Scheduling Iterative Programs onto
LogP-Machine

Welf Lowe and Wolf Zimmermann

Institut fiir Programmstrukturen und Datenorganisation, Universitat Karlsruhe,
76128 Karlsruhe, Germany,
{loewe|zimmer}@ipd. info.uni-karlsruhe.de

Abstract. Usually, scheduling algorithms are designed for task-graphs.
Task-graphs model oblivious algorithms, but not iterative algorithms
where the number of iterations is unknown (e.g. while-loops). We gen-
eralize scheduling techniques known for oblivious algorithms to iterative
algorithms. We prove bounds for the execution time of such algorithms
in terms of the optimum.

1 Introduction

The communication behavior of many data-parallel programs depends only on
the size of their inputs. If this size is known in advance, it may be exploited for
translation and optimization to improve the efficiency of the generated code [13].
In contrast to general compiling techniques using data-dependency analysis [12]
10l (5] [11], all synchronization barriers can be removed and data as well as pro-
cesses can be distributed automatically. Hence, programmers may focus on the
inherent parallelism of the problems and ignore the parameters of target ma-
chines. More specifically, programmers can use a synchronous, shared memory
programming model. Neither data alignment nor mapping of processes onto pro-
cessors is required in the source codd]. The LogP-machine [1] assumes a cost
model reflecting latency of point-to-point-communication in the network, over-
head of communication on processors themselves, and the network bandwidth.
These communication costs are modeled with parameters Latency, overhead, and
gap. The gap is the inverse bandwidth of the network per processor. In addition
to L, o, and g, parameter P describes the number of processors. The parameters
have been determined for several parallel computers [1} 2, [3] 4]. These works
confirmed all LogP-based runtime predictions.

However, among those problems that are not oblivious, we identify another
class of high practical interest: problems that iterate an oblivious program where
the number of iterations is determined at run time. We call those problem it-
eratively oblivious. The Jacobi-Iterations for solving linear equation systems or
solvers based on the method of conjugated gradients (CG-solvers), e.g., are it-
eratively oblivious. The present work shows how to compile those programs to

! Equivalent to the PRAM-machine model, see [6].

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 332-1339] 1999.
© Springer-Verlag Berlin Heidelberg 1999

Scheduling Iterative Programs onto LogP-Machine 333

LogP-architectures, how to optimize them on a specific instance of the LogP-
machine, and proves time bounds for their execution in terms of the theoretical
optimum.

The paper is organized as follows: Section 2] introduces the basic definitions.
Section [3] defines translations of iterative oblivious programs to LogP architec-
tures. Section [proves time bounds of the resulting programs.

2 Basic Definitions

2.1 Oblivious and Iterative Oblivious Programs

First, we define the relation between PRAM-programs P and task-graphs G, =
(Vi, B,) for inputs x. The basis is a PRAM-model with an arbitrary number
of processors with local memory, a global memory and a global clock. The task-
graph of a PRAM-program on input x is basically the data-flow graph w.r.t.
input z. More precisely, we partition the program on each processor into phases
with the following structure: (1) read data from global memory, (2) perform
computation without access of global memory, and (3) write data to global
memory. Each of these phases becomes a task whose weight is the execution
time of its computation. The task-graph G, has an edge (v, w) iff phase v writes
a value into the global memory that is read by w, i.e. there is data-flow from v
to w via the global memory. The execution time T’»(x) of PRAM-program P on
input z is simply the weight of the longest weighted path of G.. The work Wp ()
is the sum of all task weights. A PRAM-program P is oblivious iff G, = G, for
any two valid inputs xz and y of the same size. For simplicity we assume that
we operate only on arrays of floating point numbers and the size is measured
by the number of array elements. For oblivious programs, we write G,, for the
task-graph for inputs of size n. A PRAM-program P is iteratively oblivious iff (i)
it is oblivious, (ii) a sequential composition of iteratively oblivious programs, or
(iii) a loop over iteratively oblivious programs. We assume that the termination
condition of a loop belongs to the body of the loop and the result of its evaluation
is written into global memory. The class of iteratively oblivious programs is a
generalization of oblivious programs.

2.2 LogP-Schedules

For scheduling task-graphs to LogP-programs, we have to define when and where
computations, send-operations and receive operations have to be executed. A
LogP-schedule for a task-graph G = (V, E, 1) is a mapping s : Op(V) — 2N*N
compatible to precedence constraints defined by G and the LogP-model. (i,t) €
s(0) means that operation o is scheduled on processor P; for time ¢. The ezecution
time T'(s) is the completion time of the last task computed by s. An input task is
a task containing an input value, an output task is a task computing an output
value.

In this paper, we discuss three scheduling strategies: The naive transforma-
tion simply maps every task onto a single processor and assumes that there

334 Welf Lowe and Wolf Zimmermann

Algorithm 1

Process for task v with predecessors ui, ... ,Un, SUCCESSOTS W1, ... ,Wm,
and computation P(u1,... ,un)

(1) process P,

(2) do n times: m 1= recv; am.src := m.val;

(3) res = P(Auyy - 5 Qun);

(4) send(res, v, w1),... ,send(res, v, Wm)

(5) end

are enough processors available. Every task v is implemented by a process P,
which first receives messages from its predecessors containing the operands, then
performs its computation, and finally sends the results to its successors. The mes-
sages contain a value, their source, and their destination. Algorithm [sketches
the transformation.

A linear clustering computes a vertex-disjoint path cover of G (not necessarily
a minimal one) and maps each path onto a separate processor. It also assumes
that there are enough processors available.

The last scheduling strategy uses a layering of the task graph G, i.e. a par-
tition A of the vertices of G such that Ag = {v : idg, = 0} and A;41 = {v :
PRED, C A<; Av & A<;} where A<; = AgU---UA;, PRED, is the set of direct
predecessors of vertex v, and idg,, is the indegree of v. Brent-clustering schedules
each layer separately onto P processors. The upper bound L‘an’fg(u,v) of the
total communication costs between two vertices u and v is (L + 20 + (odg,, +
idg, — 2) x max]o, g]), cf.[13], where odg,, is the outdegree of u. We define the
notion of granularity of a task graph G which relates computation costs to com-
munication costs, for a task v it is yz,0,4(v) = uegl}%%Du Tu/uerlrylg%(m Lp5,(u,v)
The granularity of G is defined as vz ,4(G) = f}g};l YL,0,¢(v). Note that the max-

imum communication costs and, hence, the granularty of a task-graph depend
on the communication parameters L, o and g of the target machines. We sum-
marizes the upper bounds on the execution time for scheduling task graphs —
naive transformation: (1+1/vz.0,4(G)) cf. [13], linear clustering: (1+1/77,0,4(G)
cf.[9], Brent-clustering: (1 + 1/v1 0,4(G)(W(G)/P + T(G)) cf. [R].

3 Implementing Iterative Oblivious Programs

Oblivious programs can be easily scheduled to LogP-machines if the input size is
known: compute the task graph G(n) for inputs of size n and schedule it accord-
ing to one of the scheduling strategies for LogP-machines. This is not possible
for iterative oblivious programs since it is unknown how often the loop bodies
in the program are executed. The basic idea is to perform a synchronization

Scheduling Iterative Programs onto LogP-Machine 335

after a loop iteration. The oblivious loop bodies are scheduled according to a
scheduling strategy for oblivious programs. Furthermore, it might be necessary
to communicate results from the end of one loop iteration to the next or to
the tasks following the loop. The transformation assume that the input size n
is known. We first discuss the naive transformation and then demonstrate the
generalization to linear clusterings and Brent-clusterings.

3.1 Naive Transformation of Iterative Oblivious Programs

The naive transformations of iterative oblivious program P for inputs of size n to
LogP-programs works in two phases: The first phase computes naive transforma-
tions for the oblivious parts recursively over the structure of iterative oblivious
programs, the second phase connects the different parts. The tasks determined
by Phase 1 has the following property:

Lemma 1. FEvery loop in an iteratively oblivious program, has a unique task
computing its termination condition.

Proof. Since the termination condition of a loop computes a boolean value, it
is computed by a single task. Naive transformations of oblivious programs are
non-redundant. Thus the task computing the termination condition is uniquely
determined.

We identify loops with the tasks computing their termination condition. Phase
2 transforms the processes computed by Phase 1 for implementing P. The pro-
cesses computing tasks not belonging to a loop require no further transformation,
because the preceding and succeeding tasks are always known are executed once.
The tasks belonging to a loop can be executed more than once. The source of
messages received by input tasks of a loop body depends on whether the loop
is entered or a new iteration is started. However, the sources of the messages
determine the operand of the computation of an input task. This mapping is im-
plemented by the table opd and can also be defined for all tasks. Output tasks of
loop bodies require a special treatment. Their sending messages can be classified
as follows: the destination of the message is definitely a successor in the loop
body (oblivious messages), the destination of the message depends on whether
the loop is terminated or not (non-oblivious messages).

Because loops can be nested, an output task of an inner loop can also be an
output task of an outer loop. Let LOOPS,, be loops where v is an output tasks
and OUTER, be the outermost loop in LOOPS,. Then, every non-oblivious
message can be classified according to their potential destination w.r.t. a loop
in LOOPS,: FALSE, ; is the set of potential successors if loop [does not ter-
minate. TRUE, is the set of potential successors of the enclosing loop, if loop
[does terminate. DEFER,, ; is the set of potential successors outside of the en-
closing loop. Obviously, it holds DEFER., ouTER, = (. Thus, an output vertex
v receives messages on termination of the loops LOOPS, and sends its messages
to either TRUE,; or FALSE,; (lines (6)—(13)). Algorithm 2] summarizes this
discussion. If the task is also an output task on the whole program, then the

336 Welf Lowe and Wolf Zimmermann

Algorithm 2

Process for task v belonging to a loop with oblivious successors wi, ... ,Wm, and
computation @ with n operands

(1) Process P,
(2) loop
(3) do n times: m = recv; arg,,, = m.val;
(4) res .= d(argy,... ,ary,) o
(5) send(res, v, w1),... ,send(res, v, wm);

— — lines (6)-(18) only if v is output vertex
(6) term := recv_term_message; [:= term.src;
(7) while term.terminated Al # OUTER, do
(8) for w € TRUE,, do send(res,w);
(9) term := recv_term_message; [:= term.src;
(10) end;
(11) if term.terminated then
(12) for w € TRUE,,; do send(res,w);
(13) else for w € FALSE,; do send(res,w)
(14) end
(15) end

Algorithm 3

Process for task v computing the termination condition:

(1) process P,

(2) loop

(3) do n times: m := recv; arg,,, = m.val;
(4) res := @(arg,,...,aryg,,)

(5) broadcast (res, OUT,);

(6) end;

(7) end;

process is terminated. For simplicity we assume that the termination messages
arrive in order of their broadcast. Algorithm [3 shows the processes computing a
termination condition. It must be broadcasted to all output vertices of the loop.

Theorem 1. The naive transformation on the LogP-Machine is correct.

Proof. (-sketch:) Let P be an iteratively oblivious PRAM-Program and [P] be
the LogP-program obtained from P by the naive transformation. We prove the
correctness of the naive transformation by induction on the structure of P.

CASE 1: P is oblivious. The correctness follows directly from the results of [13].

Scheduling Iterative Programs onto LogP-Machine 337

CASE 2 P = Pq; P>. Suppose the naive transformation is correct for P; and Ps.
Then the output tasks of [P1] send their results to the input tasks of [Ps]. If
these messages are sent to the correct destination, then the naive transformation
is also correct for P, because the mapping opd assigns the operands correctly.
If P, is not a loop, then the messages sent by the output vertices of [P1]
are oblivious. Thus the messages of the output vertices are sent to the correct
destination. Let P; be a loop and v be an output task v. Since the termination
conditions of all loops in LOOPS,, must yield true, every input task w that is a
potential successor of v satisfies w € DEFER,, for alll € LOOPS,\ OUTER,,, or
w € TRUE, ourer, Where the sets are constructed w.r.t. P. By construction
of these sets, the messages are sent to the correct destination (or are output
vertices of P).
CAsSE 3 P is a loop with body B. This case requires a proof by induction on
the number of iterations of P. The induction step can be performed with similar
arguments as in Case 2.

Linear schedules and Brent-schedules can be implemented similarly. The first
phase determines the processes obtained by linear clustering or Brent-clustering.
The receiving phases and sending phases for task v is the same as in Algorithm
and occur also immediately before and after the computation performed by task
v. In particular, if v is an output task, then non-oblivious messages are sent.
If process corresponding to a cluster is in a loop body, then it is iterated as in
Algorithm 21 We denote this transformations by [-]r and [-] 5, respectively.

4 Execution Time

The estimation on the execution time is done by two steps. First, we estimate
the execution time if the broadcast performed per loop iteration can be executed
in zero time. Then, we add the factor lost by this broadcast. For both cases,

Let P be an iterative oblivious PRAM-program, = be an input of size n,
and P’ obtained by one of the transformations of Section Bl TIMEp:(x) denotes
the execution time of a LogP-program P’ on input x. Suppose we monitor the
execution of P’ on z. Then, we obtain a clustering CI of G, (each iteration
of a loop body defines a separate cluster). We say that P’ corresponds to the
clustering Cl of G.

Lemma 2 (Transfer Lemma). The following correspondences hold for P and
inputs x of size n:

— If P! = [P](n) then P’ corresponds to the naive transformation of G5 and
TIMEp/ (.’E) S (]. + 1/’7L,0’9(Gw))T(G$).

— If P' = [P]L(n) then P' corresponds to a linear clustering of G, and
TIMEp/ (.’E) S (]. + 1/’7L,0’9(Gw))T(G$).

— If P! = [P]B(n) then P’ corresponds to a Brent-clustering of G, and
TIMEp/ () < (14 1/71,0,4(Gz)) X (W(G3)/P +T(Gy)).

where the execution times to not count for the broadcasts.

338 Welf Lowe and Wolf Zimmermann

We now add the broadcast times. Broadcasting on the LogP machine has been
studied by [7] who showed that an greedy implementation (i.e. every processor
sends as fast as possible the broadcast item as soon as it receives the item) is op-
timal. Provided that the processor initializing the broadcast is known in advance
(as it is true in our case) all send and receive operations can be determined stati-
cally for an instance of the LogP machine, i.e. optimal broadcasting is oblivious.
Let Br, ,,4(P) be the execution time for a broadcast to P processors.

We relate now the execution time of a single loop iteration on the PRAM with
the costs for broadcasting the termination condition to its output tasks. Let P
be an iteratively oblivious PRAM-program. The degree of obliviousness of a loop
[of P for inputs of size n, is defined by pr 0.4, n) = T'(b)/(T(b) + Br,0,4(n)).
where b is the body of I. Let LOOPS(P) be the set of loops of P The degree of
obliviousness of P is defined by pr,4(P,n) = mineroopsp) PL,0,9(l,n). The
time bounds of Lemma [are delayed by at most a factor of 1/pr, 0 4(P,n). We
define the notion of granularity of an iteratively oblivious PRAM-program P for
all inputs of size n by v1.,0,4(P,n) = minger, Y1.,0,(Gz) where I,, is the set of
all inputs of size n. We obtain directly our final result:

Theorem 2 (Execution Time on Iteratively Oblivious Programs). Let
P be an iteratively oblivious PRAM-program. Then

1) T(P)

TIME [py(n) < (1 +

’YL,o,g(,P7n) pL,o,g(P7n)
1 T(P)
TIME n)<|(1+
171 (") (n,o,g<7>7n>>m,o,g<7>,n>

TIME py,, (n) < (1 + o 1(7)7“)) (W](DP) + T(P)> PL0.g(Pin) "

5 Conclusions

We extended the application of scheduling algorithms from task-graphs to it-
erative programs. The main idea is to apply standard scheduling algorithms
(linear scheduling, Brent-scheduling) to the parts of the algorithm that can
be modeled as task-graphs and to synchronize loop iterations by barrier syn-
chronization. We showed that the well-known approximation factors for linear
scheduling and Brent-scheduling for LogP-machines are divided by a degree of
obliviousness pr,o.4. This degree of obliviousness models how close an iterative
algorithm comes to an oblivious algorithm (oblivious programs have a degree of
obliviousness pr, 0,4 = 1).

Although we can apply all scheduling algorithms for task graphs to iterative
programs, we cannot generalize the above results on the time bounds to these
algorithms. The problem occurs when the algorithm produces essentially dif-
ferent schedules for unrolled loops and composed loop bodies, i.e. the Transfer
Lemma [2 is not satisfied.

Scheduling Iterative Programs onto LogP-Machine 339

The technique of loop synchronization might be useful for implementing
scheduling algorithms in compilers. Instead of unrolling (oblivious) loops com-
pletely, it might be useful to unroll loops just a fixed number of times. In this
case, we have the same situation as with iterative oblivious algorithms.

References

[1] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subra-
monian, and T. von Eicken. LogP: Towards a realistic model of parallel compu-
tation. In 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP 93), pages 1-12, 1993. published in: SIGPLAN Notices
(28) 7.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Sub-
ramonian, and T. von Eicken. LogP: A practical model of parallel computation.
Communications of the ACM, 39(11):78-85, 1996.

[3] B. Di Martino and G. Ianello. Parallelization of non-simultaneous iterative meth-
ods for systems of linear equations. In Parallel Processing: CONPAR 94 — VAPP
VI, volume 854 of Lecture Notes in Computer Science, pages 253-264. Springer,
1994.

[4] Jorn Eisenbiegler, Welf Lowe, and Andreas Wehrenpfennig. On the optimiza-
tion by redundancy using an extended LogP model. In International Conference
on Advances in Parallel and Distributed Computing (APDC’97), pages 149-155.
IEEE Computer Society Press, 1997.

[5] I Foster. Design and Building Parallel Programs — Concepts and Tools for Parallel
Software Engeneering. Addison—Wesley, 1995.

[6] R. M. Karp and V. Ramachandran. Parallel algorithms for shared memory ma-
chines. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science Vol.
A, pages 871-941. MIT-Press, 1990.

[7] R.M. Karp, A. Sahay, E.E. Santos, and K.E. Schauser. Optimal broadcast and
summation in the LogP model. ACM-Symposium on Parallel Algorithms and
Architectures, 1993.

[8] W. Lwe, J. Eisenbiegler, and W. Zimmermann. Optimizing parallel programs on
machines with fast communication. In 9. International Conference on Parallel
and Distributed Computing Systems, pages 100-103, 1996.

[9] Welf Lowe, Wolf Zimmermann, and Jorn Eisenbiegler. On linear schedules for
task graphs for generalized LogP-machines. In FEuropar’97: Parallel Processing,
volume 1300 of Lecture Notes in Computer Science, pages 895-904, 1997.

[10] M. Philippsen. Optimierungstechniken zur bersetzung paralleler Programmier-
sprachen. PhD thesis, Universitt Karlsruhe, 1994. VDI-Verlag GmbH, Dsseldorf,
1994, VDI Fortschritt-Berichte 292, Reihe 10: Informatik.

[11] M. Wolfe. High Performance Compilers for Parallel Computing. Addison—Wesley,
1995.

[12] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computing.
ACM-Press, NY, 1990.

[13] W. Zimmermann and W. Lowe. An approach to machine-independent parallel
programming. In Parallel Processing: CONPAR 94 — VAPP VI, volume 854 of
Lecture Notes in Computer Science, pages 277-288. Springer, 1994.

	Introduction
	Basic Definitions
	Oblivious and Iterative Oblivious Programs
	LogP-Schedules

	Implementing Iterative Oblivious Programs
	Naive Transformation of Iterative Oblivious Programs

	Execution Time
	Conclusions

