
Non-regular Process Types

Franz Puntigam

Technische Universität Wien, Institut für Computersprachen
Argentinierstraße 8, A-1040 Vienna, Austria

franz@complang.tuwien.ac.at

Abstract. Process types specify sequences of acceptable messages. Even
if the set of acceptable messages changes dynamically, a type checker can
statically ensure that only acceptable messages are sent. As proposed so
far, all message sequence sets specified by types can be generated by
regular grammars. We propose to increase the expressiveness so that
non-regular message sequence sets can be specified. Type equivalence
and subtyping take possible type extensions into account.
Keywords: type systems, subtyping, active objects

1 Introduction

A process type [13, 14, 15] specifies not only a set of messages, but also con-
straints on acceptable sequences of these messages. Type safety is checked stat-
ically by ensuring that each object reference is associated with an appropriate
“type mark”; it specifies all message sequences that can be sent through the
reference.

An instance of a subtype can be used wherever an instance of a supertype is
expected [6]. In a process type system, a subtype can extend a supertype by spec-
ifying additional messages and less constraints on message sequences. Messages
accepted by objects of supertypes are also accepted by objects of subtypes.

It is decidable if two regular grammars generate the same language and if
the language generated by a regular grammar is contained in that generated
by another [5]. These relations are undecidable (or not known to be decidable)
for more expressive grammars like LR(1) and context-free grammars. Process
types shall be extended so that non-regular languages can be expressed. Since
equivalence and containment of message sequence sets are undecidable, stricter
notions of type equivalence and subtyping shall be used.

According to Liskov [6], a type is a partial specification of object behavior.
A subtype specifies the behavior in more detail. If a supertype allows a user
to rely on some property, a subtype has to allow the user to rely on the same
property. For example, if a supertype always allows a user to send a message
“put”, a subtype must not allow the user to send “delete” if “delete” is the last
acceptable message. This restriction ensures that several users can safely send
messages to the object, although each user knows a different type.

Process types enforce this restriction in a different way: If a user can send
“delete”, a type splitting rule ensures that no other user can send “put”. The set

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1334–1343, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

   

          
          

         
            

                

           
           
             
              
             
             

         
             

      
            
             
             




















































 












   
             
         
             

             
         

          
             
                
         

1336 Franz Puntigam

Type representation. An infinite set of names (denoted by u, v, w, . . .) and
a set of constant symbols (x, y, z, . . .) are considered given. Names are used as
parameters, symbols as message selectors and tokens. Parameters are underlined
when occurring at positions where types or integers shall be substituted for them.
An underlined occurrence binds all following free occurrences. Some conventions
simplify the notation: For each meta-symbol e, ẽ is an abbreviation of e1, . . . , en

for arbitrary n. For example, ũ denotes a list of names u1, . . . , un. Likewise, {ẽ}
denotes the set consisting of e1, . . . , en, and |ẽ| the length of the sequence. For
a binary operator ◦, ẽ ◦ g̃ stands for e1 ◦ g1, . . . , en ◦ gn (|ẽ| = |g̃|). All names in
an underlined parameter list ũ are regarded as pairwise different.

This is the syntax of non-regular process types (denoted by π, ρ, σ, τ, . . .):

τ ::= {α̃}[r̃] | ∗u{α̃}[r̃] | u | τ1‖τ2 µ ::= type | int
α ::= a[r̃1][r̃2] r ::= xp | xp1|p2

a ::= x〈ũ:µ̃, τ̃〉 p ::= n | ∞ | u | p1 + p2

A type {α̃}[r̃] consists of a set of message descriptors α̃ and a state [r̃]. Each
state descriptor (r, s, t, . . .) is of the form xp or xp|q, where x is a symbol used
as token, p a multiplication factor and q a splitting factor. [r̃] is regarded as
a multi-set containing p tokens x for each xp or xp|q in r̃; x1 is abbreviated
by x. State descriptors xp|q specify that message sequences may depend on the
exact number of tokens x. The state has been split q times. If a state contains
xp1|q1 , . . . , xpn|qn , the type has about 1/2q1 + · · · + 1/2qn of the tokens x to be
considered. The type has all available tokens of symbol x if xp|0 is in the state.

Integers (p, q, . . .) are nonnegative integer constants, ∞ denoting a very large
(infinite) integer, parameters standing for integers, and integer addition.

Message descriptors (α, β, γ, . . .) are of the form a[s̃][t̃], where a is a message
signature, [s̃] an in-set and [t̃] an out-set. A message of signature a is acceptable
if each state descriptor in the in-set is in the type’s state [r̃] and, for each state
descriptor xp|0 in the in-set, no further state descriptor for token x is in [r̃]; the
type is updated by removing all state descriptors in the in-set from the state
and adding those in the out-set. A state descriptor xp|q can occur in an in-set
only with q = 0, and xp|0 in an out-set only if an xq|0 is in the in-set.

A message signature (a, b, c, . . .) is of the form x〈ũ:µ̃, τ̃ 〉, where x is the
message selector, the ũ are type and integer parameters, the µ̃ meta-types and
the τ̃ types of object parameters; the ũ can occur in the τ̃ . Meta-types (µ, ν, . . .)
are “type”, the type of all type expressions, and “int”, the type of all integers.

A type ∗u{α̃}[r̃] is recursive: The type parameter u can occur in the message
signatures in α̃. Type parameters can occur wherever types can occur. A type
σ‖τ denotes the combination of two types; it can be split into σ and τ .

Examples show static parts of types for simple data stores:

DS def={put〈u:type, u〉[empty][full], get〈Back [one]〉[full][empty]}
Back def={back〈u:type, u〉[one][]}
DS ′ def={put〈u:type, u〉[][full], get〈Back [one]〉[full][]}
DS ′′ def={put〈u:type, u〉[ok][full], get〈Back [one]〉[ok, full][], delete〈〉[ok∞|0][]}

Non-regular Process Types 1337

An object of type DS [empty50] accepts a message “put” whenever one of the fifty
buffer slots is empty, and “get” if a slot is full; the empty slot becomes full, and
the full slot empty. The type DS [empty∞] is, in some sense, equivalent to DS ′[]:
An infinite data store of this type always accepts “put”, but “get” only when
there is a full slot. Instances of DS ′[full∞] accept “put” and “get” in arbitrary
ordering. A data store of the type DS ′′[ok∞|0] allows users to explicitly delete
the store by sending “delete”. An infinite number of tokens “ok” is present in
the state as long as the data store is alive; the tokens are removed when “delete”
is accepted. Because of ok∞|0 in the in-set, “delete” can be sent only if there is
no other reference to the data store with a token “ok” in the type mark’s state.

The expressiveness can be shown by a further example: An object of type

{a1[x1|0][x1|0, y], a2[x1|0, y][x2|0, y, z], a2[x2|0][x2|0, z],
a3[x2|0, y][x3|0], a3[x3|0, y][x3|0], a4[x3|0, y0|0, z][x3|0, y0|0]}[x1|0, y0|0]

accepts messages sequences of the form an
1am

2 an
3 am

4 (with m, n > 0). Using
context-free grammars it is not possible to specify words of this form.

3 Type Equivalence and Subtyping

Some further notation is needed in the definition of the type equivalence and
subtyping relations. free (ẽ) denotes the set of all names occurring free in at least
one expression in ẽ. tok (r̃) denotes the set {x | ∃p6=0 xp ∈ {r̃} ∨ ∃p,q xp|q ∈ {r̃}}.
[ẽ/ũ]g̃ denotes the simultaneous substitution of ei for all free occurrences of ui

(i = 1, . . . , |ẽ|) in g̃, where |ẽ| = |ũ| and all names ũ are pairwise different.
A symbol x is relevant as token for α̃ if xp (with p 6= 0) or xp|q occurs in

the in-set of at least one message descriptor in α̃; relev (α̃) denotes the set of all
symbols relevant for α̃: relev (a1[r̃1][s̃1], . . . , an[r̃n][s̃n]) = tok (r̃1, . . . , r̃n).

The exact number of available tokens x is known for {α̃}[r̃] if x ∈ relev (α̃)
and an xp|q occurs in [r̃]; exact ({α̃}[r̃]) denotes the set of all such symbols.

The state descriptor removing relation rem x−→ on message descriptors is defined
by a[r̃][s̃] rem x−→ a[r̃′][s̃′], where [r̃] = [r̃′] if there is an xp|0 ∈ {r̃}, and [s̃] = [s̃′]
if there is an xp|0 ∈ {s̃}; otherwise [r̃′] and [s̃′] are constructed by removing all
state descriptors xq from [r̃] and [s̃], respectively.

A subtyping environment contains subtyping assumptions of the form u ≤ v.
Structural equivalence ≡ on types and their constituents is the least congru-

ence closed under renaming of bound names (α-conversion) and these rules:

(p + p′) + q ≡ p + (p′ + q) p + q ≡ q + p p + 0 ≡ p
p + p′ ≡ q (p + p′ = q) p + ∞ ≡ ∞ [r̃, t, s̃] ≡ [r̃, s̃, t]

[r̃, xp1|q+1, xp2|q+1] ≡ [r̃, xp1+p2|q] [r̃, x0] ≡ [r̃] [r̃, xp, xq] ≡ [r̃, xp+q]
[r̃, xp1 , xp2|q] ≡ [r̃, xp1+p2|q] {α̃, β, β} ≡ {α̃, β} {α̃, β, γ̃} ≡ {α̃, γ̃, β}

1338 Franz Puntigam

Definition 1. Type equivalence Π ` σ ∼= τ (or σ ∼= τ for empty Π) is the least
reflexive, transitive and symmetric relation closed under these rules:

Π ` σ ∼= τ (σ ≡ τ) (equiv∼=)
Π ` (ρ‖σ)‖τ ∼= ρ‖(σ‖τ) (assoc∼=)

Π ` σ‖τ ∼= τ‖σ (commut∼=)
Π ` τ‖{}[] ∼= τ (empty∼=)

Π ` ∗u{α̃}[r̃] ∼= {[∗u{α̃}[r̃]/u]α̃}[r̃] (rec∼=)
Π ` {α̃}[r̃]‖{γ̃}[s̃] ∼= {α̃, γ̃}[r̃, s̃] (1) (comb∼=)

Π ` ∗u{α̃}[r̃, s] ∼= ∗u{α̃}[r̃] (tok (s) ∩ relev (α̃) = ∅) (state∼=)

Π ` ∗u{α̃, β}[r̃] ∼= ∗u{α̃}[r̃] (β=a[s̃,xp|0][t̃]; x/∈exact ({α̃}[r̃])) (descr∼=)

Π ` ∗u{α̃}[r̃, x∞] ∼= ∗u{γ̃}[r̃] (x∈relev (α̃); x/∈tok (r̃); α̃ rem x−→ γ̃) (avail∼=)
Π ` ∗u{α̃, γ̃}[r̃] ∼= ∗u{α̃}[r̃] (2) (red∼=)

(1) tok (r̃) ⊆ relev (α̃); ∀x (x ∈ relev (γ̃) ∧ ∃p,q xp|q ∈ {r̃}) ⇒ ∃p,q xp|q ∈ {s̃};
tok (s̃) ⊆ relev (γ̃); ∀x (x ∈ relev (α̃) ∧ ∃p,q xp,q ∈ {s̃}) ⇒ ∃p,q xp,q ∈ {r̃}

(2) ∀γ∈{γ̃}∃α∈{α̃} α � γ, where x〈ũ:µ̃, σ̃〉[s̃][t̃, t̃′] � x〈ũ:µ̃, τ̃ 〉[s̃, s̃′, s̃′′][s̃′′, t̃, t̃′′]
if Π ` τ̃ ≤ σ̃ and tok (s̃′, t̃′, t̃′′) ∩ exact ({α̃, γ̃}[r̃]) = ∅ = tok (t̃′′) ∩ relev (α̃)

Type combination is an associative, commutative operation with {}[] as neu-
tral element. Two types {α̃}[r̃] and {γ̃}[s̃] are combined to {α̃, γ̃}[r̃, s̃] as spec-
ified by (comb∼=). The side-conditions ensure that (1) all symbols irrelevant as
tokens have been removed by applying (state∼=), and (2) if a state descriptor
xp|q occurs in [r̃, s̃], state descriptors of this form occur in both [r̃] and [s̃] if x
is relevant there.

Rule (descr∼=) removes message descriptors if the acceptability of such mes-
sages depends on an exact number of tokens, but this number is not known.

State descriptors that specify always available tokens can be removed from
states, in-sets and out-sets simultaneously by using (avail∼=).

Rule (red∼=) allows us to remove redundant message descriptors. A message
descriptor is redundant if there is another message descriptor that can be used
wherever the redundant one can be used.

Definition 2. Subtyping Π ` σ ≤ τ (or σ ≤ τ if Π is empty) is the least
reflexive and transitive relation closed under these rules:

Π ∪ {u ≤ v} ` u ≤ v (assmp≤)
∃ρ Π ` σ ∼= τ‖ρ

Π ` σ ≤ τ
(sub≤)

Π ` π ≤ ρ Π ` σ ≤ τ

Π ` π‖σ ≤ ρ‖τ (comb≤)

Π ∪ {u ≤ v} ` {α̃}[r̃] ≤ {γ̃}[s̃]
Π ` ∗u{α̃}[r̃] ≤ ∗v{γ̃}[s̃]

(u /∈ free (γ̃, s̃, Π); v /∈ free (α̃, r̃, Π)) (rec≤)

Non-regular Process Types 1339

Rule (sub≤) states that σ is a subtype of τ if there is a type ρ such that σ
and the combination of τ and ρ are equivalent; ρ specifies the difference between
σ and τ . As a special case with ρ = {}[], (sub≤) states that Π ` σ ∼= τ implies
Π ` σ ≤ τ . With ρ = σ, Π ` σ ≤ {}[] follows from (sub≤). Rules like (rec≤)
were shown to be useful as definition of subtyping for recursive types [1].

Type equivalence and subtyping are decidable relations. A proof can be found
in an extended version of the present paper [16].

Using the above examples, it is easy to derive DS [empty∞] ∼= DS ′[] as well
as DS [empty10]‖DS [empty40] ∼= DS [empty50] and DS [empty50]‖DS ′[] ∼= DS ′[]
from the rules. Hence, DS ′[] ≤ DS [empty50] and DS [empty50] ≤ DS [empty10]
hold. However, DS ′′[ok∞|0] ≤ DS ′[] does not hold. But, DS ′′[ok∞|0] is a sub-
type of the type {put〈u:type, u〉[ok][full], get〈Back [one]〉[ok, full][]}[ok∞|0]. Al-
though this type specifies the same set of acceptable message sequences as DS ′[]
(see below), the types are not equivalent.

4 Message Signature Sequences

Definition 3. A type {α̃}[r̃] with αi = xi〈ũi:µ̃i, τ̃i〉[s̃i][t̃i] is deterministic if for
all i, j = 1..|α̃| (i 6= j) with xi = xj and |µ̃i, τ̃i| = |µ̃j , τ̃j | implies one of these:

– ∃x,p (∃t̃′ [s̃i] ≡ [xp|0, t̃′] ∧ p 6≡ ∞ ∧ ∀q xq /∈ {t̃′}) ⇒ ∃s̃′ [s̃j] ≡ [xp+1, s̃′];
– or ∃x,p (∃t̃′ [s̃j] ≡ [xp|0, t̃′] ∧ p 6≡ ∞ ∧ ∀q xq /∈ {t̃′}) ⇒ ∃s̃′ [s̃i] ≡ [xp+1, s̃′].

The type of each object shall be deterministic to ensure that, when a message
is accepted, this type is updated in the same way as the corresponding type
mark was updated when the message was sent. Deterministic types are free of
redundant message descriptors. All examples of types of the form {α̃}[r̃] shown
above are deterministic. Types used as type marks need not be deterministic,
but they are supertypes of deterministic types. Subtyping keeps all important
properties of deterministic types. Especially, each type of the form σ‖τ in a
type-consistent system is equivalent to a type of the form {α̃}[r̃]. Hence, in the
rest of this paper, we consider mainly types of this form.

Definition 4. A message signature a is active with follow-state [s̃] in a type
{α̃}[r̃] if a[s̃] ∈ act ({α̃}[r̃]), where act is defined by:

act ({α̃}[r̃]) = {a[t̃, t̃′] | a[s̃][t̃] ∈ {α̃}; [r̃] ≡ [s̃, t̃′]; ∀x,p xp|0∈{s̃}⇒x/∈tok (t̃′);
∀x,p(x∞∈{r̃}∧xp|0 /∈{s̃})⇒x∞∈{t̃′} }

If a message signature a is active with a follow-state [s̃] in a type {α̃}[r̃], an
object of this type accepts a (single) message of signature a. When the message
is accepted, the type is updated to {α̃}[s̃]. The signatures of the messages ac-
ceptable next are active in {α̃}[s̃]. Type marks are updated in the same way
when sending messages. A message descriptor a[s̃][t̃] is active in a type {α̃}[r̃]
with follow-state [r̃′] if a[s̃][t̃] ∈ {α̃} and a[r̃′] ∈ act ({a[s̃][t̃]}[r̃]).

1340 Franz Puntigam

Definition 5. The set seq (τ) of all message signature sequences conforming to
a type τ of the form {α̃}[r̃] is constructed inductively:

S0 = {〈〉[r̃]}
Si+1 = {〈ã, x〈ũ:µ̃, σ̃〉〉[s̃] | 〈ã〉[t̃] ∈ Si; x〈ṽ:µ̃, τ̃ 〉[s̃] ∈ act ({α̃}[t̃]);

σ̃ ≤ [ũ/ṽ]τ̃ ; {ũ} 6⊆ free (τ̃) \ {ṽ} } (i ≥ 0)
seq (τ) = {〈ã〉 | 〈ã〉[s̃] ∈ ⋃

i≥0 Si}

Theorem 1. Let σ and τ be types of the form {α̃}[r̃]. Then, σ ∼= τ implies
seq (σ) = seq (τ), and σ ≤ τ implies seq (τ) ⊆ seq (σ).

Proof. First, the proof of seq (σ) = seq (τ) if σ ∼= τ is sketched. Most type
equivalence rules do not influence whether a message signature is active. Only
(red∼=) is a bit more difficult. Let σ be of the form {α̃}[r̃] and τ of the form
{γ̃}[s̃]; and let (red∼=) be applied to σ and τ such that [r̃] ∼= [s̃, t̃] for some t̃ with
tok (t) ∩ relev (γ̃) = ∅, and {α̃} ∼= {γ̃, β̃} for some β̃; the message descriptors
β̃ are removed. Hence, seq (τ) ⊆ seq (σ). A message descriptor is deleted only
if there remains a more general message descriptor being active whenever the
removed one was active. This implies seq (σ) ⊆ seq (τ) and seq (σ) = seq (τ).

If there is a type {α̃}[r̃] with {α̃}[r̃] ∼= σ‖τ , then 〈ã〉 ⊗ 〈c̃〉 ⊆ seq ({α̃}[r̃])
for each 〈ã〉 ∈ seq (σ) and 〈c̃〉 ∈ seq (τ), where 〈ã〉 ⊗ 〈c̃〉 is the set of all arbitrary
interleavings of 〈ã〉 and 〈c̃〉. This is easy to see from the definition of seq.

Let σ ≤ τ . There is a type ρ with σ ∼= τ‖ρ according to (sub≤) and, therefore,
〈ã〉 ⊗ 〈〉 ⊆ seq (σ) for all 〈ã〉 ∈ seq (τ). Hence, seq (τ) ⊆ seq (σ). ut

The reverses of Theorem 1 do not hold: seq (σ) = seq (τ) does not imply σ ∼= τ ,
and seq (τ) ⊆ seq (σ) does not imply σ ≤ τ . A more accurate characterization of
∼= and ≤ concerning message signature sequences considers possible extensions of
types. If σ ∼= τ (or σ ≤ τ) holds, σ‖ρ ∼= τ‖ρ (or σ‖ρ ≤ τ‖ρ) are also expected to
hold for each type ρ combinable with σ and τ . The next theorems show soundness
and completeness of ∼= and ≤: seq (σ‖ρ) = seq (τ‖ρ) (or seq (τ‖ρ) ⊆ seq (σ‖ρ))
for all appropriate ρ is equivalent to σ ∼= τ (or σ ≤ τ).

Definition 6. Two types σ and τ of the form {α̃}[r̃] are extensibility-equivalent
(denoted by σ ' τ) if and only if for each type ρ: seq ({β̃}[s̃]) = seq ({γ̃}[t̃]) for
all β̃, γ̃, s̃ and t̃ with σ‖ρ ∼= {β̃}[s̃] and τ‖ρ ∼= {γ̃}[t̃].

Theorem 2. Let σ and τ be types of the form {α̃}[r̃]. Then, σ ∼= τ ⇔ σ ' τ .

Proof. σ ∼= τ ⇒ σ ' τ follows from Theorem 1. The other direction can be
shown by a case analysis on all reasons for σ 6∼= τ if seq (σ) = seq (τ). A type ρ
not satisfying the conditions of Def. 6 is constructed for each reason [16]. ut

Definition 7. For two types σ and τ of the form {α̃}[r̃], σ is extensibility-
substitutable for τ (denoted by σ . τ) if and only if for each type ρ: seq ({γ̃}[t̃]) ⊆
seq ({β̃}[s̃]) for all β̃, γ̃, s̃ and t̃ with σ‖ρ ∼= {β̃}[s̃] and τ‖ρ ∼= {γ̃}[t̃].

Non-regular Process Types 1341

Theorem 3. Let σ and τ be types of the form {α̃}[r̃]. Then, σ ≤ τ ⇔ σ . τ .

Proof. σ ≤ τ ⇒ σ . τ follows from Theorem 1. The other direction can be
shown by a case analysis on all reasons for σ 6≤ τ if seq (τ) ⊂ seq (σ). A type ρ
not satisfying the conditions of Def. 7 is constructed for each reason [16]. ut

5 Related Work

Most work on types in concurrent systems is based on Milner’s π-calculus [8, 7]
and similar calculi. The problems of inferring most general types [4, 19] and
subtyping [11, 12, 18, 3, 17] were considered. But these type systems cannot
represent message sequences and ensure statically that all sent messages are
acceptable.

A large amount of work based on “path expressions” and process algebra
shows that reasoning about the order of messages in concurrent systems is quite
difficult. Nierstrasz [11] proposes “regular types” and “request substitutability”
as foundations of subtyping. His very general results are not concrete enough
to develop a static type system from them. A similar definition of subtyping
was given by Bowman et al. [2]. The proposal of Nielson and Nielson [10] can
deal with constraints on the ordering of messages. Their type system cannot
ensure that all sent messages are understood. But, subtyping is supported so
that instances of subtypes preserve the properties expressed in supertypes.

The work of Liskov and Wing on behavioral subtyping [6] shows the impor-
tance of “constraints” in subtyping: Assertions on methods are not sufficient to
specify an object’s behavior at the presence of subtyping and aliases.

Process types as presented in [14, 15] improve previous work on process types
represented as expressions in a process calculus [13]. The present work increases
the expressiveness of process types by allowing the acceptability of messages to
depend on exact numbers of available tokens. Other than in previous work, the
type equivalence relation and subtyping relation are shown to be equivalent to an
extensibility-equivalence relation and an extensibility-substitutability relation,
respectively. The object calculus and type checking rules presented in [14, 15]
can be used together with non-regular process types.

The proposal of Najm and Nimour [9] has a similar purpose as process types.
However, in their approach at each time only one client is allowed to interact with
a server through an interface specifying acceptable message changes. Process
types do not have this restriction because of type splitting.

6 Conclusions

The expressiveness of process types need not be restricted to regular sets of
acceptable message sequences. Type equivalence and subtyping are decidable,
sound and complete for non-regular process types, provided that these relations
conform to an extensibility criterion.

1342 Franz Puntigam

Acknowledgments

Many thanks to Christof Peter for his useful comments. This work was supported
by the FWF (Fonds zur Förderung wissenschaftlicher Forschung) under project
number P12703-INF (Static Process Types for Active Objects).

References

[1] R. M. Amadio and L. Cardelli. Subtyping recursive types. In Conference Record
of the 18th Symposium on Principles of Programming Languages, pages 104–118.
ACM, 1991.

[2] H. Bowman, C. Briscoe-Smith, J. Derrick, and B. Strulo. On behavioural subtyp-
ing in LOTOS. In Proceedings FMOODS ’97, Canterbury, United Kingdom, July
1997.

[3] J.-L. Colaco, M. Pantel, and P. Salle. A set-constraint-based analysis of actors.
In Proceedings FMOODS ’97, Canterbury, United Kingdom, July 1997. Chapman
& Hall.

[4] S. J. Gay. A sort inference algorithm for the polyadic π-calculus. In Conference
Record of the 20th Symposium on Principles of Programming Languages, Jan.
1993.

[5] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Au-
tomata. Addison-Wesley, 1969.

[6] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

[7] R. Milner. The polyadic π-calculus: A tutorial. Technical Report ECS-LFCS-91-
180, Dept. of Comp. Sci., Edinburgh University, 1991.

[8] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and
II). Information and Computation, 100:1–77, 1992.

[9] E. Najm and A. Nimour. A calculus of object bindings. In Proceedings FMOODS
’97, Canterbury, United Kingdom, July 1997.

[10] F. Nielson and H. R. Nielson. From CML to process algebras. In Proceedings
CONCUR’93, number 715 in Lecture Notes in Computer Science, pages 493–508.
Springer-Verlag, 1993.

[11] O. Nierstrasz. Regular types for active objects. ACM SIGPLAN Notices, 28(10):1–
15, Oct. 1993. Proceedings OOPSLA’93.

[12] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In
Proceedings LICS’93, 1993.

[13] F. Puntigam. Types for active objects based on trace semantics. In E. N. et al.,
editor, Proceedings FMOODS ’96, Paris, France, Mar. 1996. IFIP WG 6.1, Chap-
man & Hall.

[14] F. Puntigam. Coordination requirements expressed in types for active objects.
In M. Aksit and S. Matsuoka, editors, Proceedings ECOOP ’97, number 1241
in Lecture Notes in Computer Science, Jyväskylä, Finland, June 1997. Springer-
Verlag.

[15] F. Puntigam. Dynamic type information in process types. In D. Pritchard and
J. Reeve, editors, Proceedings EuroPar ’98, number 1470 in Lecture Notes in
Computer Science, Southampton, England, Sept. 1998. Springer-Verlag.

[16] F. Puntigam. Non-regular process types. Technical report, Institut für Comput-
ersprachen, Technische Universität Wien, Vienna, Austria, 1999.

Non-regular Process Types 1343

[17] A. Ravara and V. T. Vasconcelos. Behavioural types for a calculus of concur-
rent objects. In Proceedings Euro-Par ’97, Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[18] V. T. Vasconcelos. Typed concurrent objects. In Proceedings ECOOP’94, number
821 in Lecture Notes in Computer Science, pages 100–117. Springer-Verlag, 1994.

[19] V. T. Vasconcelos and K. Honda. Principal typing schemes in a polyadic pi-
calculus. In Proceedings CONCUR’93, July 1993.

	Introduction
	Specification of Non-regular Process Types
	Type Equivalence and Subtyping
	Message Signature Sequences
	Related Work
	Conclusions

