
Scheduling Arbitrary Task Graphs

on LogP Machines

Cristina Boeres, Aline Nascimento?, and Vinod E.F. Rebello

Instituto de Computação, Universidade Federal Fluminense (UFF)
Niterói, RJ, Brazil

{boeres,aline,vefr}@pgcc.uff.br

Abstract. While the problem of scheduling weighted arbitrary DAGs
under the delay model has been studied extensively, comparatively little
work exists for this problem under a more realistic model such as LogP .
This paper investigates the similarities and differences between task clus-
tering algorithms for the delay and LogP models. The principles behind
three new algorithms for tackling the scheduling problem under the LogP
model are described. The quality of the schedules produced by the al-
gorithms are compared with good delay model-based algorithms and a
previously existing LogP strategy.

1 Introduction

Since tackling the scheduling problem in an efficient manner is imperative for
achieving high performance from message-passing parallel computer systems,
it continues to be a focus of great attention in the research community. Until
recently, the standard communication model in the scheduling community has
been the delay model , where the sole architectural parameter for the commu-
nication system is the latency or delay, i.e. the transit time for each message
word [12]. However, the dominant cost of communication in today’s architec-
tures is that of crossing the network boundary. This is a cost which cannot be
modelled as a latency and therefore new classes of scheduling heuristics are re-
quired to generate efficient schedules for realistic abstractions of today’s parallel
computers [3]. This has motivated the design of new parallel programming mod-
els, e.g. LogP [4]. The LogP model is an MIMD message-passing model with
four architectural parameters: the latency, L; the overhead, o, the CPU penalty
incurred by a communication action; the gap, g, a lower bound on the interval
between two successive communications; and the number of processors, P .

In this paper, the term clustering algorithm refers specifically to the class of
algorithms which initially consider each task as a cluster and then merge clusters
(tasks) if the completion time can be reduced. A later stage allocates the clusters
to processors to generate the final schedule. A number of clustering algorithms
? The author was supported by a postgraduate scholarship from Fundação de Am-

paro à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and CAPES, Ministério de
Educação e Cultura (MEC), Brazil.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 340–349, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Scheduling Arbitrary Task Graphs on LogP Machines 341

exist for scheduling tasks under the delay model, well known examples include:
DSC [13]; PY [12]; and an algorithm by Palis et al. [11] which we denote by
PLW . It has been proved that these algorithms generate schedules within at
least a factor of two of the optimal for arbitrary DAGs.

In comparison, identifying scheduling strategies that consider LogP -type
characteristics is difficult. Only recently have such algorithms appeared in the
literature. To the best of our knowledge, all of these algorithms are limited to spe-
cific types of DAGs or restricted LogP models. Kort and Trystram [8] presented
an optimal polynomial algorithm for scheduling fork graphs on an unbounded
number of processors considering g = o and equal sized messages. Zimmerman
et al. [14] extended the work of linear clustering [7, 13] to propose a clustering
algorithm which produces optimal k-linear schedules for tree-like graphs when
o ≥ g. Boeres and Rebello [2, 3] proposed a task replication strategy for schedul-
ing arbitrary UET-UDC (unit execution tasks, unit data communication) DAGs
on machines with a bounded number of processors under both the LogP (also
when o ≥ g) and BSP models.

The purpose of this work is to study, from first principles, the problem of
scheduling arbitrary task graphs under the LogP model using task replication-
based clustering algorithms, by generalising the principles and assumptions used
by existing delay model-based algorithms. The following section introduces the
terminology and definitions used throughout the paper and outlines the influence
of the LogP parameters on the scheduling problem. The issues that need to be
addressed in the design of a clustering-based scheduling algorithm for the LogP
model are discussed in Sect. 3. In Sect. 4, three replication-based task clustering
algorithms are briefly presented for scheduling general arbitrary weighted DAGs
on LogP machines (although an unbounded number of processors is assumed).
Section 5 compares the makespans produced by the new algorithms against other
well known clustering algorithms under both delay and LogP model conditions.
Section 6 draws some conclusions and outlines our future work.

2 Scheduling under the Delay and LogP Models

A parallel application is often represented by a directed acyclic graph or DAG
G = (V, E, ε, ω), where: the set of vertices, V , represent tasks; E the precedence
relation among them; ε(vi) is the execution cost of task vi ∈ V ; and ω(vi, vj) is
the weight associated to the edge (vi, vj) ∈ E representing the amount of data
units transmitted from task vi to vj . Two dependent tasks (i.e. tasks vi and vj

for which ∃(vi, vj) ∈ E) are often grouped together to avoid incurring the cost
of communicating. If a task has a successor in more than one cluster it may be
advantageous to duplicate the ancestor task and place a copy of it in each of the
clusters containing the successor. In any case, with or without task duplication,
the task clustering problem is NP-hard [12].

This paper associates independent overhead parameters with the sending and
receiving of a message, denoted by λs and λr , respectively (i.e. o = λs+λr

2 ). For
the duration of each overhead the processor is effectively blocked unable to exe-



342 Cristina Boeres, Aline Nascimento, and Vinod E.F. Rebello

cute other tasks in V or even to send or receive other messages. Consequently,
any scheduling algorithm must, in some sense, view these sending and receiving
overheads also as “tasks” to be executed by processors. The rate of executing
communication events may be further slowed due to the network (or the network
interface) capacity modeled by the gap g. The execution order of the overhead
tasks is important since two or more messages can no longer be sent simulta-
neously as in the delay model. Throughout this paper, the term delay model
conditions is used to refer to situation where the parameters λs, λr and g are
zero and the term LogP conditions used when otherwise.

In [12], the earliest start time of a task vi, e(vi), is defined as a lower bound
on the optimal or earliest possible time that task vi can start executing. As
such it is not always possible to schedule task vi at this time [12]. In order to
avoid confusion, we introduce the term es(vi), the earliest schedule time, to be
the earliest time that task vi can start executing on any processor. Thus, the
completion time or makespan of the optimal schedule for G is max

vi∈V
{es(vi)+ε(vi)}.

Many scheduling heuristics prioritise each task in the graph according to some
function of the perceived computation and communication costs along all paths
to that task. The costliest path to a task vi is often referred to as the critical
path of task vi. Possible candidate functions include both e(vi) and es(vi). One
must be aware that the critical path of a task vi may differ depending on the
cost function chosen. Scheduling heuristics which use some form of critical path
analysis need to define how to interpret and incorporate the LogP parameters
when calculating the costs of paths in the DAG. One of the difficulties being
that these are communication costs paid for by computation time.

The LogP model is not an extension of the delay model but rather a generali-
sation, i.e. the delay model is a specific instance of the LogP one. Therefore, it is
imperative to understand the underlying principles and identify the assumptions
which can be adopted in LogP clustering algorithms.

3 Cluster-Based Scheduling for the LogP Model

Clustering algorithms typically employ two stages: the first determines which
tasks should be included and their order within a cluster; the second, identifies
the clusters required to implement the input DAG G mapping each to a pro-
cessor. These algorithms aim to obtain an optimal schedule for a DAG G by
attempting to construct a cluster C(vi) for each task vi so that vi starts exe-
cuting at the earliest time possible (i.e. es(vi)). In algorithms which exploit task
duplication to achieve better makespans, C(vi) ∀vi ∈ V will contain the owner
task vi and, determined by some cost function, copies of some of its ancestor
tasks.

The iterative nature of creating a cluster can be generalised to the form
shown in Algorithm 1. In lines 2 and 5, the list of candidate tasks (lcands) for
inclusion into a cluster consists of those tasks which become immediate ancestors
of the cluster, i.e. iancs(C(vi)) = {u | (u, t) ∈ E ∧ u 6∈ C(vi) ∧ t ∈ C(vi)}.



Scheduling Arbitrary Task Graphs on LogP Machines 343

Algorithm 1 : mechanics-of-clustering (C(vi));

1 C(vi) = {vi}; /* Algorithm to create a cluster for task vi */

2 lcands = iancs(C(vi));
3 while progress condition do
4 let cand ∈ lcands; C(vi) = C(vi) ∪ {cand};
5 lcands = iancs(C(vi));

The goodness of a clustering algorithm (and the quality of the results) depend
on four crucial design issues: (i) calculating the makespan; (ii) the ordering of
tasks within the cluster; (iii) the progress condition (line 3); and (iv) the choice
of candidate task for inclusion into the cluster (line 4).

The makespan of a cluster C(vi) can be determined by the costliest path to
task vi (critical path). Effectively, there are only two types of path: the path due
to computation in the cluster; and the paths formed by the immediate ancestor
tasks of the cluster. The cluster path cost , m(C(vi)), is the earliest time that
vi can start due to cluster task computation, including receive overheads but
ignoring any idle periods where a processor would have to wait for the data sent
by tasks ∈ iancs(C(vi)) to arrive at C(vi). The order in which the task are
executed in the cluster has a significant influence on this cost (finding the best
ordering is a NP-complete problem [6]). The ancestor path cost , c(u, t, vi) is the
earliest time that vi can start due solely to the path from task u, an immediate
ancestor of task t ∈ C(vi), to vi. The ancestor path with the largest cost is
known as the critical ancestor path

The progress condition determines when the cluster is complete. Commonly
this condition is often derived from a comparison of the makespan before and af-
ter the inclusion of the chosen candidate task. This can be simplified to compare
the two critical paths if an appropriate cost function is used. A candidate task is
added to the cluster only if its inclusion does not increase the makespan. Other-
wise, the creation process stops since the algorithm assumes that the makespan
can be reduced no further, i.e. that the makespan is a monotonically decreas-
ing function, up to its global minima, with respect to the inserted tasks. This
assumption is based on the fourth issue – every choice of candidate has to be
the best one. The list lcands contains the best candidate since the inclusion of
a non-immediate ancestor can only increase the makespan of the cluster. But
which of the tasks is the best choice?

Under the delay model, the inclusion of a task has two effects: it will increase
the cluster path cost at the expense of removing the critical ancestor path; and
introduce a new ancestor path for each immediate ancestor of the inserted task
not already in the cluster. Because the cluster path cost increases monotonically
under this model, the progression condition can be simplified to a combination
of the following two conditions, the algorithm is allowed to progress while: the
cluster path is not the critical path (Non-Critical Path Detection (NCPD));
and inserting the chosen task does not increase the makespan (Worth-While
Detection (WWD)). The makespan of a cluster can only be reduced if the cost



344 Cristina Boeres, Aline Nascimento, and Vinod E.F. Rebello

of the critical path is reduced. If the critical ancestor path is the critical path
of the cluster, the critical ancestor task u is the only candidate whose inclusion
into the cluster has the potential to diminish the makespan. While selecting
this task is on the whole a good choice, it is not always the best. The critical
path cost could increase the makespan sufficiently to cause the algorithm to stop
prematurely, at a local optimum for the makespan, because the inserted task u
has a high communication cost with one of its ancestor (a cost not reflected by
the chosen cost function value for u).

The effects of including a candidate task under LogP conditions are similar
except that the cluster path cost may not necessarily increase. Communication
overheads need to be treated like tasks since they are costs incurred on a pro-
cessor even though they are associated with ancestor paths. This means that
an immediate ancestor path can affect the cluster path cost and the cost of the
other ancestor paths of the cluster. Not only can the inclusion of a non-critical
ancestor path task reduce the makespan but improvements to the makespan
may be achieved by progressing beyond the NCPD point through the removal
of the receive overheads incurred in the cluster. In addition to dependencies be-
tween program tasks, the problem of ordering tasks within a cluster now has to
address the dependencies of these overhead “tasks” to their program tasks and
their network restrictions (i.e. the effects of parameter g).

All in all, the quality of makespans produced by a clustering algorithm de-
pends on the quality of the implementation of each of the above design issues.
These issue are not independent, but interrelated by the multiple role played by
the cost function. How paths are costed is important since the same cost function
is often used: to calculate the makespan and thus affecting the progress condi-
tion; and to order tasks within a cluster. Furthermore, the cost function may also
be the basis for choosing a candidate task. If a design issue cannot be addressed
perfectly, the implementation of the other issues could try to compensate for it.
For example, if the best candidate is not always chosen, the makespan will not
be a monotonically decreasing function. Therefore, progress condition must be
designed in such way that will allow the algorithm to escape local minima but
not to execute unnecessarily creating a poor cluster.

3.1 Adopted Properties for LogP Scheduling

In order to schedule tasks under a LogP -type model, we propose that clustering
algorithms apply some scheduling restrictions with regard to the properties of
clusters. In the first restriction, only the owner task of a cluster may send data to
a task in another cluster. This restriction does not adversely affect the makespan
since, by definition of es(vi), an owner task will not start execution later than any
copy of itself. Also, if a non-owner task t in cluster C(vi) were to communicate
with a task in another cluster, the processor to which C(vi) is allocated would
incur a send overhead after the execution of t which in turn might force the
owner vi to start at a time later than its earliest possible.

The second restriction specifies that each cluster can have only one successor.
If two or more clusters, or two or more tasks in the same cluster, share the same



Scheduling Arbitrary Task Graphs on LogP Machines 345

ancestor cluster then a unique copy of the ancestor cluster is assigned to each
successor irrespective of whether or not the data being sent to each successor is
identical. This removes the need to incur the multiple send gap costs and send
overheads which may unnecessarily delay the execution of successor clusters.

The third restriction, currently a temporary one, assumes that receive over-
heads are executed immediately before the receiving task even though they have
to be scheduled at intervals of atleast g. Future work will investigate the merits of
treating these overheads just like program tasks and allowing them to be sched-
uled in any valid order within the cluster. The fourth restriction is related to
the third and to the behaviour of the network interface. This restriction assumes
that the receive overheads, scheduled before their receiving task, are ordered
by the arrival time of their respective messages. It is assumed that the network
interface implements a queue to receive messages.

These restrictions are new in the sense that they do not need to be applied by
scheduling strategies which are used exclusively under delay model conditions.
The purpose of these restrictions is to aid in the minimisation of the makespan,
though they do incur the penalty of increasing the number of clusters required
and thus the number of processors needed. Where the number of processors
used is viewed as a reflection on the cost of implementing the schedule, post-
pass optimisation can be applied in a following stage of the algorithm to relax
the restrictions and remove clusters which become redundant (i.e. clusters whose
removal will not increase the makespan).

4 Three New Scheduling Algorithms

This section discusses the design of three clustering algorithms, focusing on the
cluster creation stage. These algorithms are fundamentally identical but differ
in the manner they address the design issues discussed in Sect. 3. The second
stages of these algorithms, which are identical, determine which of the generated
clusters are needed to implement the schedule.

Unlike traditional delay model approaches which tend to use the earliest start
time e(vi) as the basis for the cost function, the LogP algorithms presented here
use the earliest schedule time es(vi). Using es(vi) should give better quality
results since this cost represents what is achievable (remember that e(vi) is a
lower bound and that cost is an important factor in the mechanics of cluster
algorithms). On the other hand, since finding es(vi) is much more difficult, these
algorithms in fact create the cluster C(vi) to find a good approximation, s(vi),
to es(vi) which is then used to create the clusters of task vi’s successors. s(vi),
therefore, is the scheduled time or start time of task vi in its own cluster C(vi).

In the first algorithm, BNR2 [10], tasks are not ordered in non-decreasing
order of their earliest start time (as in most delay model approaches) nor by their
scheduled time but rather in an order determined by the sequence in which tasks
were included in the cluster and the position of their immediate successor task
at the time of their inclusion. The ancestor path cost , c(u, t, vi), for immediate
ancestor task u of task t in C(vi) is the sum of: the execution cost of C(u)



346 Cristina Boeres, Aline Nascimento, and Vinod E.F. Rebello

(s(u) + ε(u)); one sending overhead (λs) (due to the second LogP scheduling
restriction); the communication delay (τ ×ω(u, t)); the receiving overhead (λr);
and the computation time of tasks t to vi, which includes receive overheads of
edges arriving after the edge (u, t) and takes into account g and restrictions 3
and 4. The critical ancestor task is the task u ∈ iancs(C(vi)) for which c(u, t, vi)
is the largest.

If critical ancestor path cost, c(u, t, vi), is greater than the cluster path
cost then task u becomes the chosen candidate for inclusion into cluster C(vi)
(the NCPD point of the progress condition). Before committing u to C(vi),
BNR2 compares this critical ancestor path cost with the cluster path cost of
{C(vi) ∪ {u}} (the WWD point of the progress condition). Note this detection
point does not actually check for an non-increasing makespan. This less strict
condition allows the algorithm to proceed even if the makespan increases, per-
mitting BNR2 to escape some local makespan minimas as long as the NCPD
condition holds. One drawback is that the algorithm can end up generating a
worse final makespan. A solution might be to keep a record of the best makespan
found so far [10].

The second algorithm, BNR2s, is a simplification of the previous algorithm.
Only candidates from the set of immediate ancestors of task vi are considered
for inclusion into C(vi). But the inclusion of an ancestor task u implies that all
tasks in C(u) should be included in C(vi). Also, the immediate ancestor clusters
C(w) of C(u) become immediate ancestors of cluster C(vi) unless owner task w is
already in C(vi). The mechanics of the algorithm are almost the same as BNR2:
the candidate chosen is still the task on the critical ancestor path; however, the
progress condition compares the two makespans (before and after the candidate’s
inclusion); and the tasks in the cluster are ordered in nondecreasing order of their
scheduled time.

The third algorithm, BNR2h, is a hybrid of the first two. As in BNR2s,
the cluster tasks are ordered in nondecreasing order of their scheduled time and
the critical ancestor path task is the chosen candidate. Initially the algorithm
behaves like BNR2s, inserting into C(vi) copies of all tasks in C(u) (u being the
first chosen immediate ancestor) and inheriting copies of the immediate ances-
tor clusters C(w) of C(u). After this cluster insertion, the algorithm’s behaviour
switches to one similar to BNR2 where the cluster is now grown a task at a
time. Note that the initial inherited ancestor tasks w are never considered as
candidates for inclusion. The main difference from BNR2h is the progress con-
dition. This algorithm is allowed to continue while the weight of the cluster
(this being the sum of the weights of the program tasks in the cluster) is less
than both its makespan and best makespan found so far. This is a monotoni-
cally increasing lower bound on the makespan of C(vi). The progress condition
thus allows the algorithm to speculatively consider possible worthwhile cluster
schedules even though the makespan may increase. When the algorithm stops,
the best makespan found will be the global minima (given the tasks inserted
and ordering adopted). This is not necessarily the optimal makespan since this
depends on addressing the design issues (outlined in Sect. 3) perfectly.



Scheduling Arbitrary Task Graphs on LogP Machines 347

5 Results

The results produced by the three algorithms have been compared with the
clustering heuristics PLW and DSC under delay model conditions, and MSA
under LogP conditions using a benchmark suite of UET-UDC DAGs which
includes out-trees (Ot), in-trees (It), diamond DAGs (D) and a set of randomly
generated DAGs (Ra) as well as irregular weighted DAGs (Ir) taken from the
literature. A sample of the results are presented in the following tables, where the
number of tasks in the respective graphs is shown as a subscript. For fairness, the
value of the makespan M is the execution time for the schedule obtained from
a parallel machine simulator rather than the value calculated by the heuristics.
The number of processors required by the schedule is P . C, the number of times
the progression condition is checked, gives an idea of the cost to create the
schedule.

Although the scheduling restrictions cause the LogP strategies to appear
greedy with respect to the number of processors required, it is important to show
that the makespans produced and processors used are comparable to those of
delay model approaches under their model (Table 1). Scheduling approaches such
as DSC and PLW have already been shown to generate good results (optimal
or near-optimal) for various types of DAGs. Table 2 compares the makespans
generated for UET-UDC DAGs with those of MSA (assuming λr ≥ g).

Table 1. Results for a variety of graphs under the delay model.

DSC PLW MSA BNR2 BNR2s BNR2h
DAG τ P M P M P M P M C P M C P M C

Ir41 [7] 1 13 16 22 16 10 16 10 15 120 17 15 67 16 15 71
Ir41 2 9 21 20 22 10 18 13 17 283 12 18 68 13 17 82
Ir41 4 8 31 19 27 10 23 11 22 305 9 24 67 12 21 93
Ir41 8 3 44 19 39 5 27 10 27 381 5 30 69 9 26 98
Ra80 4 27 25 41 31 48 22 31 18 294 55 19 111 57 19 125

Ra186 4 66 22 87 19 52 19 91 14 642 117 14 225 123 14 233
It511 4 98 39 167 27 85 25 134 25 1357 48 37 510 85 28 797
Ot511 4 146 27 264 13 256 9 256 9 4096 256 9 510 256 9 510
Di400 4 27 146 165 140 37 116 31 98 4983 289 112 760 267 104 736

DSC P LW BNR2 BNR2s BNR2h
DAG P M P M P M P M P M

Ir7a [5] 2 9 3 8 3 8 3 8 3 8
Ir7b [13] 3 8 5 12 3 8 3 8.5 3 8
Ir10 [11] 3 30 4 27 3 26 4 26 4 26
Ir13 [1] 7 301 8 275 8 246 9 246 9 246
Ir18 [9] 5 550† 8 480 9 370 8 400 9 380

†[9] reports a makespan of 460 on 6 processors.

The results produced by the three cluster algorithms BNR2, BNR2s and
BNR2h are, in the majority of cases, better than those of DSC, PLW and
MSA under their respective models. BNR2s on the whole produces results only
slightly worse than the other two in spite of its simplicitic approach (which is
reflected by its C value). Under the delay model, we also analysed the effect of
task ordering on the makespans produced by BNR2s and BNR2h. Only in two
cases for BNR2h, does optimising the order improve the makespan (becoming
25 for It511 and 370 for Ir18). The ease by which BNR2s and BNR2h find



348 Cristina Boeres, Aline Nascimento, and Vinod E.F. Rebello

Table 2. Results considering various LogP parameters values.

MSA BNR2 BNR2s BNR2h MSA BNR2 BNR2s BNR2h
DAG λs λr τ Prs M Prs M C Prs M C Prs M C λs λr τ Prs M Prs M C Prs M C Prs M C

Ir41 1 1 1 8 30 34 24 225 14 23 68 15 23 114 2 1 8 6 37 11 32 396 4 32 69 4 32 110
Ir41 1 1 2 10 32 18 24 313 14 25 67 14 25 122 2 2 1 6 35 21 32 267 11 30 67 11 30 142
Ir41 1 1 4 3 33 12 27 332 9 29 68 11 28 116 2 2 2 6 36 15 32 300 11 31 67 9 31 132
Ir41 1 1 8 5 36 11 31 394 4 32 69 5 31 112 4 0 1 6 27 14 23 354 12 25 68 15 24 86
Ir41 2 0 1 10 25 31 19 276 14 21 69 14 21 86 4 0 2 6 28 16 24 344 9 27 69 15 25 97
Ir41 2 0 2 6 25 26 22 305 14 24 67 13 22 93 4 0 4 6 30 14 27 381 5 30 69 7 29 98
Ir41 2 0 4 6 26 16 24 344 9 27 68 15 25 97 4 0 8 6 34 10 31 374 3 33 69 4 33 108
Ir41 2 0 8 6 30 10 29 368 4 31 69 5 31 104 4 1 1 6 34 12 27 332 9 29 68 11 28 116
Ir41 2 1 1 10 33 18 24 313 14 25 67 14 25 122 4 1 2 6 34 13 29 335 8 31 69 6 28 119
Ir41 2 1 2 10 34 15 25 326 11 27 67 14 27 135 4 1 4 5 35 12 30 384 4 32 69 5 30 110
Ir41 2 1 4 6 34 13 29 335 8 31 69 6 28 119 4 4 1 1 41 15 49 316 2 40 69 2 40 113

MSA BNR2 BNR2s BNR2h
DAG λs λr τ P M P M C P M C P M C

Ra80 4 2 2 25 56 146 46 238 150 60 121 113 60 329
Ra186 4 2 2 78 47 158 36 660 134 38 232 102 38 416
It511 4 2 2 85 45 85 45 1545 30 58 510 64 46 1106
Ot511 4 2 2 256 9 256 9 4096 256 9 510 256 9 510

optimal schedules for out-trees is reflected by closeness of C to the number of
tasks in the graph.

6 Conclusions and Future Work

We present three clustering algorithms for scheduling arbitrary task graphs with
arbitrary costs, under the LogP model, onto an unbounded number of proces-
sors. To the best of our knowledge, no other general LogP scheduling approach
exists in the literature. This work is not based on extending an existing delay
model algorithm to a LogP one. Instead, these algorithms were design from first
principles to gain a better understanding of the mechanics of LogP scheduling.
Fundamental differences exist between these algorithms and their nearest de-
lay model relatives (e.g. PLW ), due in part to interaction of the LogP model
parameters on the design issues and to the assumptions used to simplify the
problem under the delay model.

Based on the results obtained so far, initial versions of these algorithms com-
pare favourably against traditional clustering-based scheduling heuristics such as
DSC and PLW which are dedicated exclusively to the delay model. For UET-
UDC DAGs, all three algorithms perform surprising well compared to MSA
which exploits the benefits of bundling messages to reduce the number of over-
heads incurred. Results of further experiments using graphs with a more varied
range of granularities and connectivities are needed to complete the practical
evaluation of these algorithms.

Future work will primarily focus on studying the effects of relaxing the
scheduling restrictions and of various design issue decisions e.g. on what basis
should program and overhead tasks be ordered within a cluster [10], are there
alternative cost functions better able to choose candidate tasks?



Scheduling Arbitrary Task Graphs on LogP Machines 349

References

[1] I. Ahmad and Y-K Kwok. A new approach to scheduling parallel programs us-
ing task duplication. In K.C. Tai, editor, International Conference on Parallel
Processing, volume 2, pages 47–51, Aug 1994.

[2] C. Boeres and V. E. F. Rebello. A versatile cost modelling approach for multi-
computer task scheduling. Parallel Computing, 25(1):63–86, 1999.

[3] C. Boeres, V.E.F. Rebello, and D. Skillicorn. Static scheduling using task repli-
cation for LogP and BSP models. In D. Pritchard and J. Reeve, editors, The
Proceedings of the 4th International Euro-Par Conference on Parallel Processing
(Euro-Par’98), LNCS 1470, pages 337–346, Southampton, UK, September 1998.
Springer-Verlag.

[4] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. LogP: Towards a realistic model of parallel computation.
In Proceedings of the 4th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, San Diego, CA, May 1993.

[5] A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling
directed acyclic graphs on multiprocessors. Journal of Parallel and Distributed
Computing, 16:276–291, 1992.

[6] A. Gerasoulis and T. Yang. List scheduling with and without communication.
Parallel Computing, 19:1321–1344, 1993.

[7] S.J. Kim and J.C. Browne. A general approach to mapping of parallel computa-
tions upon multiprocessor architectures. In Proceedings of the 3rd International
Conference on Parallel Processing, pages 1–8, 1988.

[8] I. Kort and D. Trystram. Scheduling fork graphs under LogP with an unbounded
number of processors. In D. Pritchard and J. Reeve, editors, The Proceedings of
the 4th International Euro-Par Conference on Parallel Processing (Euro-Par’98),
LNCS 1470, pages 940–943, Southampton, UK, September 1998. Springer-Verlag.

[9] Y. K. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective tech-
nique for allocating tasks graphs to multiprocessors. IEEE Transactions on Par-
allel and Distributed Systems, 7(5):505–521, May 1996.

[10] A. Nascimento. Aglomeração de tarefas em arquiteturas paralelas com memória
distribúıda. Master’s thesis, Instituto de Computação, Universidade Federal Flu-
minense, Brazil, 1999. (In Portuguese).

[11] M.A. Palis, J.-C Liou, and D.S.L. Wei. Task clustering and scheduling for dis-
tributed memory parallel architectures. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(1):46–55, January 1996.

[12] C.H. Papadimitriou and M. Yannakakis. Towards an architecture-independent
analysis of parallel algorithms. SIAM J. Comput., 19:322–328, 1990.

[13] T. Yang and A. Gerasoulis. DSC: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Systems,
5(9):951–967, 1994.

[14] W. Zimmermann, M. Middendorf, and W. Lowe. On optimal k-linear scheduling of
tree-like task graph on LogP-machines. In D. Pritchard and J. Reeve, editors, The
Proceedings of the 4th International Euro-Par Conference on Parallel Processing
(Euro-Par’98), LNCS 1470, pages 328–336, Southampton, UK, September 1998.
Springer-Verlag.


	Introduction
	Scheduling under the Delay and $LogP$ Models
	Cluster-Based Scheduling for the $LogP$ Model
	Adopted Properties for $LogP$ Scheduling

	Three New Scheduling Algorithms
	Results
	Conclusions and Future Work

