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Abstract. Domain decomposition methods in finite element applied
aerodynamics provides a real speed-up of the convergence and good par-
allel scalability, even with the minimum overlap approach used here.
Furthermore, a new variant of Restricted Additive Schwarz procedure is
tested and shows a very attractive scalability property.

1 Introduction

With the emergence of the parallel distributed memory computers, certain tech-
niques of convergence acceleration, expensive in memory, present a renewed in-
terest for the industrial applications. Exploitation of these techniques on this
type of architecture led to the use of domain decomposition decomposition tech-
niques. This article presents the results obtained on a code of aerodynamics
where we successively consider:

1. Convergence acceleration on uni-processor with a basic preconditioner (i.e.
ILU(0)).

2. The analyze of the behavior of the iteration process in parallel with a domain
decomposition method while trying to minimize the communication between
processor with a minimum overlap approach.

3. The study of the scalability properties of the resulting code, and the test of
a new approach of the additive Schwarz procedure.

We will conclude with a summary of the results obtained and a presentation
of the different research path highlighted during that study.

2 Numerical Methods

2.1 Navier Stokes Equations, Discretisation

The presentation of the equations will be brief here, because no modification
of the physics was made compared to the former publications related to this
code [4].

The compressible Navier-Stokes equations are expressed in conservative form:

U,t + Fi,i = F d
i,i + F , (1)
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where U is the conservative variable array: UT = (ρ, ρ.u, ρv, ρw, e), Fi the Eule-
rian fluxes , F d

i the viscous or diffusive fluxes and F a source term.
One can rewrite the previous system in its quasi-linear form:

U,t + AiU,i = (KijU,j),i + F , (2)

where Ai = Fi,U the ith Jacobian matrix of the Euler equations and Kij the
diffusivity matrix.

The space-time discontinuous Galerkin approach is used and allows simulta-
neous space and time integration formulations. The stabilization of the method is
ensured by using a Galerkin Least-Square operator. Moreover a shock-capturing
term is included.

Currently we use a pseudo-time iterative scheme (predictor/corrector) be-
cause we only seek for a stationary solution. Thus the time stepping procedure,
which will be also called “nonlinear iterations”, is established, and leads to solve
at each step a linear system A.x = b. For a more complete description of the
formulation and scheme, refer to [7] and the former publications [4].

2.2 Linear System

The linear system to solve at each time step is large, sparse and non-symmetric.
Within the framework of this study we consider a preconditioned Krylov method
for its solution. Taking into account the memory architecture on the targeted
machines and the coarse grain parallelism based on the 3D unstructured grid
partitioning, the domain decomposition techniques appeared as the most nat-
ural way to develop effective preconditioners. For our application, we cannot
afford direct methods for the subdomain problem solutions. In that context, we
considered the family of methods, generally referred under the generic name of
Additive Schwarz methods, for which we can easily set up variants requiring
only an approximate solution of the local Dirichlet problem. Theses techniques
can be considered algebraically like local/block preconditioners with an overlap
between the blocks. In order to minimize the complexity of the calculation, only
one element overlap at most is permitted.

2.3 Formulation of the Additive Schwarz Methods

In this section we briefly present the formulation of the additive Schwarz method.
Readers should refer to [8] and the references therein, for a more detailed pre-
sentation of the domain decomposition techniques.

With a partition of the unstructured finite element mesh, M can be decom-
posed in N disjoints sets of elements (sub-domains), or equivalently into N over-
lapping sets of nodes. Let’s call {Wi}i=1,N the subsets of nodes and W the com-
plete set of nodes over the entire grid. This drives to: W =

⋃N
i=1 Wi, which can be

called a “partition with a minimum overlap” of Of that element partition, one can
deduce a strict node partition by allocating each interface node to a single subset
of elements W 0

i ⊂ Wi. This leads to: W =
⋃N

i=1 W 0
i with W 0

i ∩W 0
j = ∅ for i 6= j.
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We can then associate with each of the W 0
i a canonic restriction operator R0

i .
We can define in the same way the restriction operators Ri for the sets Wi. Using
the above notations the local problems is defined by:

Ai = RiART
i , (3)

where RT
i is a prolongation operator.

These notations allows the formulation of the basic Schwarz additive precon-
ditioner like: MAS =

∑N
i=1 RT

i A−1
i Ri.

These notations allows to describe the preconditioner recently introduced
by [2, 1] whom called it Restricted Additive Schwarz: MRAS =

∑N
i=1(R

0
i )

T A−1
i Ri.

In the case of the partition of the elements in a Finite Element formulation, the
construction of the local problems as defined by the Equation (3) requires the
assembly of the stiffness matrix for the interface nodes.

The exact solution of the local problems which appear with the MAS et MRAS

being too costly for an industrial problem, we substituted them by approximate
resolutions calculated via an ILU(0). In order to limit the communications dur-
ing the assembly of the local stiffness matrices Ai on the interface nodes, a new
variant have been implemented, which consists in assembling only the diagonal
block associated with each of the interface nodes. Thus we carried out experi-
ments with three preconditioners:

1. MILU(0)−AS : Additive Schwarz with an inexact local solution using ILU(0).
2. MILU(0)−dAS : Additive Schwarz with inexact local solution using ILU(0)

and only the assembly of the interface nodes diagonal block.
3. MILU(0)−dRAS : Restricted Additive Schwarz with inexact local solution us-

ing ILU(0) and only the assembly of the interface nodes diagonal block.

These preconditioners have been implemented in order to accelerate the GM-
RES (Generalized Minimum RESidual) method introduced by Y. Saad and M.
Schultz [5]. The size of the Krylov space is limited to 20 in 2D and at 10 in 3D.
Moreover the tolerance ε controlling the decrease of the 2-norm of the GMRES’
residuals is fixed at 10−1.

3 Implementation & Results

3.1 Sequential Linear System : ILU(0) as Preconditioner

We present here the results obtained in sequential (mono-processor) on a 2D
turbulent test case representative of real flow conditions. It is RAE2822 test
case number 9 (cf. [3]). The test conditions are those of a turbulent transonic
flow: Rec = 6.5 106, α = 2.79◦, M = 0.73.

The grid is the cut in triangles of a structured fine grid with 362×64 or 22900
points and 45000 elements. In the results presented here, we used a two-layer
k − ε turbulence model.
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One can report the following observation on the sequential tests:

1. logically, the number of Krylov spaces (i.e. the number of matrix-vector
products) necessary to the solution of the linear systems decreases dramat-
ically when the ILU(0) preconditioner is applied, with a fixed tolerance ε
and CFL condition (i.e. with the same “speed” speed in the time marching
procedure),
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Fig. 1. RAE 2822 Case 9 - dashes: CFL=20 No Prec. - solid: CFL=100 ILU(0)

2. the preconditioning by itself brings little to the nonlinear process (the “outer”
pseudo-time-stepping iterations) if we do not modify the CFL condition when
compared to the unpreconditioned case. Indeed one can then have a gain or
a lost of CPU time according to the ill-conditioning of the linear systems,
but overall the evolution of the nonlinear residues is similar.

3. If, on the opposite, we take advantage of the improvement of the robustness
of the preconditioned system to increase the CFL, then the nonlinear resid-
uals converge much more quickly (÷2 on the CPU time here). Figure 1(a)
compare the evolution of the residuals for a unpreconditioned calculation
with a maximum CFL condition of 20, and a ILU(0) left-preconditioned
computation with a maximum CFL of 100.
The same acceleration of convergence can be noted on Figure 1(b) which
present the evolution of the lift coefficient during the iterations.
Acceleration comes primarily from the increase in the CFL condition au-
thorized by the use of the preconditioner. Eventually and unfortunately we
encounter a limit of stability of the scheme and in practice the CFL lie
between 50 (coarse grid) and 300. Beyond that, oscillations appear and cal-
culation does not converge any more. Nevertheless the multiplication by 5
or 15 of the CFL is sufficient to obtain a 2 to 3 fold acceleration over the
computational time.

4. For steady calculations the value of the tolerance ε with constant CFL does
not seem to have a radical effect on the global time-marching process of the
nonlinear iterations: this considering the transient phase or on the level of
final residue. Nevertheless the use of the preconditioner ILU(0) facilitates
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the resolution of the linear system. Let us note that that should present an
interest for the unsteady simulations where the value of ε must be relatively
low (≤ 10−2).

3.2 Study of the M6 Wing Test Case on 4 to 32 Processors

Parallel : Efficiency of the ILU(0) with MILU(0)�dAS The approach
known as domain decomposition is used to reduce the degradation induced in
the preconditioner by the localization of the data on each processor; that localiza-
tion is mandatory for effective parallelism. The procedure of additive Schwarz
with minimal overlap used here constitutes an ab-initio approach of domain
decomposition and can be developed without the choice and use of dedicated
libraries.
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Fig. 2. M6 wing - 4CPU - dashed: CFL=5 Non Prec. - solid: CFL=100 -
MILU(0)−dAS

We will use thereafter the case of the ONERA M6 wing to test the parallel
applications for the 3D turbulent flows. The simulation parameters are: Re =
11.7 106, M = 0.844, α = 4.56◦ [6]. The grid consists of 77000 points, divided
into 4, 8, 16 and 32 subdomains. The size of problem prevented the realization
of a sequential test, so the comparison was made between the calculation on
4 processors and the later decompositions. The decomposition itself have been
carried out by Dassault-Aviation, taking care to balance the distribution of the
points and elements over the domains. The stopping criterion of the GMRES
is ε = 10−1, the size of the Krylov space is 10 with and we allow only 2 more
restarts of the GMRES.

Figure 2(a) compares the residuals of a non-preconditioned calculation with
a CFL of 5 with those of a MILU(0)−dAS calculation with a CFL of 50 (these
two CFL are roughly the acceptable maximum for each calculations). We can
note that the lift history (Figure 2(b)), shows clearly the acceleration in the
establishment of the flow, as do the convergence history.

Finally, we can note that the CPU time has been decreased by a factor of
3 with the use of MILU(0)−dAS: from a total of 7500 units of time for the un-
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preconditioned case we ended to 2000 units of time with the preconditioner, both
of the calculations have been performed on 4 CPU.

Parallel : Scalability of the MILU(0)�dAS Globally, there is an indepen-
dency of the residual evolution during nonlinear iterations with respect to the
number of processors. Furthermore the CPU time gathered in the Table 1 reveal
a good efficiency, in spite of a minimum overlap and a basic preconditioner. The
efficiency is calculated by taking as reference time the calculation on 4 processors.

Table 1. M6 wing - CFL=50 - MILU(0)−dAS

4 Domains 8 Domains 16 Domains

CPU Equiv. Time 1922 u 1031 u 558 u
Acceleration – 1 – 1.86 3.44
Efficiency – 1 – 0.93 0.86

# of Krylovs 1259 1423 1493

This is not a sufficient indication to characterize the scalability of the precon-
ditioner; Table 1 also presents the total number of internal GMRES iterations
needed to get the appropriate convergence.

We can see that, according to the total number of Krylov spaces, the quality
of the local preconditioner degrades with the number of subdomains. The rel-
atively good scalability in CPU times is partly due to a better memory access
resulting of the reduction of the problem’s size (mainly cache effects).

These results are nevertheless encouraging; they prove that an domain de-
composition approach with a minimal overlap strategy presents an sufficient
parallel efficiency for applications up to 16 and probably 32 processors.

Effects of Periodic Preconditioner Estimation We have constated that it
is no necessary to recompute the preconditioner for each nonlinear iteration, we
use the an “old” evaluation of the preconditionner for the current iteration.

For example on the 4 domains M6 wing test case, the quality of the pre-
conditioner suffers when we compute it only every five Newton iterations (1409
Krylovs vs. 1259). But that degradation is largely compensated by the CPU
savings of the non-evaluation of the ILDU(0): In our case the gain is clear: on 4
CPU with MILU(0)−dAS it drives the CPU time from 1922 units to 1626.

That strategy was verified for all the domain decomposition techniques con-
sidered here, and on 4, 8, 16 or 32 processors.

Comparison of MILU(0)�dAS and MILU(0)�AS The MILU(0)−dAS pre-
conditioner quality can be improved if we not only assemble the diagonal block,
but all the blocks of the line in the matrix for each interface node. These addi-
tional assemblies require the enrichment of the information that describes the
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interface (additional handling of the grid) as well as a notable increase in the
communications to build the local systems.

The use of MILU(0)−AS allows a gain of approximately 15% of the number
of matrix-vector products for each nonlinear iteration. Moreover, the additional
information to exchange increases the size of the message but not the number
of them. Thus on hight-bandwidth machines, the overcost of communication
related to a higher volume of data exchanged can be neglectible.

The saving of time CPU is thus 10 to 15% compared to MILU(0)−dAS. Nev-
ertheless, the complexity of the connectivities sorting procedure, the non-control
of the user on the interface region, makes its use cumbersome without the use
of a domain decomposition library dealing with these aspects at the mesh par-
titioning stage.

3.3 Restricted Additive Schwarz

We use here the Restricted form of the additive Schwarz procedure as introduced
in the section 2.3, wich differs only at the preconditioning step in the GMRES:
we no more assemble the result of the preconditioning, but rather affect the value
of the node’s domain to the others.

MILU(0)�dRAS Scalability We consider a similar study as the one described
in Section 3.2 but for the MILU(0)−dAS with the restricted additive Schwarz
procedure and a periodic evaluation of the ILU(0) every other five Newtons
iterations. As previously reported, the residual evolution against the nonlinear
iteration is not influenced by the successive division into 4, 8, 16 or 32 sub-
domains. On the other hand, and in a surprising way, the internal iteration
count of the GMRES decreases when one goes from 4 to 8 then 16 fields (cf
Table 2). This is not observed any more on the switch from 16 to 32 processors.

Table 2. M6 wing - CFL=50 - MILU(0)−dRAS - Periodicity : 5

4 Domains 8 Domains 16 Domains 32 Domains

CPU equiv. Time 1583 u 795 u 398 u 225
Acceleration – 1 – 1.99 3.97 7.02
Efficiency – 1 – 0.995 0.993 0.878

# of Krylovs 1244 1202 975 1222

The CPU times gathered in Table 2 show a remarkable scalability of the
method.

4 Conclusion & Future Work

During this study, it was possible to adapt a semi-industrial aerodynamic code in
order to test quickly some domain decomposition ideas and preconditioners for
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practical simulation using coarse grained parallelization on distributed memory
architectures.

The choices made during this study were directed towards a minimization of
the number of exchanges between processors. Communications are only need by
the matrix-vector products, preconditioning, scalar products and for the diago-
nal block assembly of the Jacobian matrix on the interface nodes. Moreover the
ILU(0) was choosed with the same simplicity/robustness requirements. Despite
all its intrinsic limitations compared to more traditional approaches of domain
decomposition, that technique showed its attracting potential on various aero-
dynamics simulation test cases. In this study, a 2 to 3 fold acceleration has been
observed when compared to the best unpreconditioned implicit calculations, and
the very good scalability of the MILU(0)−dRAS has been demonstrated.

Most of the acceleration gain is a consequence of the increase in the robust-
ness which allowed the increase in the CFL. Depending on the flows/grids tested,
the CFL limit lies between 50 and 300. One can question whether further in-
crease the CFL limits would still be so beneficial? And, how to achieve these CFL
conditions (integration schemes, linearization schemes, boundary conditions).
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