
ParBlocks - A New Methodology for Specifying

Concurrent Method Executions in Opus?

Erwin Laure

Institute for Software Technology and Parallel Systems
University of Vienna

erwin@par.univie.ac.at

Abstract. Many applications make use of hybrid programming models
intermixing task and data parallelism in order to exploit modern ar-
chitectures more efficiently. However, unbalanced computational load or
idle times due to tasks that are blocked in I/O or waiting on results from
other tasks can cause significant performance problems. Fortunately, such
idle times can be overlapped with useful computation in many cases. In
this paper we propose a simple, yet powerful methodology for specify-
ing intra-object parallelism and synchronization in the context of the
coordination language Opus.

1 Introduction

We recently introduced the coordination Language Opus [2] which allows a high
level management of data parallel tasks. Its central concept is the shared abstrac-
tion (SDA), which generalizes Fortran 90/HPF modules using an object-based
approach and imposing monitor semantics. SDAs can be internally data parallel
while task parallelism is exploited between different SDAs. SDAs communicate
with one another via synchronous or asynchronous method invocation; argu-
ments are passed with copy-in/copy-out semantics.

The monitor semantics of SDAs ensure a consistent state of the SDA data at
the expense of potential parallelism losses. In fact, there may well be multiple
method executions safely active within an SDA object. Weakening the monitor
semantics of SDAs has the benefit of introducing an additional level of parallelism
which can be exploited on systems with shared address space; but also on systems
with distributed memory idle times, due to communication or synchronization
with other tasks, can be overlapped with useful computation, thus reaching a
better utilization of the available computation nodes.

Allowing concurrent executions of multiple methods within an SDA poses
a number of difficulties (see [7] for a detailed discussion of intra-object concur-
rency) among which the most important one is how to specify potential par-
allelism and needed synchronization among methods. Compiler analysis can be
used for detecting some potential for intra-SDA parallelism. However, a compiler
? The work described in this paper was partially supported by the Special Research

Program SFB F011 ”AURORA” of the Austrian Science Fund.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 925–929, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



926 Erwin Laure

is generally not able to detect all cases and therefore some support from the user
is needed in order to exploit intra-SDA parallelism to some greater extent. This
is also the case in other approaches described below:

Java [3] allows all methods of an object to execute in parallel unless explicitly
synchronized. However, the synchronized attribute is ill suited for expressing
partial concurrency and synchronization that is based upon the state of an ob-
ject. Similarly, OpenMP [8] allows all methods to be invoked in parallel from
work-sharing constructs, unless they are explicitly synchronized. On the con-
trary, Fortran 95 [4] allows parallel invocation only for pure procedures that
are free from certain side effects. Path Expressions [1] are an elegant means of
specifying synchronization between processes by describing how a process is al-
lowed to execute in relation to others, irrespective of their invocation order. With
the help of Path Expressions complex synchronization patterns can be specified,
however, it is not possible to specify synchronization which depends on the state
of a process.

In this paper we propose a compiler directive called ParBlock which can be
used for specifying potential parallelism and necessary synchronization among
methods in a simple and intuitive way. Synchronization can be specified statically
or dynamically.

2 The Opus Approach to Intra-SDA-Parallelism

Due to the specific properties of SDAs (SDAs are kind of “active” objects which
are triggered by other objects) we identify a set of properties the specification
mechanism for parallelism/synchronization has to fulfill:

Parallelism/synchronization information should be encapsulated within an
SDA, since SDAs can be accessed by a set of tasks which are not necessarily
aware of each other. Hence, it is necessary that a consistent internal state is
guaranteed by an SDA itself rather than by synchronizing the accessing tasks.
Synchronization should be possible in a static (i.e., independent of an SDA inter-
nal state) and and dynamic (i.e., state dependent) way. Although static synchro-
nization can be seen as a special case of dynamic synchronization, having means
for specifying synchronization statically allows a more efficient implementation.
All parallelism/synchronization information should be specified on the highest
possible level. Finally, the user should only be compelled to specify as much
synchronization as necessary. Consequently, exclusive access to an SDA is still
the default property of a method.

2.1 ParSets

Opus already provides some support for dynamic synchronization on the method
level: the condition clauses. Condition clauses can be used to guard the execution
of a method with a side-effect free logical condition. However, with this feature
only synchronization that depends on the state of the SDA can be specified.
It is not possible to synchronize two method executions independently of the



ParBlocks - A New Methodology for Specifying 927

internal data of the SDA. Hence, new means for specifying static parallelism
and synchronization, in particular pairwise interference freedom among methods,
are required. We propose that every method should be annotated with a set of
method names representing all the methods with which its execution can safely
overlap. This set is called ParSet. Note that ParSets are symmetric but not
transitive. By default, the ParSet of a method is empty and thus the method
has exclusive access to the SDA.

ParSets and condition clauses can be used in conjunction: while ParSets stat-
ically specify potential parallelism, condition clauses can be used to synchronize
method executions in a dynamic way. The execution order of methods is derived
implicitly from both, the parallelism specification and condition clauses, since
before launching the execution of a method it is necessary to check if (1) the
method is allowed to execute in parallel with all other methods currently being
executed, and (2) its condition clause is satisfied. Obviously, both checks have
to form an atomic action.

The direct specification of ParSets for every method is a cumbersome task
and specifying ParSets in a consistent way is not trivial. Hence, we need higher
level constructs for specifying static parallelism/synchronization.

In Section 1 we discussed Path Expressions which can be used to specify
process parallelism at a high level. Such a technique could also be applied to
Opus, however, Path Expressions explicitly specify the execution order of meth-
ods, irrespective of the invocation order. The direct specification of the execution
order, however, is unwanted, since non-deterministic executions are deliberately
enabled in Opus; condition clauses can be used for imposing specific execution
orders, instead.

2.2 ParBlocks

Instead of specifying ParSets for every method we propose a new compiler direc-
tive called ParBlock for the static specification of parallelism/synchronization.
ParSets can be derived from ParBlocks by the compiler. ParBlocks borrow from
Path Expressions in that they allow the specification of parallel and mutual ex-
clusive method executions, but without fixing the execution order of methods.
The body of the ParBlock directive is a list of method names where all comma
separated methods can execute in parallel while semi-colon separated methods
need to execute mutually exclusive. We refer to a comma separated list as par-
section and to a semi-colon separated one as sync-section. Both sections can
be arbitrarily nested (using parenthesis) thus allowing complex synchronization
patterns. In addition, multiple ParBlocks can be specified for an SDA. However,
no method name may occur more than once in a given ParBlock nor in more
than one ParBlock to avoid inconsistent declarations.

The syntax of the ParBlock directive is similar to HPF directives: the
PARBLOCK keyword, which is preceded by the Opus compiler-directive-origin !OC$
is followed by arbitrarily nested par- or sync-sections.

Although ParBlocks have enough expressiveness for inter-method parallelism,
it is not possible to specify an overlapping of different instances of the same



928 Erwin Laure

method. This can be accomplished by giving the method the F95 “pure” at-
tribute. Moreover, pure methods can safely run mutually in parallel. Therefore,
the compiler will generate an additional ParBlock containing all pure methods
which is consistent with the F95/HPF standard.

Summarizing the above, Opus provides a set of features for specifying intra-
SDA parallelism and synchronization, both dependent and independent of the
SDA’s internal state:

– condition clauses: for specifying dynamic synchronization based upon the
internal state of the SDA,

– ParBlocks: for specifying parallelism as well as synchronization indepen-
dently of the SDA’s internal state, and

– pure attributes: for specifying potential parallelism according to the For-
tran 95 standard.

The following example illustrates the use and expressiveness of ParBlocks:

Example 1. Consider an SDA with 6 methods, a, b, c, d, e, and f. All meth-
ods are allowed to execute in parallel but with the restrictions that (1) method
b and c cannot execute concurrently and (2) method d cannot execute concur-
rently with neither e nor f. A sync-section is used for restriction (1): (b;c).
For restriction (2) we need to nest a sync-section with a par-section. Let’s first
specify that method e and f can run in parallel: (e,f). Now we extend this ex-
pression specifying the synchronization of d: (d;(e,f)). We have now specified
all the necessary synchronization and can put everything in a par-section. The
resulting ParBlock for our example is:
(a,(b;c),(d;(e,f))). In an Opus program the required directive would look
like: !OC$ PARBLOCK(a,(b;c),(d;(e,f))).

2.3 Implementation

The Opus compiler parses the ParBlock-directives of an SDA and constructs
a ParSet for each method of an SDA (see [5] for a detailed description of the
algorithms).

These ParSets are used at runtime to check if a method can start executing in
parallel with other methods. In particular, a new method can start its execution
if and only if the set of the currently executing methods is a subset of its ParSet
and its condition clause is satisfied as well.

The Opus implementation design must also be modified to facilitate over-
lapping method execution. In particular, we described in [6] that an SDA is
compiled to an active object consisting of two threads: a server thread responsi-
ble for retrieving incoming request and an execution thread which executes the
methods. To allow concurrent method executions within an SDA, an SDA object
requires a set of execution threads instead of only one.



ParBlocks - A New Methodology for Specifying 929

3 Conclusions

In this paper we introduced a simple, yet expressive method for specifying intra-
SDA parallelism. In [5] we present the applicability of our approach to a set of
synchronization problems and discuss its benefits wrt. other approaches, like the
Java multithreading model.

The proposed methodology is currently being implemented in our Opus com-
pilation and runtime framework.

References

[1] R.H. Campbell. Path Expressions: A technique for specifying process synchroniza-
tion. PhD thesis, The University of Newcastle Upon Tyne, 1976.

[2] B. Chapman, M. Haines, P. Mehrotra, J. Van Rosendale, and H. Zima. OPUS: A
Coordination Language for Multidisciplinary Applications. Scientific Programming,
6/9:345–362, Winter 1997.

[3] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesely,
1996.

[4] ISO. Fortran 95 Standard. ISO/IEC 1539 :1997.
[5] E. Laure. ParBlocks - A new Methodology for Specifying Concurrent Method

Executions in Opus. Technical Report TR99-05, Institute for Software Technology
and Parallel Systems, University of Vienna, 1999.

[6] E. Laure, M. Haines, P. Mehrotra, and H. Zima. On the Implementation of the
Opus Coordination Language. Concurreny: Practice and Experience, to appear
1999.

[7] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
[8] OpenMP C and C++ Application Program Interface Version 1.0.

http://www.openmp.org/, October 1998.


	Introduction
	The Opus Approach to Intra-SDA-Parallelism
	ParSets
	ParBlocks
	Implementation

	Conclusions

