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Abstract. SSOR preconditioning of fermion matrix inversions which
is parallelized using a locally lexicographic lattice sub-division has been
shown to be very efficient for standard Wilson fermions. We demonstrate
here the power of this method for the Sheikholeslami-Wohlert improved
fermion action.

1 Introduction

Recently, the SSOR preconditioner turned out to be parallelizable by means of
the locally lexicographic (ll) ordering technique [1]. In this way, SSOR precondi-
tioning has been made applicable to the acceleration of standard Wilson fermion
inversions on high performance massively parallel systems and it outperforms
odd-even preconditioning.

It appears intriguing to extend the range of ll -SSOR preconditioners such
as to accelerate the inversion of improved fermionic actions, which became very
popular in the recent years.

In Symanzik’s on-shell improvement program [2], counter terms are added to
both, lattice action and composite operators in order to reduce O(a) artifacts
which spoil results in the instance of the Wilson fermion formulation. In the
approach of Sheikholeslami and Wohlert (SWA) [3], the Wilson action is modified
by adding a diagonal term, the so-called clover term with a new free parameter
cSW . The generic form of SWA is given by

M = D +A.

D represents diagonal blocks (containing 12×12 sub-blocks) and A is a nearest-
neighbor hopping term. In the following, we will show that the ll -SSOR scheme
applies not only to the couplings in A but also to the internal spin and color
degrees of freedom of the block diagonal term D.

2 SWA

SWA is composed of A (Wilson hopping term) and D (SW diagonal),

DSW (x, y) =

(
I +

cSW

2
κ
∑
µ,ν

σµν ⊗ Fµν(x)

)
δx,y,
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ASW (x, y) = −κ
(∑

µ

((I − γµ) ⊗ Uµ(x)) δx,y−eµ

+
∑

µ

(
(I + γµ) ⊗ UH

µ (x− eµ)
)
δx,y+eµ

)
,

where κ is the Wilson hopping parameter, cSW couples the SW clover operator.
This parameter is tuned to optimize O(a) cancellations. The local clover term
Fµν(x) consists of 12 × 12 diagonal blocks. Its explicit structure in Dirac space
is given in Ref. [6].

3 Block SSOR Preconditioning

The preconditioned system is modified by two matrices V1 and V2,

V −1
1 MV −1

2 ψ̃ = φ̃, φ̃ = V −1
1 φ, ψ̃ = V2ψ.

Let M = D− L− U be the decomposition of M into its block diagonal part D,
its (block) lower triangular part −L and its (block) upper triangular part −U .
Block SSOR preconditioning is defined through the choice

V1 =
(

1
ω
D − L

)(
1
ω
D

)−1

, V2 =
1
ω
D − U .

The Eisenstat trick [8] reduces the costs by a factor 2. It is based on the identity:

V −1
1 (D − L− U)V −1

2 =(
I − ωLD−1

)−1
[
I + (ω − 2)

(
I − ωUD−1

)−1
]

+
(
I − ωUD−1

)−1
.

The preconditioned matrix-vector product, z = V −1
1 MV −1

2 x, is given by:

solve (I − ωUD−1)y = x
compute w = x+ (ω − 2)y
solve (I − ωLD−1)v = w
compute z = v + y

The “solve” is just a simple forward (backward) substitution process due to
the triangular structure:

for i = 1 to N
vi = wi +

∑i−1
j=1 Lijsj

si = ωD−1
ii vi

Options for D of SWA take each block Dii to be of dimension 12 (D(12)), 6
(D(6)), 3 (D(3)) or 1 (D(1)), as suggested by the structure of D. The blocks have
to be pre-inverted, the cost depends on the block size [6].
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Parallelism can be achieved by locally lexicographic ordering [1]. “Coloring”
is the decomposition of all lattice points into mutually disjoint sets C1, . . . , Ck

(with respect to the matrix M), if for any l ∈ {1, . . . , k} the property x ∈ Cl ⇒
y 6∈ Cl for all y ∈ n(x) holds. n(x) denotes the set of sites 6= x coupled to
x. A suitable ordering first numbers all x with color C1, then all with C2 etc.
Thus, each lattice point couples with lattice points of different colors only. The
computation of vx for all x of a given color Cl can be done in parallel, since terms
like

∑
y∈n(x), y≤ox involve only lattice points of the preceding colors C1, . . . , Cl−1,

with x ≤o y meaning that x has been numbered before y with respect to the
ordering o.

Let the lattice blocks be of size nloc = nloc
1 × nloc

2 × nloc
3 × nloc

4 . A different
color is associated with each of the sites of the nloc groups. A locally lexicographic
(ll) ordering is defined to be the color ordering, where all points of a given color
are ordered after all points with colors, which correspond to lattice positions on
the local grid that are lexicographically preceding the given color. The parallel
forward substitution reads:

for all colors Ci, i = 1, . . . , n
p , n

p ∈ N
for all processors j = 1, . . . , p
x := grid point of color Ci on processor j
vx = wx +

∑
y∈n(x), y≤llx

Lxysy

sx = ωD−1
xx vx

If the lattice point x is close to the boundary of the local lattice, then the
set n(x) will contain grid points y residing in neighboring processors. Therefore,
some of the quantities sy will have to be communicated from those neighboring
processors. For SWA, up to 8 neighbors may be involved on the 4-d grid. The
detailed communication scheme for this case was given in Ref. [1].

4 Improvement

The SWA has been implemented on an APE100 equipped with p = 32 processors.
We use a de-correlated set of 10 quenched gauge configurations generated on a
164 lattice at β = 6.0 at 3 values of cSW , 0, 1.0 and 1.769. We have applied
BiCGStab as iterative solver. The stopping criterion has been chosen as ‖MX−
φ‖ ≤ 10−6‖X‖, with X being the solution. We used a local source φ.

We have determined the optimal over-relaxation parameter to be about ω =
1.4 for all block sizes and cSW . In Fig. 1, the results from three diagonal block
sizes are overlaid, the 1 × 1, 3 × 3, and 6 × 6 blocks.

We plot the ratio of iteration numbers of the odd-even procedure vs. ll -SSOR
as function of κ in Fig. 2. A gain factor up to 2.5 in iteration numbers can be
found.

There is no dependence on cSW or on the block size of D and only 10 % on
the local lattice size. As to real CPU costs on APE100, the optimal block size of
D is a 3× 3 block whereas on a scalar system, the optimum is found for a 1× 1
diagonal.
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Fig. 1. Gain of ll -SSOR over odd-even preconditioning vs. ω for cSW = 1.769.

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0.13 0.132 0.134

im
pr

ov
em

en
t f

ac
to

r

k

cSW=1.7691x1
3x3
6x6

Fig. 2. Gain of ll -SSOR over odd-even preconditioning vs. κ.
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