
A Generalized Transaction Theory

for Database and Non-database Tasks

Armin Feßler and Hans-Jörg Schek

Institute of Information Systems
ETH Zentrum, CH-8092 Zürich, Switzerland

{fessler,schek}@inf.ethz.ch

Abstract. In both database transaction management and parallel pro-
gramming, parallel execution of operations is one of the most essential
features. Although they look quite different, we will show that many
important similarities exist. As a result of a more careful comparison
we will be able to point out that recent progress in database transaction
management theory in the field of composite stack schedules can improve
the degree of parallelism in databases as well as in parallel programming.
We will use an example from numerical algorithms and will demonstrate
that in principle more parallelism can be achieved.

1 Motivation

Parallel programming (PP) and database transaction management (DBTM) are
two separate fields that both provide mechanisms for executing tasks in parallel.
At a first glance, these two models look rather different. A more careful inspec-
tion, however, reveals much commun ground. Therefore we are interested in a
more careful comparison: Does one of these provide more possible parallelism
than the other? Can the one model benefit from the other?

These are the questions we want to answer in this paper. In the next section
we compare PP with DBTM. It turns out that both models are, in fact, similar
in that both control the flow of information in a parallel execution in way that
equivalence to a sequential execution is ensured. In both areas there is one level
of abstraction where a scheduler (in case of DBTM) or a parallizing compiler (in
case of PP) is located and ensures correctness. However, recent progress made in
the foundation of database transactions shows that a higher degree of parallelism
can be achieved be considering several schedulers at several layers of abstraction.
Therefore, we contribute to the comoarison between PP and DBTM and we
elaborate the idea of htransforming a single non-DB task into several artificial
DB transactions with the aim of increasing the degree of parallelism in PP, too.

Section 2 compares PP and DBTM in more detail. In order to ensure read-
ability, in Section 3 we explain informally the main insights from the theory of
schedulers working at several layers of abstraction (“stack schedules”). Finally,
in Section 4, we show how this theory could be adopted for the parallel execu-
tion of numerical algorithms as an example of a problem that is considered a
non-database task.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 459–468, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

460 Armin Feßler and Hans-Jörg Schek

TDB

read(acc42) write(acc42)

deposit(42)withdraw(13)deposit(42)

read(acc13) write(acc13) read(acc42) write(acc42)

T 2T 1

Fig. 1. Example for transaction invocations in a dbs

We are not aware of other work having considered comparisons between PP
and DBTM or having applied multi-level transactions to non-DB tasks. In our
own previous work [1] we have presented this idea the first time. The paper
here gives a more detailed presentation: It contains a comparison between PP
dependences and DBTM conflicts and elaborates on the applicability of the
DBTM theory using several simple examples from matrix/vector computations.
More details are available in [4].

2 Parallelization in Databases and in Parallel
Programming

2.1 High-Level Comparison

Let us use simple examples for an overview of database transactions on the one
hand, and numerical algorithms on the other hand.

First, we consider database transactions as those shown in figure 1. Tradi-
tionally, transactions (like T1 and T2) are given to the database system (DBS)
– usually by different users. There, each transaction starts operations. Trans-
action T1 starts a deposit operation on account number 42, which itself starts
a read and a write operation. T2 – a transfer transaction – starts an operation
that withdraws some money from account number 13 and deposits it on account
number 42. Each of these operations start a read and a write operation. Now,
the scheduler of the DBS has to decide which operations can be executed in
parallel, based on the information whether operations of different transactions
commute. Since there are two layers of abstraction, there are also two possi-
bilities for placing a scheduler: If it is placed at the upper layer, the scheduler
decides on commutativity of the operations of T1 and T2. Deposit operations are
always commutable. Withdraw commutes with each of the two deposit opera-
tions being on another account. If the scheduler is placed at the lower layer (this
is the usual layer where DB schedulers work in practice), the scheduler decides
on commutativity of the read and write operations as usually. In any case, the
scheduler orders pairs of conflicting operations and makes sure that there exists
always a sequential execution that orders conflict pairs the same way.

A Generalized Transaction Theory for Database and Non-database Tasks 461

It seems to be a major point that usually transactions are independent and
are entered by different clients. However there is nothing wrong if we assume that
both transactions (e.g. T1 and T2 in our example) are entered by one and the
same client, and still the scheduler will parallelize them considering the conflicts
between their operations. We therefore can always think of an (artificial) trans-
action TDB starting all client transactions like T1 and T2 in our example. The
reason for this ”trick” is that DB transactions look more similar to a numerical
task that usually is entered by one client.

We now consider the essentials of parallel programs using a simple example.
In figure 2 there is an invocation hierarchy of the numerical task T that calculates
the sum of two matrices and a matrix vector product as follows:

B = A + B;
u = B v;

T invokes subprograms (possibly a simple loop) that calculate logical units of
work – the sum B = A + B and the matrix-vector product u = Bv. The sub-
programs invoke operations calculating the single elements of B and u. The
main point here is that the algorithm T itself is similar to TDB in DBTM. As
in DBTM, T invokes subtasks that, in turn, invoke operations. In PP we dis-
tinguish two cases: Either the programmer decides whether operations can be
executed in parallel using PP languages [3], or a parallelizing compiler (also
called super-compiler [7]) transforms a given sequential program into a PP. The
programming constructs and outcomes of both methods are the same, so we do
not discriminate them in the following. In High Performance Fortran there are
two types of parallel loops, FORALL and INDEPENDENT DO, in the example:

INDEPENDENT DO i=1, m
DO j=1, n

b(i,j) = a(i,j) + b(i,j)
u(i) += b(i,j) * v(j)

END DO
END DO

The outer loop is a parallel loop which executes its code independently for every
i (the row index of B). The inner loop is a sequential loop over the column index
j of B. On a high level, we now see that PP and DBTM are very similar. In both
areas, a task is divided into subtasks, which possibly start subtasks themselves.
But how does the parallel compiler decide which tasks can be parallelized and
which not? Does PP have a notion similar to conflict pairs?

2.2 Dependences in Parallel Programs

A parallelizing compiler realizes what (sub)tasks can be executed concurrently
by looking at data dependences. It ensures that all dependences of the (sequen-
tial) input program are kept in the produced parallel program. Three kinds of
dependences are distinguished: flow-, anti-, and output dependence. These are
easy to understand by observing that they are essentially the same as the three
kinds of conflicts in transaction processing of the read/write model of DBTM.

462 Armin Feßler and Hans-Jörg Schek

u = b vn
nb = a + b1 1 1 u1 = b1 v b = a + bn n n

B = A + B u = B v

. <<

T

Fig. 2. Interleaved execution of ordered operations within a task

As a thorough analysis proves, the following counterparts between DBTM and
PP notions can be found:

Parallel Programming Database Transactions
variable data-object
x = y + z r(y) r(z) w(x)
flow dependence wr-conflict
anti dependence rw-conflict
output dependence ww-conflict

In essence, the statement x = y + z in PP is nothing else than reading y and z,
adding them, and writing the result into the object x in DBTM terminology. A
flow dependence is a type of a data dependence, when a variable is set and then
read, in the example x = 1; y = x;. Anti dependence is the case, when a variable
is read and then set, e.g., y = x; x = 1;. Output dependence appears, whenever
a variable is set by two operations, e.g., x = 10; x = 3;. The order cannot be
reversed without changing the result. Obviously, the three cases correspond to
a write/read-, read/write-, and write/write-conflict in DBTM, resp.

Traditionally, in both PP and in DBTM, there is only one level, on which
tasks are scheduled. As a major departure from this one-layer-scheduling, in
DBTM it came out that parallelism can be gained by introducing additional
layers of abstraction and allowing a scheduler at every level of abstraction. In
our simple introductory example a higher-layer scheduler will not order any pair
because there is no conflict between the operations: The two deposits commute
since deposits always commute, and deposit(42) commutes with withdraw(13)
because it is another account. However, if the intermediate level of the deposit
and withdraw operations would be eliminated to achieve a traditional one-layer
scheduler, the execution in the figure would not be correct any more. In the
following we will informally explain this essential extension to DBTM theory,
the formal definitions of which can be found in [1].

3 Stack Schedules

When executing transactions, a scheduler restricts parallelism because it must,
first, observe the order constraints between the operations of each transaction

A Generalized Transaction Theory for Database and Non-database Tasks 463

upd(dcx)

write(dcx). . .

. . . CON

read(nsc) read(dcx)

2
<<

<<

add up balances

Daily stock balance Update(DaimlerChrysler)

Fig. 3. Restr. parallelism (strong order)

Daily stock balance

. . .

. . . add up balances2
<

CON upd(dcx)

Update(DaimlerChrysler)

read(nsc)write(dcx)read(dcx) <<

Fig. 4. Restr. parallelism (weak or-
der)

and, second, impose order constraints between conflicting operations of differ-
ent transactions. The restriction in parallelism occurs because, in a conventional
scheduler, ordered operations are executed sequentially. As shown in [1] and as
we explained just above, this is too restrictive. But parallelizing conflicting op-
erations over several levels requires to relax some of the ordering requirements of
traditional schedulers. In addition, a mechanism is needed to specify to a sched-
uler what is a correct execution from the point of view of the invoking scheduler.
For these two purposes we use the notion of weak and strong orders:

Strong and Weak Order: A and B are any tasks (actions, transactions).

– Sequential (strong) order: A � B, A has to complete before B starts.
– Unrestricted parallel execution: A‖B, A and B can execute concurrently

equivalent to any order, i.e., A � B or B � A.
– Restricted parallel (weak) order: A < B, A and B can be executed concur-

rently but equivalent to executing A � B. 2

To have a closer look at this concept, let us consider an example. In figure 3
there are two schedulers, one above the other. On the higher level there are two
transactions: One calculates the daily stock balance by invoking subtransactions
that calculate certain types of stocks each, possibly on different servers. Here, it
suffices to consider only one of these subtransactions, add up balances2, which
reads the prices of two stocks, DaimlerChrysler, dcx, and netscape, nsc.

The other transaction updates the price of the DaimlerChrysler stock. The
upper schedule knows that these two subtransactions, add up balances2 and
upd(dcx), are in conflict. In the case of a conflict, traditional theories sequen-
tialize the regarding operations, which we call a strong order. Because of this
strong order, all operations of add up balances2 are executed before the oper-
ation of upd(dcx). Here is the main point that we lose parallelism as read(nsc)
is strongly ordered before write(dcx).

To prevent a loss of parallelism we make now use of the weak order (figure 4).
Conflicting operations are ordered, but only weakly. This weak order is a con-
straint for the lower-level scheduler: Its serialisation graph has to follow the given
weak order. Therefore write(dcx) can be executed in parallel to read(nsc) or
in any arder as long as write(dcx) is executed after read(dcx).

464 Armin Feßler and Hans-Jörg Schek

3.1 Transactions, Schedules

The distinction between weak and strong order require slight changes in the
definitions of traditional notions. A transaction is a set of operations with
partial strong AND weak order constraints between the operations. A schedule
receives as input transactions and a weak and a strong input order. The output
of a schedule consists of the set of all operations of all input transactions and
and of the weak and strong (output) orders. Commutativity of operations is
globally given by a conflict predicate. A schedule must weakly order every pair of
conflicting operations from different transactions without contradicting the weak
input order. Furthermore, all weak and strong transaction orders are contained
in the weak and strong output orders, respectively. Naturally, strong input order
are propagated from the transactions to their operations, thereby separating the
execution tree of strongly ordered transactions.

3.2 Correct Schedule

The distinction between the two orderings requires also to modify the traditional
notion of correctness. We will assume, as usual, that a transaction executed in
isolation is correct.
A schedule S is correct or conflict consistent (CC), if there is a serial schedule,
whose strong input and weak output order contain the weak input and output
order of S, resp.
The extension to the traditional theory may become clearer when we use the se-
rialisation graph defined as in the classical theory. We have shown (proof see [2]):
A schedule is conflict consistent iff the union of its weak input order and its
serialisation graph is acyclic.

3.3 Stack Conflict Consistency

With these preparations we are able to explain stack schedules: in a stack of
schedules the output of one schedule is directly used as input to the next. Every
level has a scheduler S that provides a set ÔS of operation invocations to be
used to build transactions. I.e., an operation of a scheduler can be a transac-
tion of the next lower level scheduler. Every scheduler S has a commutativity
specification expressed by the conflict predicate CONS . Every scheduler works
locally ensuring correctness with respect to its (local) CONS . Fortunately we
can prove [2] the following theorem:
An n-level stack schedule SS is correct, iff each individual schedule Si in SS is
conflict consistent, for 1 ≤ i ≤ n.
We will use SCC as a shorthand for correctness of a stack schedule. Thus, ev-
ery scheduler, except the lowest one, produces an executable plan for the next
lower scheduler. The lowest scheduler, however, has to execute the operations it
produces, thereby changing all weak output orders into strong ones. If higher-
level schedulers make this change, the produced output is correct, too, but the
achievable degree of parallelism is reduced.

A Generalized Transaction Theory for Database and Non-database Tasks 465

In figure 4, the lower level schedule is conflict consistent, since there is a
corresponding serial schedule, which is the lower level schedule in figure 3.

4 Parallelization of Numerical Algorithms

4.1 Application to the Introductory Example

SCC provides a larger class of correct executions, and introduces a possibility
for parallelism which was not possible neither in previous DBTM nor in PP.
This comes from perhaps the most interesting aspect of SCC: the possibility of
executing operations in parallel, even if they conflict. This raises the possibility
of implementing a parallel-do operation. By parallel-do we mean that the oper-
ations specified are executed in parallel, while preserving imposed serialisation
dependences between them. In the example shown in figure 2, the programmer
will specify something like:

Begin Parallel Do
(B = A + B) → (u = Bv)

End Parallel Do
thereby indicating that they should be executed in parallel while preserving the
given ordering. Now, is the execution shown in the figure correct? Obviously,
the upper level schedule is CC. In the lower schedule, every conflict pair (bi =
ai + bi, ui = biv) is ordered in the same way. So, there is a serialisation graph
edge from B = A + B to u = Bv, consistent with the weak input order. Thus,
the lower schedule is CC, and hence, the stack is SCC and correct.

4.2 Application to a Complex Example

Traditional Strategies We move to a more complex example and show what
we can gain by the approach. Consider the first step of the Gauss-algorithm for
n = 3. This requires A = C1A, A = C2A with:

A =


a1

a2

a3


 , C1 =


 1 0 0

−a21
a11

1 0
−a31

a11
0 1


 =


 c1

1

c2
1

c3
1


 , C2 =


1 0 0

0 1 0
0 −a32

a22
1


 =


 c1

2

c2
2

c3
2




In parallel programming and parallelizing compilers, this can be parallelized
using two parallel and one sequential loops:

DO j=1, n-1
INDEPENDENT DO i=j+1, n

l(i,j) = a(i,j)/a(j,j)
INDEPENDENT DO k=j, n

a(i,k) = a(i,k) - l(i,k) * a(j,k)
END DO

END DO
END DO

466 Armin Feßler and Hans-Jörg Schek

l21 = a21

a11
l31 = a31

a11

a22 = a22 − l21a12 a23 = a23 − l21a13 a32 = a32 − l31a12

a33 = a33 − l31a13

a33 = a33 − l32a23

l32 = a32

a22

Begin

End

Fig. 5. Parallelization of a nested loop

However, the dependence graph for this code fragment (figure 5) shows that
there are unnecessary operation orders. It does not show the data dependences,
but the control dependences of the parallel loop, i.e., the data dependences are
coded with the control dependences. As parallelizing compilers can only paral-
lelize loops as a whole, the above outer loop is a sequential one. Therefore, the
operation l32 = a32

a22
is executed after a33 = a33−l31a13, although there is no data

dependence between these two operations. If we make the simplifying assump-
tion that every operation is executed in one time step, and three processors are
available, these unnecessary orderings force a total computation of five steps.

Parallelizing Using Stack Conflict Consistency The idea consists in in-
troducing compilers on several layers by decomposing a numerical algorithm
into steps and considering them as transactions that run concurrently, observing
some given external partial order. Each step, in turn, is decomposed into simpler
steps that are considered as operations in the DBTM terminology.

Let us consider what exactly has to be done to be able to apply stack conflict
consistency to our example. First, the whole computation is defined as a single
transaction T consisting of operations T1 : A = C1A and T2 : A = C2A, which
is the algorithm in matrix form (figure 61). Since order matters between T1

and T2, they are weakly ordered. The interesting part is on the lower scheduler.
There, not all operation pairs from different (weakly ordered) transactions are
conflicting. Therefore, some of those operations can be executed in parallel: E.g.,
T123 can be executed concurrently with T211, although their parents T12 and T21

are (weakly) ordered. Since this order is only weak, it does not matter if non-
conflicting operations are reversed. This type of parallelism does not exist in
conventional PP.
1 To make the presentation clearer, only (weak) input orders are shown

A Generalized Transaction Theory for Database and Non-database Tasks 467

Level L2:

Level L3: T1 : A = C1A

Level L1: T111 : l21 = a21

a11
T112 : a22 = a22 − l21a12

T122 : a32 = a32 − l31a12T121 : l31 = a31

a11

T211 : l32 = a32

a22
T212 : a33 = a33 − l32a23

T2 : A = C2A

T11 : a2 = a2 − a21

a11
a1 T21 : a3 = a3 − a32

a22
a2

T113 : a23 = a23 − l21a13

TLevel L4:

T12 : a3 = a3 − a31

a11
a1

T123 : a33 = a33 − l31a13

Fig. 6. Interleaved execution of ordered steps of a parallel program.

Now, is the schedule shown in figure 6 stack conflict consistent? We only have
to prove whether every schedule of it is CC. The upmost schedule (level L4 −
L3) certainly is conflict consistent, as there is only one transaction. The next
schedule (level L3 − L2) consists of two transactions, T1 and T2, connected by
a weak input order. Since this input order is consistent with the serialisation
graph (T11 and T12 before T21, resp.), this schedule is also correct. The lowest
schedule (level L2−L1) is the most complicated. There are two weak input orders
(from transactions T11 and T12 to T21, resp.). As one can prove, all conflicting
operation pairs are weakly output ordered (we used here the same symbol as
for the input order). All these weak output orders, however, are according to
the weak input orders of their parents. For example, T112 is ordered before T211,
which is consistent with T11→T21, the weak input order of their parents.

By summing up this example, we find that a stack schedule is similar to con-
ventional parallelizing compilers on several layers of abstraction. Such compilers
parallelize loops as a whole by determining if there are any data dependences
contradicting the parallelization of this loop. We propose to have several layers
of compilers working together like a stack schedule; a higher-level compiler gets
the complete (sequential) source code and produces an execution plan, which is
the input for next lower schedule that, in turn, produces an execution plan for
the next scheduler. Only one scheduler of a stack, the lowest one, is actually ex-
ecuting its operations, by obeying the plan it produces and by only using strong
output orders. In order to define parallel loops, every scheduler can make use of
a new sort of loop: The Parallel-Do with a weak order.

What do we gain by applying stack scheduling to this example? In the last
subsection, it came out that a parallelizing compiler would need five time steps
to execute this program, given that three processors are available. As we can
see in figure 6 only four steps are now necessary to execute all operations of
level L1 (which is the only level on which real computations are done)2. It is

2 Note that the time axis is from left to right, as usual in DBTM.

468 Armin Feßler and Hans-Jörg Schek

expected that the profit of one time step in this scenario increases in the number
of dimensions of the involved matrices, and in the complexity of the algorithm.

4.3 Other Approaches

There is a number of previous approaches to coping with multilevel schedules,
the most advanced of which is Weikum’s model. Weikum proposes a weaker con-
dition than order preservation for independent scheduling in composite systems.
This condition forces conflicting operations at a non-leaf level to have conflicting
descendants at all lower levels (axiom 1 in [5]). This restriction, though often
natural, restricts the scope of Weikum’s model. E.g., it does not hold for multi-
version CC algorithms, or in our context the addition of sparse matrices [4].

In level-by-level serialisability [5], when two operations conflict (that is, they
are ordered by the weak execution order), they must also be strongly ordered.
Consequently, the execution trees of conflicting operations cannot be interleaved.
This is not the case for stack conflict consistency.

A rule-based approach to (partly) nested transactions are ULTRA transac-
tions [6]. Similar to parallelizing compilers, operations are collected in an evalu-
ation phase, and performed in a subsequent materialization phase. The ULTRA
system executes basic updates simultaneously with the logical evaluation of the
transactions. This optimistic method requires the possibility of compensation.

5 Acknowledgement

We would like to thank Gustavo Alonso for many fruitful discussions and the
anonymous referees for their valuable comments.

References

[1] G. Alonso, S. Blott, A. Fessler, and H.-J. Schek. Correctness and parallelism in
composite systems. In Proc. of the 16th Symp. on Principles of Database Systems
(PODS’97), Tucson, Arizona, May 1997.

[2] G. Alonso, A. Feßler, G. Pardon, and H.-J. Schek. Transactions in stack, fork,
and join composite systems. In 7th International Conference on Database Theory
(ICDT), Jerusalem, Israel, Jan. 1999.

[3] S. Brawer. Introduction to Parallel Programming. Academic Press, 1989.
[4] A. Feßler. Eine verallgemeinerte Transaktionstheorie für Datenbank- und Nicht-

datenbankaufgaben (to appear). Dissertation, Department of Computer Science,
ETH Zürich, 1999.

[5] G. Weikum. Principles and Realisation Strategies of Multilevel Transaction Man-
agement. ACM Transactions on Database Systems, 16(1):132, March 1991.

[6] C.-A. Wichert, A. Fent, and B. Freitag. How to execute ULTRA transactions.
Technical Report MIP-9812, Universität Passau (FMI), 1998.

[7] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.
Addison-Wesley, 1991.

	Motivation
	Parallelization in Databases and in Parallel Programming
	High-Level Comparison
	Dependences in Parallel Programs

	Stack Schedules
	Transactions, Schedules
	Correct Schedule
	Stack Conflict Consistency

	Parallelization of Numerical Algorithms
	Application to the Introductory Example
	Application to a Complex Example
	Other Approaches

	Acknowledgement

