A Coming of Age for Beowulf-Class Computing

Thomas Sterling and Daniel Savarese

Center for Advanced Computing Research
California Institute of Technology
1200 E. California Blvd. MC 158-79
Pasadena, CA 91125 USA
tron@cacr.caltech.edu, dfs@cacr.caltech.edu

1 Introduction

Beowulf-class systems along with other forms of PC clustered systems have ma-
tured to the point that they are becoming the strategy of choice for some areas
of high performance applications. A Beowulf system is a cluster of mass mar-
ket COTS personal computers interconnected by means of widely available local
area network (LAN) technology. Beowulf software is based on open source code
Unix-like operating systems that, in a majority of cases, is Linux. The API for
Beowulf is based on message passing semantics and mechanisms including ex-
plicit models such as PVM and MPI or implicit models such as BSP of HPF.
Since its introduction in 1994, Beowulf-class computing has gone through five
generations of PCs from multiple microprocessor vendors including the Intel x86
family, DEC’s Alpha, and the PowerPC from IBM and Motorola. Originally,
Beowulfs were implemented as small clusters in the range of 4 to 32 nodes.
Larger clusters of 48 to 96 processors were deployed two and a half years ago.
Today there are many systems of 100 to 300 processors with systems of over a
thousand processors in the planning stage for implementation over the next year.

The earliest Beowulf systems had a peak floating point performance of ap-
proximately 320 Mflops sustaining approximately 70 Mflops on floating point
intensive problems. By the third generation, peak performance systems of 3.2
Gflops were delivering sustained performance of 1.2 Gflops on non-trivial real
world applications. A year later, larger systems were reported sustaining perfor-
mance in excess of 10 Gflops. Shortly thereafter, the first Beowulfs were credited
with being among the 500 largest computers in the world. In the last two years,
Beowulf-class systems were recognized as providing the best price-performance
of general-purpose high-end systems by winning the Gordon Bell Prize for su-
percomputer price-performance two years in a row. From a few experimental
systems four years ago, many hundreds of systems have been deployed across
the nation and around the world with as many as a thousand such systems op-
erational today.

From this experience and level of acceptance, it is clear that Beowulf-class
systems are having a significant impact on the field of high-end computing. But

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 78-[88 1999.
© Springer-Verlag Berlin Heidelberg 1999



A Coming of Age for Beowulf-Class Computing 79

the value of this technology extends beyond simply the numbers of systems de-
ployed. These systems are enabling applications work that might not have been
conducted otherwise or would have been done at a substantially lower level. Also
they are providing an exceptional vehicle for educational programs in parallel
computing hardware, software, and parallel programming techniques, even down
to the high school level. Many people are entering the field of parallel computing
through the opportunity door opened by the availability of Beowulf systems.
The roles and range of this class of systems are proving highly diverse; more
than was originally imagined by those conducting the earliest path-finding work
in this area.

Beowulf-class systems can no longer be ignored as inconsequential and rel-
egated to the niche of novelty and hobbyist by their detractors. But nor can
they be represented as the replacement for all other high-end system types for
all computing environments and purposes by their advocates. The controversy
surrounding Beowulf-class systems is important because it will determine future
directions for advanced development and applied research in a number of related
fields including system software, computational techniques, and system area net-
work technology. The results of such work will determine the applicability and
utility of this alternative approach to scalable computer systems implementation.
This paper addresses the important issues that are at the center of the contro-
versy and that will determine future directions and acceptance of Beowulf-class
systems to satisfy near term computing requirements in the medium to high
end of the performance spectrum. An attempt is made to clarify three critical
questions: applicability, advantages/disadvantages, and economics. Most of these
issues are subject to varied interpretation based on the underlying assumptions.
The biggest problem with the continued contentions is that the arguments are
driven by different expectations and tolerances. In essence, they are an example
of attempting to compare apple and oranges. It is the intent of this paper to
resolve, at least in part, the existing confusion.

2 Advantages: Impact Beyond Dollars

The selection of a Beowulf over a conventional vendor-offered parallel system is
rarely driven simply by a desire to pay a lower price for a specified performance
level. Should this be the case, the level of computing capability acquired would
remain constant while freed dollars from the system procurement budget would
be reallocated to some other part of an organization’s needs. But an important
aspect of the qualitative advantage of Beowulfs stems from their dramatically
lower cost, not to save money but rather to acquire much more capability for a
limited budget. While at first this may appear to be a distinction without a differ-
ence, its impact is substantial. In the first case, nothing changed other than the
saving of some money. In this case, an approximate price-performance advantage
of an order of magnitude will deliver a Beowulf-class system of more than ten
times the peak performance of a vendor supplied system. In science and technol-
ogy, an order of magnitude is an important differentiator. In the transportation



80 Thomas Sterling and Daniel Savarese

industry, society supports two entirely separate infrastructures (actually three)
because of the times ten difference in speed between the automobile with its
interstate highway system and parking garages and the commercial jet aircraft
with its FAA traffic control and airports. (railroads are the third independent
infrastructure)

On a per node peak floating point performance basis, comparisons between
comparable generation systems of equal number of processors and memory ca-
pacity show that tightly coupled vendor provided distributed shared memory
systems cost between 8 and 12 times that of a Beowulf-class system. This does
not include vendor supplied clusters of workstations where the price differential
may be only about a factor of 4 (even less in specific cases), still in favor of
the Beowulfs. For certain classes of applications, this can translate into a per-
formance advantage of an order of magnitude. Problems that might have taken
a full workday can be performed in less than an hour. Or a problem can be
performed in a single user’s day that would have taken two user work weeks
(here a user day is defined as 8 hours, a user week is 40 hours) Such a difference
qualitatively alters the way science and engineering can be performed and the
impact that computation can have on it.

Perhaps more importantly are those problems that can be addressed due to
the possibility of a Beowulf implementation that would not have been attacked
by parallel processing at all. The entry level cost of vendor supplied parallel
systems is often too high for some environments, principally those in the pure
sciences, the social sciences, and many educational institutions. Under these
circumstances before Beowulf, these problems were relegated to desktop work-
stations because the next higher cost system, a small SMP was much too high.
Beowulfs gave low cost scalability and a graceful way for low budgeted com-
putations to benefit from higher performance systems. But its not just shorter
execution time that yields the qualitative advantage. Also, problem size, resolu-
tion, or fidelity from the modeling of additional phenomenology can enhance the
quality of the science being performed, yielding new insights, otherwise unattain-
able under restricted budgets.

User’s have greater control over their Beowulfs systems than they do with
those provided by vendors while being less vulnerable to changes in vendor mar-
keting plans. High performance computing through the late 80’s and early 90’s
suffered from rapid changes in available system architectures. Many vendors
went out of business with customers stuck with their rapidly obsolescent and
unsupported orphan systems. Dramatic examples include the Intel Paragon, the
TMC CM-5, the Maspar MP-2, and the KSR-~1. Even when the company does
not meet its demise, radical change in architecture can leave long term customers
with no viable migration path. TMC switched from its SIMD class CM-2 to the
MIMD class CM-5, Convex went from its vector C-4 to the DSM SP-1000. CRI
is abandoning its vector family and its T3 family as well after multiple versions
of both. In marked contrast, Beowulfs are forever. As long as there are low cost



A Coming of Age for Beowulf-Class Computing 81

desk-top and server PC based systems, and third party LAN or SAN network
technology, users will always be able to acquire and assemble the necessary sub-
systems to create future generation Beowulfs.

Ironically, not only can the specific component types change over time, Be-
owulf customers benefit from this technology dynamic. Again ironically, the most
rapid advances in processor, memory, and networking technologies first impact
the lowest end systems; those used within Beowulf clusters. The reasons are first
that the biggest market opportunity is in the mass market arena (i.e. PCs) so
the new devices are first incorporated in them, and second that large MPP class
systems require considerable development time to integrate the new devices prior
to delivering the completed parallel systems to their customers. In contrast, as
soon as a new processor is packaged on a PC motherboard, it is ready to be
installed in a Beowulf 24 hours later. Frequently, new Beowulfs have the hottest
microprocessors available. This trend is likely to continue with the near term
release of the Compaq DEC EV-6 and the AMD K-7, both of which will deliver
more than 1 Gflops peak performance. However, more than processor perfor-
mance, Beowulfs require advances in communication interconnect technology.
For a majority of Beowulf-class systems, Fast-Ethernet at 100 Mbps has been
tolerable and cost less than 25% of the total system price. For those applications
sensitive to network characteristics, Myrianet has provided order of magnitude
advantage in bandwidth and latency, but at an effective cost of about 50% of
the total system price. At the same time, large system switches at acceptable
per port price are enabling multi-hundred node configurations to be assembled.
New techniques based on zero-copy methods such as VIA will greatly reduce
software overhead in the next year. The new PCI bus will reduce the effect of
this interface as a bottleneck. These trends in communications will match the
advances in processor performance to retain if not improve the relative balance
of overall system properties.

The flexibility permits custom system configurations on site by users. This
just-in-place configuration capability allows structures of PCs to be organized
such that the resulting system topology conforms to the data flow paths of the
anticipated workload. Thus, Beowulf-class technology provides the means to es-
tablish semi-custom systems to meet particular requirements. Furthermore, such
configurations can be altered at the site by local personnel to adapt to changing
requirements or to incorporate technology upgrades. This evolvability provides
a dynamic capability that extends lifetime and utility of Beowulfs and optimizes
their applicability to user-specific workloads.

Beowulf-class systems leverage the community investment in open source
software including Linux and the Gnu tools. Many experts around the world have
contributed to this large and robust sophisticated software environment. Equally
important, many users have provided a continued stream of feedback that has
driven the maturing and debugging of the package. The result is that a very
low cost highly capable environment is being employed by Beowulf. Although



82 Thomas Sterling and Daniel Savarese

a small detail, the cost of Linux for a cluster system does not increase with
the number of nodes comprising the system as would be the case with at least
one widely distributed commercial operating system. The use of PVM and MPI
have provided a means of creating highly portable applications software that
will also run on many vendor parallel platforms. Indeed, a role of Beowulfs
has been as development platforms in preparation to run on larger commercial
systems. Amusingly, in some cases at least, the computational scientists have
never bothered to make the transition to the larger, often contended, commercial
systems.

3 Disadvantages: Limitations in Application and
Usability

Beowulf-class systems are the third wave to performing high speed computa-
tions. The first wave is very high speed processors or a few such processors
such as would be found in a CRI vector computer or an IBM mainframe. The
second wave is the massively parallel systems incorporating tightly coupled mi-
croprocessors with custom high bi-section bandwidth internal networks and low
overhead hardware mechanisms for at least some aspects of resource manage-
ment (such as cache coherence). Beowulf-class systems do not fall into either of
these categories and where applications demand the particular strengths of these
first two genre of high-end computers, Beowulfs often may not perform well. Be-
owulfs, along with clusters of workstations, and other forms of loosely coupled
systems provide a third path to high end computing that delivers very high
price-performance for those problems that do not require (and should not pay
for) the tightly coupled support of the first two system families. A disadvantage
of Beowulf-class systems is that they are not as general as some vendor offerings.

The software environments currently available on most Beowulfs are primi-
tive compared to the environments provided by vendors. While the basic node
operating system, usually Linux, is very powerful and complete, and the equal
of any commercial node operating system (perhaps better in some cases), the
set of tools provided to manage the ensemble of nodes is usually superior for
the vendor supplied systems. For some user environments, this is very impor-
tant. While advances are being made and experimental tools are being tested at
a number of organizations, a common framework has as yet not been adopted
by the community as a whole. New users of Beowulf-class systems will not find
readily available the wide array of useful services that exist, for example, on an
SGI SMP.

The customer-engineer approach to maintenance of vendor supplied hard-
ware and software at the customer site is not available to Beowulf users. The
turnkey hands-off support that is provided with, for example, the IBM SP-2 is
not the normal service that Beowulf sites can anticipate. When something goes
wrong, there isn’t a single one-stop-shopping 1-800 number that the user can call



A Coming of Age for Beowulf-Class Computing 83

to solve the problem. There are many environments where this is not acceptable.
As one colleague, somewhat exasperated by what he called the Beowulf Hype
Factory put it: there is a price on low-cost. Beowulf is not suitable for all com-
puting environments. Only those organizations with some in-house expertise,
like systems administrators, can expect to employ Beowulfs effectively.

Floor space and packaging is an unfortunate problem with Beowulf-class sys-
tems. The two approaches to packaging Beowulfs is to develop some custom
approach which can package motherboards tightly or to use the mass market
per node tower boxes with power supplies that are incredibly inexpensive and
robust. Unfortunately, the low cost attractiveness of the mass market packaging
takes up a premium in floor space. Even with strong/tall utility shelves, the
space required can be as much as twice that of custom packaging. For some ma-
chine rooms, such waste is unacceptable, especially as Beowulfs expand in scale
through a number of hundreds of nodes. While custom packaging experiences
have demonstrated significant improvements for space utilization, the cost of
such packaging could be as much as half the cost of the system.

4 Comparative Economics

Controversy surrounds the economics of Beowulf-class systems. Users and gen-
eral proponents simply quantify the costs of the component ensembles, some-
times with necessary physical packaging. Detractors identify a number of support
services expected of conventional vendor provided systems that are not directly
available to Beowulf users. The contention is that the cost of providing such sup-
port would eliminate or at least severely narrow the putative cost gap. There is
merit to both arguments but it is based on a contradiction of assumptions. Here,
the principle issues are examined that determine the real economics of Beowulf
clusters deployment.

4.1 Hardware Costs

In fact, it is hard to say exactly what the difference in hardware costs is between
Beowulfs and vendor systems. For Beowulfs to a first order, it can be considered
the combined purchase costs of the subsystems comprising the total system en-
semble. But this will vary among systems, even of equivalent form, dependent
on negotiated purchase price between procuring institute and supplying distrib-
utor. It will also vary with time, even with short spans, as the market moves
aggressively forward in the presence of constant change in product offerings and
in the context of mass market competitive pricing.

It is harder to determine the actual cost of the vendor offerings. The vendors
correctly assert that their hardware prices include hidden support services and
delivered base level software. However, there are also additional costs for annual



84 Thomas Sterling and Daniel Savarese

maintenance contracts and unbundled software. Finally, the list prices are often
substantially higher than the final negotiated price based on various discounts
that are applied to win the sale.

The third issue is that the comparison of hardware costs relates systems that
are not actually equivalent. Often the processors are not the same. And almost
always, the Beowulf networks are lower in bandwidth and higher in latency than
the more tightly coupled vendor systems. Beowulf comparisons based on peak
performance to purchase price are therefore a distortion. Routinely factors of
10 to 40 are reported on a per node basis of peak performance to procurement
cost. It is not to be assumed that all Beowulf nodes are necessarily lower in per-
formance than vendor provided systems. Some recent Beowulfs are employing
Compaq DEC Alpha microprocessors packaged for the lower-end market. These
have the highest peak performance of any microprocessors. The EV-6 and AMD
K7 are likely to continue the availability of high performance micros to Beowulf
ensembles. But the networks are routinely of lower capability. It would be inter-
esting to build a comparative table based on bi-section bandwidth versus system
cost and see if the order of magnitude difference between vendor systems and
Beowulf systems for comparable nodes would be retained; probably not. While
as not severe a gap, memory capacities are also not always equivalent. Finally,
I/0 bandwidth is another area in which some vendor systems significantly ex-
ceed comparable Beowulf systems.

The first conclusion must be that just from a hardware perspective, compar-
isons are difficult to make. The systems are rarely comparable against various
metrics even if the number of nodes between the two is the same. The second
conclusion is that as always, the real cost advantage is on a per application
basis. This varies dramatically in a number of dimensions. Memory capacity re-
quirements can vary by three orders of magnitude across applications using the
same level of performance. Inter-node communication bandwidth and latency
requirements can also vary by three orders of magnitude or more across applica-
tions for the same scale of system. Some applications are embarrassingly parallel
with essentially no data sharing and intra-program synchronization points. Some
have restricted synchronization and partitioned data and task sets that for suf-
ficient granularity can permit efficient execution in spite of limited communica-
tions framework. These two classes of applications demonstrate excellent price-
performance, even when the communication costs are much higher for Beowulfs
than some commercial machines. The communication demands if small enough
allow Beowulfs to operate with excellent price-performance even with relatively
weak system area network hardware and sometimes superior raw performance.
The third conclusion is that there are some highly sequential applications that
will not yield significantly better price-performance for Beowulfs than vendor
systems, and sometimes worse, due to the high communications demands.



A Coming of Age for Beowulf-Class Computing 85

4.2 System Management Costs

The cost of Beowulf systems does not reflect the cost of system support and
maintenance. This is true. But the impact of this varies dramatically depending
on the environment in which a new Beowulf is deployed. At a new site having
no support for PCs or other computing facilities, additional full time support
personnel have to be hired to manage the software and perform routine hard-
ware maintenance. Under these circumstances, the cost should be attributed to
that of the Beowulf. But in many other instances, Beowulfs are deployed in en-
vironments that are MPP /Unix/PC capable. For example, any site that already
manages a farm of PCs already has in place the necessary talent to manage
the hardware resources of a Beowulf including the standard maintenance. It is a
point of confusion that there is no vendor maintenance support. All of the hard-
ware components come with warrantees. Beowulf users do the same thing with
broken Beowulf nodes that any owner of a PC does; ship it back to the supplier.
The same is true with the hardware maintenance of the system area networks.
The software management costs must also be considered. At many Beowulf sites,
there is already a strong presence of Unix operating system workstations and
even high-end computers with Unix-like software environments. With the prolif-
eration of Linux, many more sites already have staff who have direct familiarity
with Linux installation procedures. Beowulf-system operation under these cir-
cumstances leverages these existing talent resources. Often, the user and the
systems administration are the same person. The additional overhead in doing
it this way is relatively small after an initial installation period of a few days.

The primary discrepancy in viewpoint about the economics of Beowulf clus-
ters is the expectation of system services. Beowulfs do not require the machine
room mentality typical of vendor provided large systems because they are often
used by one or a few people. The complex management infrastructure required of
an expensive heavily shared MPP is simply unnecessary for many Beowulf instal-
lations. Because of their very low cost, they can be owned by a small organization
and treated as a local resource with informal management; no accounting, no
job control, not even automated partitioning. In some cases, Beowulfs are orga-
nized as single application systems. These run the same program continuously
on newly supplied data sets; the application is the system. Some applications
run for days or weeks without interruption. Again, due to their low cost, they
can be dedicated to single applications of this sort.

Then it is clear that both sides of the debate about the economics of clusters
versus vendor offerings are valid depending on the expectations and underlying
assumptions. What has to be understood by the conventional computing com-
munity is that Beowulfs do open up an alternative approach for accomplishing
some of the important computation that had been performed previously solely
on commercial systems. And that furthermore, there is additional work being
done that would not have been done at all. Cost advantage depends on the
nature of the problem and the environment in which it is being performed.



86 Thomas Sterling and Daniel Savarese
5 Trading Peak Performance for Total Work

Beowulf-class systems can be dedicated to the execution of a single application
for a long period of time because of their low cost. This opens a new important
approach to accomplishing large scale computation at exceptional cost. But it
also puts some additional responsibilities on the support software.

Historically, large applications required large systems with high peak perfor-
mance. Such systems are routinely expensive and shared among many users. At
any one time, a user is allocated some part of the machine (assuming a multi-
head system that can be simultaneously divided among multiple users) for a
limited amount of time. At some later time, the same user may be allocated
the next installment of time and resources for the same problem. The average
amount of work accomplished by this shared system on behalf of the user’s ap-
plication is the product of the allotted resources and time divided by the duty
cycle (how frequently the user gets on the machine). This can often be surpris-
ingly low while the cost of these premium resources can be very high.

It is a myth that large problems demand large systems. It is true that some
classes of algorithms require tightly coupled systems with high bi-section band-
width as discussed earlier. But for problems that are latency tolerant, a time
space trade-off is possible. Large problems demand large work where work is the
time-space product. A few processors working for a long time can accomplish
the same amount of work as a large number of processors working for a short
time. Beowulf-class systems provide an acceptable medium for achieving this
trade-off between time and resources. A moderate scale Beowulf of 32 Compaq
DEC Alpha EV-6 processors in one week would perform the same work as a
thousand processor T3E in a day (actually a little less than a day) with a cost
difference of approximately a factor of a hundred.

But the additional problem of memory capacity of the two systems implies
that the T3E would store far more data during the execution. And for some
problems, this is particularly important. However, studies have shown a wide
variance in memory requirements for applications of equivalent performance.
While some problems require memory in bytes comparable to performance in
flops (a 100 Gflops computation requires 100 Gbyte memory), the majority of
science and engineering codes require less than one percent of this capacity. For
these problems, the 32 EV-6 machine would have sufficient main memory to sup-
port the storage of the required data set. But for those problems that demand
the larger memory capacities, a second opportunity exists. Because these appli-
cations are constructed using latency tolerant methods, the use of out-of-core
computing techniques can address them memory discrepancy challenge. Out-of-
core techniques allow secondary storage to replace part of main memory, using
memory as a kind of cache and windowing across the larger data set held on
disk. For some problems and algorithm types, swapping data between disk and
memory can be done effectively in spite of the long delays to disk. As a result,



A Coming of Age for Beowulf-Class Computing 87

we find that large scale science and engineering computations can be enabled by
moderate scale low cost Beowulfs.

One problem does occur as the duration of computation is extended. Al-
though reliability for Beowulf class systems is very high, nonetheless, longer
computations incur increased probability that they will fail to complete cor-
rectly. The common solution for this is checkpoint-restarting. Other reasons for
checkpointing are important beyond the possibility of a hardware failure. Some-
times even a Beowulf needs to be shared among a couple of users. It is nice to
be able to migrate a running program to a modified configuration. The means
is the same as that for checkpointing; save the data set and have the means for
reallocating the intermediate data and control-state to a different configuration.
Currently, all checkpointing is done by the applications programmers with little
help from the system software support tools. Over time this will need to change.

6 An Agenda for Beowulf

Future Beowulf implementations will require a richer set of software tools to
improve usability, portability, reliability, and reconfigurability. Some of the key
requirements are discussed below. In each case, there are example and experimen-
tal tools that have been implemented at various institutions. Where appropriate,
these need to be generalized, packaged, and distributed in a way that will make
them generally useful to the Beowulf community.

6.1 Resource Discovery

Beowulf systems currently lack a standard means of determining the identities
of their constituent elements and possible sub-elements for the purposes of ex-
ecuting tasks, reconfiguring the system, and supporting higher level functions
such as system monitoring and scheduling. A telling example of why such a
mechanism is needed is the way current system software is forced to provide
this functionality for itself. Parallel programming libraries such as PVM and
MPI require the definition of host files that are located in different parts of the
file system. Schedulers such as PBS require similar custom support. Beyond not
being able to readily identifying the nodes in a system, it is not possible for
arbitrary processes to determine if a user may gain access to a given subset of
the system or what system resources are available. Basic functionality, such as
determining what nodes are part of the system, what nodes a user can use, and
what sub-partitions of the system exist can provide a common foundation for
general system software for Beowulf systems.

6.2 Resource Allocation/Assignment

Organizations that rely on commodity clustered computing as the backbone of
their computational science research programs often share Beowulf clusters be-
tween multiple research groups. They require the ability to dynamically reconfig-
ure access to portions of a cluster based on user requirements. Batch scheduling



88 Thomas Sterling and Daniel Savarese

and job queues do not adequately meet the resource management needs of these
organizations. They want to be able to arbitrarily allocate sets of resources to
sets of users for periods of time, not only to run applications, but to perform
development work and perform general experimentation. Current generation Be-
owulf system software does not meet these requirements. The ability to create
arbitrary named groups and subgroups of resources, perhaps managed through
an LDAP server, with associated property lists will add a new level of flexibility
in the management of Beowulf clusters and provide underlying infrastructure for
system software such as schedulers.

6.3 System Status Monitoring

Closely tied to both resource allocation and discovery is system status monitor-
ing. A function as simple as tracking what nodes are usable and unusable in a
cluster is integral to the aforementioned tasks. Although many monitoring tools
have been independently developed, it is not currently possible to export the
information provided by these tools in a generally usable fashion to other pro-
grams that may wish to make use of such data. Either a common set of system
information gathering APIs or a common protocol for speaking to monitoring
daemons will eventually have to emerge. The purpose of such an approach is
twofold. The first is to allow future system software to leverage the valuable
information provided by system monitors. And the second is to allow the inter-
changeability of system monitoring software in the same way it is possible to
replace a mail or ftp server from one vendor with that of another.

6.4 Remote Dynamic Process Instantiation

Beowulf clusters can only perform useful work by executing processes on their
component nodes. This essential function is currently served by one of the most
inefficient possible mechanisms: rshell. A fundamental problem for large Beowulf
clusters is that rshell does not scale well due to its use of reserved ports. The
number of processes that can be started using rshell from a single node is limited
to the number of reserved ports available to the command, which in the best
case is 512. Not only does rshell not scale to larger systems, but it requires the
persistent establishment of one or two TCP connections depending on whether
or not standard error is required. Most PVM and MPI programs do not require
this and would prefer to instantiate processes on a remote node in a fire and
forget manner. In addition, some system software is more logically designed
using something akin to an rfork() mechanism. We are already seeing signs of
improvement in this area as the Beowulf community begins to experiment with
alternative remote execution approaches, including an rfork(), currently under
development at NASA Goddard.



	Introduction
	Advantages: Impact Beyond Dollars
	Disadvantages: Limitations in Application and Usability
	Comparative Economics
	Hardware Costs
	System Management Costs

	Trading Peak Performance for Total Work
	An Agenda for Beowulf
	Resource Discovery
	Resource Allocation/Assignment
	System Status Monitoring
	Remote Dynamic Process Instantiation


