
Parallel Wavelet Transforms on Multiprocessors?

Manfred Feil, Rade Kutil, and Andreas Uhl

RIST++ & Department of Scientific Computing
University of Salzburg, AUSTRIA

{mfeil,rkutil,uhl}@cosy.sbg.ac.at

Abstract. We discuss several issues relevant for parallel wavelet trans-
forms and their possible implications on the choice of a proper program-
ming paradigm for corresponding multiprocessor implementations.

1 Introduction

In this work we focus onto special problems associated with almost each par-
allel wavelet algorithm (here we compare pyramidal wavelet decomposition [3],
wavelet packet decomposition [2], and the à trous algorithm [1]):

– Data decomposition strategies
– Handling of border data

Specifically we investigate the impact of these problems onto the choice of
a proper programming paradigm for multiprocessors (i.e. shared memory pro-
gramming vs. message passing). It is very interesting to see that very different
results occur for different types of algorithms.

2 Wavelet Transform Algorithms

The fast wavelet transform (FWT) can be efficiently implemented by a pair of
appropriately designed highpass and lowpass filters. A 1-D wavelet transform
of a signal S is performed by convolving S with both filters and downsampling
by 2. This operation decomposes the original signal into two frequency-bands
(called subbands), which are often denoted coarse scale approximation and de-
tail signal. Then the same procedure is applied recursively to the coarse scale
approximations several times. Higher dimensional FWT is performed in separa-
bel manner leading to 2s − 1 detail signals (and one coarse scale approximation)
at decomposition level i in the s-dimensional case.

Wavelet packets (WP) represent a generalization of the FWT. Whereas in
the wavelet case the decomposition is applied recursively to the coarse scale ap-
proximations only, in the wavelet packet decomposition the recursive procedure
is applied to all the coarse scale approximations and detail signals, which leads
? This work has been partially supported by the Austrian Science Fund FWF, project

no. P11045-ÖMA.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1013–1017, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



1014 Manfred Feil, Rade Kutil, and Andreas Uhl

to a complete wavelet packet tree (i.e. binary tree and quadtree in the 1-D and
2-D case, respectively) with 2si frequency subbands at decomposition level i in
the s-dimensional case.

The “à trous” algorithm represents a non-orthogonal discrete approach to
the classical continuous wavelet transform. The basic idea behind the à trous
algorithm is to design a discrete wavelet transform without a following decimation
step. In the 1-D case a filtering operation is performed similar to the computation
of the coarse scale approximation in the FWT case. Given the well-known two-
scale equation found in classical wavelet theory, φ(k) =

√
2

∑
l hlφ(2k − l), the

approximation coefficients are computed by ci(k) =
∑

l hlci−1(k+l) (FWT case)
and by ci(k) =

∑
l hlci−1(k + 2i−1l) (à trous case). Note that the expression

“(k + 2i−1l)” creates the “trous” (French for holes) in the computation which
means that the distance between samples increases by a factor 2 from scale
i − 1 (i > 0) to the next one. This fact has severe implications for possible
parallelization approaches at the borders of the data.

In contrast to the FWT the detail signal is computed by wi(k) = ci−1(k) −
ci(k). À trous decomposition in higher dimension is not performed in separabel
manner but by direct convolution with a higher dimensional convolution kernel.

3 Programming Paradigms, Data Decomposition, and
Border Treatment

We investigate two different programming paradigms on multiprocessors: shared
memory programming and message passing. Shared memory programming can
be performed very quickly by simply inserting parallel compiler directives into
sequential programs. On the other hand, message passing requires an explicit
programming of each communication event occurring among processors and is
consequently very time demanding. However, message passing programs written
in e.g. MPI or PVM may be used without changes on different architectures (no
matter if multiprocessors or multicomputers) whereas shared memory program-
ming mostly uses a native programming language.

The coarse grained programming style required for message passing demands
a discussion of data decomposition strategies. Whereas there is nothing to discuss
about data decomposition in the 1-D case, different possibilities exist for the
2-D and 3-D cases. The main distinction is between stripe partitioning and
checkerboard partitioning (which are the 2-D cases, in the 3-D case simply a
third dimension is added). Whereas checkerboard partitioning offers the obvious
advantages of minimizing the block-border length at the cost of a larger number
of neighbouring blocks, stripe partitioning requires only communication between
two direct neighbours.

In the case of wavelet packet decompositions it has turned out that it is advis-
able to to perform a subband based data decomposition instead of the concepts
mentioned before at a certain stage of the computation. This is explained briefly
for the 2-D case. To do the decomposition in parallel, the data is redistributed



Parallel Wavelet Transforms on Multiprocessors 1015

according to the subband structure (after an initial stripe or checkerboard distri-
bution - see Fig. 1 on the left side) at that specific decomposition level (denoted
“distribution level”) where the number of PE is lower or equal to the number
of subbands. Fig.1 shows the data distribution onto 4 PE from level j = 0 to
2 (where the data redistribution takes place between level 0 and level 1 and f
denotes the number of the subband).

level 0: level 2:

Proc=0 Proc=1

Proc=3Proc=2

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

level 1:

Proc=0 Proc=1

Proc=3Proc=2

f=0 f=1

f=2 f=3

Proc=0 Proc=1

Proc=2 Proc=3

f=0 f=0

f=0f=0

Fig. 1. Repartition of the wavelet packets onto 4 PE

Now we proceed with the discussion of border treatment for all types of
wavelet transforms. Recall that the need for border data located on adjacent PE
is caused by the nature of the filtering process which involves several neighbour-
ing data points in order to compute a single transform coefficient. In order to
provide the necessary border data to each PE we may distinguish between two
approaches for border treatment (which trade off computation vs. communica-
tion demand):

– Data swapping method (also known as non-redundant data calculation): each
PE computes only non-redundant data and exchanges these results with the
appropriate neighbour PE in order to get the necessary data for the next
calculation step (i.e. the next decomposition level).

– Redundant data calculation approach: in the initialisation step we do not
only provide its share of the original signal to a PE but provide the entire
data necessary to carry out the required decomposition steps on each PE
locally without any communication demand (i.e. a highly redundant data
distribution - overlapping blocks).

4 Experimental Results

For the 2-D case we employ as test image a 1024×1024 pixel version of the Lena-
image and perform a complete decomposition (i.e. 10 levels) with Daubechies
W20 filters. In the 3-D case we use video data with 256 × 256 pixels per frame
and 512 frames. All the computations have been performed on a SGI POWER-
Challenge GR with 20 R10000 processors using either the native shared memory
programming language PowerC or a native version of the PVM message passing
library.



1016 Manfred Feil, Rade Kutil, and Andreas Uhl

We start with the discussion concerning border treatment in the case of mes-
sage passing. For 3-D wavelet decomposition (Fig. 2.a) and the 2-D á trous
algorithm (Fig. 3.b) data swapping is clearly superior. This may be easily ex-
plained by the fact that the amount of redundant computations is too high
especially related to the relatively inexpensive communication on the target ar-
chitecture which is required by data swapping. However, almost no difference
occurs in the case of 3-D wavelet packet decomposition (Fig. 2.b) – the obvious
reason is that only 3 decomposition steps are performed with redundant data
calculation or data swapping, the rest of the computation is performed using
subband based data distribution. Therefore, the overall amount of the compu-
tations where border problems are involved is rather small and consequently it
makes no difference which border-treatment approach to choose. This leads us
directly to the question about data decompositions.

0

2

4

6

8

10

2 4 6 8 10 12 14 16 18 20

sp
ee

du
p

#PE

Effect of redundant data on FWT

3 par. steps 0 w. redundant data
3 par. steps 1 w. redundant data
3 par. steps 2 w. redundant data
3 par. steps 3 w. redundant data

(a) 3-D FWT

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18 20

sp
ee

du
p

#PE

Effect of redundant data on WP

0 steps with redundant data
1 steps with redundant data
2 steps with redundant data
3 steps with redundant data

(b) 3-D WP decomposition

Fig. 2. Data swapping vs. redundant data calculation

Concerning the question whether stripe or checkerboard partitioning is the
better way to distribute data it turns out that both methods perform equally
on the architecture considered. Fig. 3.a shows the advantage of subband based
parallelization for wavelet packet decomposition in a drastic way – almost no
speedup is achieved when “no distribution” (i.e. no subband based distribu-
tion) is performed, whereas monotonically increasing and significant speedup is
achieved with subband based data distribution.

Now let us proceed to the question whether message passing or shared mem-
ory programming is the better way for parallel wavelet transforms on multipro-
cessors. Considering the results for 3-D wavelet packet decomposition (see Fig.
3.a) we clearly see that the algorithm implemented in PowerC exhibits worse
scalability as compared to the PVM case. This trend is also observed for 3-D
wavelet decomposition (and for both types of algorithms in lower dimension).
The PowerC algorithm for 3-D wavelet packet decomposition where simply the
loops corresponding to data rows or slices are distributed does not reach any
speedup (“no distribution”). If for shared memory programming the subband



Parallel Wavelet Transforms on Multiprocessors 1017

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

sp
ee

du
p

#PE

Wavelet packet decomposition (PVM versus PowerC)

PVM distrib. after 2 steps
PowerC distrib. after 2 steps

PowerC no distribution

(a) WP decomposition

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20

sp
ee

du
p

#PE

A trous decomposition (PVM versus PowerC)

PowerC
PVM: redundant data c.

PVM: data swapping

(b) à trous decomposition

Fig. 3. Comparison of programming paradigms: message passing (PVM) vs.
shared memory (PowerC)

based data distribution concept is implemented as well (which is fairly compli-
cated to do) we obtain a considerable speedup, but still lower as compared to
the message passing case (e.g. for 3-D wavelet packet decomposition speedup 9
vs. 11 with 16 PE).

A very different situation may be observed for the 2-D à trous algorithm (Fig.
3.b). Whereas we do not reach speedup higher than 3 using message passing,
speedup close to linear is achieved with shared memory programming. This effect
is on the one hand due to the high amount of computation involved in the
à trous algorithm (which allows the high speedup), on the other hand due to
the expensive border treatment (see section 2 – this causes the bad performing
message passing approach).

Whereas shared memory programming obviously is the paradigm of choice
for the à trous algorithm and leads to acceptable (but clearly less scalable) results
for the FWT, the performance of a straightforward shared memory programming
of wavelet packet decomposition is extremely poor. Even if the subband based
distribution concept is employed (which requires profund algorithmic knowledge
and a significantly higher implementation effort) message passing still remains
clearly superior.

References

[1] M. Feil and A. Uhl. Real-time image analysis using wavelets: the “à trous” algo-
rithm on MIMD architectures. In D. Sinha, editor, Real-Time Imaging IV, volume
3645 of SPIE Proceedings, pages 56–65, 1999.

[2] A. Uhl. Wavelet packet best basis selection on moderate parallel MIMD architec-
tures. Parallel Computing, 22(1):149–158, 1996.

[3] M-L. Woo. Parallel discrete wavelet transform on the Paragon MIMD machine. In
R.S. Schreiber et al., editor, Proceedings of the seventh SIAM conference on parallel
processing for scientific computing, pages 3–8, 1995.


	Introduction
	Wavelet Transform Algorithms
	Programming Paradigms, Data Decomposition, and Border Treatment
	Experimental Results

