network. The implementation uses MPICH for the high level proto-
col and FM/HPVM for the basic communications layer. It allows multiple
processes and multiple users on the same PC, and passes an extensive
test suite. Execution times for several application codes, ranging from
simple communication kernels to large Fortran codes, show good perfor-
mance. The result is a high-performance MPI interface with multi-user
service for this PC cluster.
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1 Introduction

Continuous price reductions for commodity PC equipment and increasing pro-
cessor speeds have made PC clusters an attractive low-price alternative to MPP
systems for parallel applications. We therefore decided to set up such a system
to provide our applications programmers with the required compute power for
a large variety of projects, most of them in the area of numerical simulation.
Our machine is based on the Local Area MultiProcessor (LAMP) developed
at the NEC Research Institute (NECI) [6]. With its symmetric multiprocessor
(SMP) architecture, the LAMP was well-suited for our intended experiments
with clustered shared memory machines, and the Myrinet [15] provided suffi-
cient communication speed.

The cluster installed at our laboratory consists of 16 dual-processor SMP
nodes interconnected by a Myrinet network. Dual 8-Port Myrinet-SAN switches,
each serving 4 PCs, provide a tetrahedral network topology. Each SMP node has
two Pentium Pro 200MHz CPUs installed on a Tyan S1668 motherboard with
Intel’s 440FX chip-set and 512KB of L2 cache per CPU. The PCs have 128 MB
of EDO RAM each, so that the cluster has a total of 32 CPUs and 2 GB of
RAM. The nodes are equipped with two network interface cards: an Ethernet
card and a LANai board for accessing the Myrinet network. The LANai cards are
basic 32 bit PCI models equipped with only 256 KB of SRAM. The cluster runs
under Linux (Red Hat 5.1 distribution) with kernel version 2.0.34 (SMP). By
choosing Unix, we have full support for services such as remote debugging and
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administration, and multiple users on each node. The cluster is complemented
by a Pentium II PC (300 MHz, 64 MB RAM) with SCSI disk drives, which is
used as a file and compilation server.

Most of our application codes are written in Fortran (some in C) and par-
allelized using the Message Passing Interface (MPI) [20] which thus had to be
installed as the application programming interface on the LAMP. Since simi-
lar PC clusters were already in use we attempted to use existing software. The
search was guided by the following requirements: reliable, error-free data trans-
mission, multi-user support, support for multiple processes per node, a complete
and correct implementation of MPI, including the Fortran77 binding, and good
communication performance at the MPI level. As can be seen our goal was to
use the LAMP as a reliable compute server for real applications, and not as an
experimental system.

In this paper we briefly discuss our survey of existing software (Section 2),
followed by a description of our own MPI development (Section 3). Finally, in
Sections 4 and 5 we present application results, ranging from kernel benchmarks
to real-world codes, and compare the performance of the LAMP cluster with
that of MPP systems.

2 Survey of Existing Software

Most PC clusters so far use Fast-Ethernet networks and high-overhead protocols
for communication, such as TCP or UDP. This results in a large performance
gap between the processing speed of a single PC and the communication be-
tween them. So, till now only very coarse-grained parallel applications could use
such clusters efficiently. However, recent developments in high-speed networking
hardware as, for instance, the Scalable Coherent Interface (SCI) [11] or Myrinet
[15] extend the application domain towards problems with medium-, or even
fine-grained, parallelism.

We tested all available communication interfaces for Myrinet under Linux:

1. Myricom - Myricom’s native API. Only TCP/IP interface provided as basis
for third-party MPI [15].

2. Basic Interface for Parallelism (BIP) from Ecole Normale Supérieure de
Lyon, France [16].

3. Virtual Memory Mapped Communication (VMMC) developed at NECI. A
new, much improved, version requires LANai boards with 1 MB [5].

4. BullDog Myrinet Control Program (BDM) from Mississippi State Univ. [12].
5. High Performance Virtual Machine (HPVM) developed at Univ. of Illinois

in Urbana-Champaign [4].

None of them fulfilled all our requirements. Some were optimized for per-
formance, but didn’t conform to the MPI standard and didn’t pass our test
programs. Others did not allow multiple users or check for transmission errors.
Table 1 is a summary of our survey, details can be found in [7]. To meet our
requirements we concluded that we had to develop our own MPI implementation.
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Communication interface Myricom BIP VMMC BDM HPVM

max. number of nodes 16 8 16 16 > 16
multiple users/cluster yes no no no yes
multiple processes/node yes no no no yes
MPI (availability) third-party yes no yes yes
MPI (standard compliance) n/a low n/a low low
MPI (performance) slow fast n/a fast fast

Table 1. Comparison of existing communication interfaces for Myrinet.

3 Implementation

We decided to base our new MPI library on the HPVM low-level interface FM
2.1 which met our requirements at that level. We could thus save the substantial
effort needed to develop a new low-level library. For the high-level part, we used
the MPICH software [9] and connected it with FM by our own device driver
at the generic channel interface level. This device driver should have as little
overhead as possible. We developed two versions:

1. The single-threaded (ST) device driver is optimized for minimum latency. It
implements only the blocking channel interface primitives.

2. In the multi-threaded (MT) version both blocking and non-blocking primi-
tives are implemented by having a communication thread for each applica-
tion thread. This also allows to overlap computation with communication.

Both drivers use different protocols for three message length regimes, called
short, eager and rendezvous, and switch between protocols at the same message
lengths. Details of these three MPICH standard protocols are described in [10].

Communication in a program using the FM library may block when the re-
ceiver does not extract incoming messages from the network. Since in the ST
version all FM calls are issued directly from the application processes, this may
block the sender when the receiver is busy in a long computation. In the MT
version the application thread can continue to execute while the communica-
tion thread is blocked. We thus expected this version to be more efficient in
applications with poor load balancing, in which corresponding send and receive
operations are not well synchronized. For details of the driver implementations,
see [7].

4 First Test Results

In this section we present the results of experiments performed to assess the
maturity of our MPI implementation.
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4.1 Completeness and Correctness

We tested the MPI library, using both our ST and MT device drivers. Both
versions passed the whole MPICH test suite. These programs not only check
the correct semantics of the MPI functions, but also test the behavior of the
implementation under intense network traffic. ST additionaly passed a much
more demanding test suite from the GMD Communications Library (CLIC) for
block-structured grids [17].

4.2 Performance Measured with Kernel Benchmarks

The basic performance indicators, latency and bandwidth, as measured with the
ping-pong benchmark mpptest from the MPICH distribution, are shown in Fig. 1.
We compare our implementations with the MPI interface of HPVM, because,
despite of the many failures detected by our test suite, it was the existing software
package that came closest to the user requirements.

The ST driver has very low latency, for zero byte messages exceeding that of
the HPVM/MPI library by only about 2 µs. With more than 100µs, the latency
is much larger for the MT driver. The reasons for this high latency are the use
of mutual exclusion and synchronization primitives from the POSIX threads
library [3], as well as the necessary request queue manipulations.

Both our versions and HPVM/MPI exhibit similar bandwidth. The maximum
bandwidth reached by our implementations is higher than that obtained with
HPVM/MPI. ST performance decreases for very long messages using the ren-
dezvous protocol. MT is slow for shorter messages, but in the rendezvous protocol
is the fastest. The decrease in bandwidth seen for all three implementations for
very long messages is caused by cache effects, and our implementations seem to
suffer more from them than HPVM/MPI. This suggests that there is still room
for optimization in our device drivers for the rendezvous protocol.
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Fig. 1. Latency and bandwidth obtained with the ping-pong benchmark.
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4.3 Effect of Load Imbalance on Performance

While basic test programs can be used to measure some basic performance char-
acteristics of an MPI implementation, they cannot replace tests with full appli-
cation codes. We have tested our implementations with the LiSS package [18],
a Fortran environment for solving partial differential equations, in our case
the incompressible Navier-Stokes equations, on general two-dimensional block-
structured domains. The CLIC library handles the inter-process communication
for LiSS. Together the packages contain some 85,000 lines of Fortran code.

By choosing the geometric domain appropriately, complicated communica-
tion patterns and various degrees of load imbalance can be generated. This latter
feature was used to test our expectation that the MT device driver would im-
prove the performance in the presence of load imbalance.

Table 2 gives parallel efficiencies and wall clock times for the ST and MT
version of the MPI library for a problem with 66,240 grid points and good
load-balance. Since HPVM/MPI does not have a usable Fortran binding, only
our MPI libraries could be used for the LiSS tests. For a comparison with
an MPP computer, we included results achieved on a NEC Cenju-3 [14] for
the same problem. In all test runs, 9 processes were used in a master-slave
fashion. The tests were repeated with two slave processes per node to evaluate
the performance loss caused by sharing the LANai boards, and the connection
to a Myrinet switch, by two processes. Table 3 reports timings and efficiencies
for a problem with 14,212 grid points and a high degree of load-imbalance. 30
processes were used for this set of tests, so either one or two application processes
were assigned to each SMP node.

Our two implementations perform very well for the load-balanced test case,
with ST always being the better choice. The efficiencies are well above 90%, ex-
cept for MT with two processes per node. This is caused by the increase in CPU
load by the additional threads. For ST we do not observe any significant perfor-
mance drop by sharing the network interface between two processes. Apparently,
there is not enough data traffic to saturate either the PCI bus or the network
interface. The slower Cenju-3 performs worst in this test because its 75 MHz
VR4400SC RISC CPUs are significantly slower than the 200 MHz PentiumPros
of the PC cluster, and the interconnection network of the Cenju-3 is slower than
the Myrinet. The unbalanced test case results in much lower performance than
the well balanced problem. The parallel efficiencies for both ST and MT are
only slightly above 22%. This shows that even for the situations for which the
MT device driver was designed, it has no advantage over the ST version. We
therefore selected the ST device driver for all further tests, and dropped further
MT development.

5 Results for Complete Applications

This section summarizes some experiences with full application codes. The ex-
amples presented differ considerably in memory access patterns, communication



618 M. Goª¦biewski et al.

driver/ procs per accumulated total wall Efficiency
platform node comm. time [s] clock time [s] [%]

ST 1 35.31 62.90 92.98
ST 2 34.43 62.97 96.16
MT 1 42.70 63.71 91.62
MT 2 145.65 77.04 76.37
Cenju-3 1 399.75 164.58 69.64

Table 2. Load-balanced problem with 66,240 grid points. Communication times
are accumulated over all processes.

driver/ accumulated total wall Efficiency
platform comm. time [s] clock time [s] [%]

ST 919.45 40.89 22.45
MT 979.72 43.50 22.33
Cenju-3 1690.99 74.82 22.06

Table 3. Load-unbalanced problem, 14,212 grid points.

behavior, and computation to communication ratio, and illustrate well the per-
formance of the LAMP for a wide range of potential applications and compared
with other parallel computers. The SP-2 used for all three applications is con-
figured with the High Performance Switch for MPI communication.

5.1 Large Sparse Eigenvalue Problems

The simulation of quantum chemistry and structural mechanics problems re-
quires the solution of computation intensive, large sparse real symmetric or
complex Hermitian eigenvalue problems. The JADA package [1] uses the JAcobi-
DAvidson method [19] and iterative preconditioners for convergence acceleration
to solve them.

JADA’s parallelization strategy is matrix and vector partitioning with a data
distribution and a communication scheme exploiting the sparsity of the matrix.
Grouping of inner products and norm computations within the preconditioners
and the basic Jacobi-Davidson iteration reduces the synchronization overhead.
In a preprocessing phase, data distribution and communication scheme are au-
tomatically derived from the sparsity pattern of the matrix. This provides load-
balance and makes it possible to overlap computations with data transfers. The
JADA code is written in Fortran77 and C with MPI for message passing. It
uses non-blocking communications in the multiplication of sparse matrices with
dense vectors and MPI reduce operations for vector reductions.

Figure 2 illustrates the timing and speedup behavior of JADA in determin-
ing the four smallest eigenvalues and -vectors for an electron-phonon coupling
simulation problem [22] on three different platforms: NEC Cenju-3, LAMP, and
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IBM 9076 SP2. The matrix of order 98,800 with 966,254 nonzeros is real sym-
metric; the sparsity pattern is highly irregular. The result is a marked variation
in message lengths and numbers of communication partners per processor. This
relatively small problem was chosen because a sizable fraction of the execution
time is spent on communication, and thus the effect of the MPI performance is
more pronounced.

In Figure 2 (left) JADA has the best performance on the SP2 and the worst
on the Cenju-3, with the LAMP results somewhere in between. For 1 processor,
the SP2 is 1.6 times faster than the LAMP, which in turn is 1.9 times faster than
the Cenju-3. The scaling behavior, as shown in Figure 2 (right), is best for the
Cenju-3, which has the best communication to computation ratio. The reason
for the marked efficiency loss between 16 and 32 processors for the LAMP is the
use of both processors of the SMP nodes. Currently, internode communication
is not handled optimally. Due to the good scaling, the LAMP times approach
those of the SP2 for up to 16 processors, whereas on 32 processors the execution
time on the LAMP is only slightly slower than on the Cenju-3.
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Fig. 2. Wall clock time (note the log-log scale) and parallel speedup for JADA.

5.2 Numerical Simulations of Complex Flows

Cellular automata methods represent an alternative approach to finite volume
or finite element techniques for the numerical prediction of fluid flows. The ba-
sic idea of these methods is the numerical simulation of simplified molecular
dynamics derived from the microscopic description of the fluid, instead of solv-
ing macroscopic governing equations. This is done by evaluating a time and
space discrete Boltzmann equation, the so called lattice Boltzmann equation [2]
describing the dynamics of the particle density function by two basic mecha-
nisms, (1) particle propagation and (2) particle collision. The collision step of
this procedure enables the specification of boundary conditions at fluid/solid in-
terfaces in a way that overcomes the usual difficulties of classical CFD-methods
in generating suitable grids. A simple bounce-back procedure fulfills the velocity
boundary conditions for this type of interface and makes it possible to deal with
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arbitrarily complex geometries of these interfaces, while ensuring unconditional
stability for the overall procedure. This capability to overcome the complex and
time-consuming grid-specification procedure of classical approaches make the
Lattice Boltzmann Automata (LBA) techniques especially appealing for many
industrial applications. LBA techniques have been implemented in the Fortran
program BEST [2] with MPI for data communication during parallel execution
of the code. While particle collision is performed locally on each lattice, particle
propagation implies transfer of data between neighboring points. The combina-
tion of an explicit time marching method and the restriction to next-neighbor
dependencies simplifies the development of an efficient parallel code. However,
the very small number of integer and floating point operations per lattice (about
150 flops per lattice per iteration) often leads to situations where the execution
time is dominated by communication. The code is parallelized using the domain
partitioning technique, with neighboring partitions being stored with an overlap
of one lattice layer. The values in the overlap areas are updated once per iteration
with all data for each destination process combined into a single message.

Since BEST is communication rather than computation bound for mid-size
problems, it is an excellent benchmark for the communication network of parallel
platforms under production conditions. Figure 3 shows the performance of BEST
for a problem with 32 lattices in each space direction on the LAMP, an IBM
SP2, and a NEC Cenju-3. Additionally for the LAMP, results are given for the
largest problem that fits into a single node memory, with 256× 32× 32 lattices.
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Fig. 3. BEST performance.

5.3 Distributed List Ranking

The last example is a kernel problem in parallel graph algorithms. Given a singly
linked list, the list ranking problem consists in computing for each list element
the number of elements that follow it by a traversal of the links until the last
element is reached. It is assumed that the list elements are stored in an array
but not necessarily in the order in which they are encountered during traversal
of the list. The problem is important in a parallel setting because it makes it
possible to perform reduction operations on lists [13].
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The sequential problem is trivial, and a careful implementation requires only
two scans of the list. The small amount of computation makes it difficult to
achieve any speed-up in a parallel program, and thus provides us with another
hard test case for evaluation of the LAMP system. We consider the two algo-
rithms discussed in [21]. The list is assumed to be evenly distributed among
the processors in a random fashion, with N being the total number of list ele-
ments, p the number of processors, and n the number of elements per processor.
The first algorithm is the standard pointer jumping algorithm [13]. Depending
on the implementation of the all-to-all communication operation, the execution
time per processor can be decomposed into 3(p−1)dlog Ne start-ups, 4ndlogNe
words communicated, and O(n log N) local computations (with a very small
constant factor). The other, fold-unfold, algorithm works without all-to-all com-
munication. Here the execution time can be decomposed into 2(p− 1) start-ups
per processor, 4n log p words communicated, and O(n log p) local computations
(again with a very small constant factor).

In Figure 4 we give results obtained on an IBM SP2 and the LAMP for
lists of length N = pn with n fixed to 1 000 000 elements. The total execution
time is compared with the sequential time for the corresponding problem size,
optimistically estimated as p times the time to rank the sublists residing at
one processor. The two systems show comparable performance. The fold-unfold
algorithm performs significantly better than the pointer jumping algorithm, but
in terms of achieved speed-up the results are unsatisfactory.
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6 Outlook

The work presented in the paper is an ongoing project. We recently completed
a multi-device version of the MPI library using shared memory communications
between processes running on the same node. Another important enhancement
for the nearest future is to implement an ADI2 device that will replace the
current driver for the generic channel device. We also plan to migrate to the new
MPICH 1.1.1 version, which integrates the MPI-2 [8] parallel I/O functions. The
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main objective of the project, however, has been reached already: providing our
researches with an efficient and reliable platform for development of complex
MPI applications on our PC cluster in a multi-user-environment.
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