A Node Count-Independent Logical Clock for
Scaling Lazy Release Consistency Protocol

Luciana Bezerra Arantes*, Bertil Folliot, and Pierre Sens

LIP6 Laboratory.
Universit Pierre et Marie Curie.
4, Place Jussieu 75252 Paris Cedex 05, France.
[Luciana.Arantes, Bertil.Folliot, Pierre.Sens]@lip6.fr

Abstract. The use of per processor vector logical clocks in lazy release
consistency (LRC) protocol implementation may restrict its scalability
since the size of these clocks depends on the number of nodes of the sys-
tem. We propose a new logical clock, the barrier-lock, whose concept is
based on the causality of synchronization operations. Its size is propor-
tional to the number of synchronization variables used by the application,
being not affected by the number of nodes of the system.

1 Introduction

Distributed shared memory systems (DSM) simulate a shared-memory address
space on top of loosely coupled multiprocessor systems. The physical distribu-
tion of data among the nodes as well as the consistency of the shared memory is
made by the DSM layer, being completely transparent for the application. One
of the most efficient DSM protocol for memory consistency is the lazy release
consistency (LRC) [1]. By relaxing memory consistency model, LRC reduces the
number of messages and data transferred among the processors. In LRC, synchro-
nization operations set up the ordering of memory accesses and the propagation
of shared data coherence information.

This paper presents our proposal for a LRC protocol whose implementation
does not depend on the number of nodes of the system. This approach can be
quite interesting for platforms with a large number of nodes, i.e., large-scale
DSM systems. In these systems, scalability is an important feature.

One of the limitations for scaling current LRC implementations is the fact
that, for controlling shared memory updates causality, they use logical clocks
to timestamp synchronization operations [6] [4]. These logical clocks consist of
vector structures which have one entry for each node (process) of the system.
Hence, their size is proportional to the total number of nodes. We propose a
new logical clock, whose size is independent of the number of nodes. We have
named it the barrier-lock clocks. Its concept is based on operations on locks and
barriers, i.e., the basic synchronization variables provided by most LRC DSM

* Ph.D. scholar from CAPES (Brazil)

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 815-822] 1999.
© Springer-Verlag Berlin Heidelberg 1999

816 Luciana Bezerra Arantes, Bertil Folliot, and Pierre Sens

systems. Its size is proportional to the number of synchronization variables used
by the DSM application.

Section 2 of this paper gives an overview of the lazy release consistency pro-
tocol. Section 3 presents the barrier-lock logical clocks and some performance
measures obtained with a first barrier-lock LRC DSM prototype. In section 4
some related works are discussed, while the last section summarizes the contri-
butions of this work.

2 Lazy Release Consistency Overview

In lazy release consistency memory model, originally defined by TreadMarks [1],
ordinary memory accesses are distinguished from synchronization ones. Synchro-
nization operations are divided into acquire and release ones. The updates made
by a process on its local shared data copy are propagated out to a second one
only when the latter performs an acquire operation. This postponement reduces
much of the communication required to make shared data consistent.

In LRC, the execution of each process is divided into intervals. A new interval
begins at each acquire or release operation. Synchronization operations settle
a causal ordering between intervals, which, in their turn, define the causality
of shared memory updates. Intervals are partially ordered (LRC happened-
before) as follows:

- intervals of the same process are totally ordered, i.e., if ¢ and 4’ are intervals
of the same process, and ¢ occurs before i’ in program order, then i — 4';

- if 7 is an interval on process P; and ¢’ is an interval of process P, then i — 7’
if ¢’ begins with the acquire operation which is subsequent to the release
operation which concluded 1.

- ifi— 4 and i — i’, then i — 7".

LRC controls partial order between intervals by using logical vector clocks, as
defined by Mattern [6] and Fidge [4]. A vector clock timestamp is assigned
to every interval. Each process keeps a local vector clock variable of N entries,
where N is the total number of nodes (processes) of the system. A process j
controls the intervals created by itself by using the jth entry of its vector clock
variable. The other entries store the current knowledge that this process has of
the intervals of the other processes. Thus, process Pj updates its vector clock
v; at each synchronization operation, based on the following rules:

r1 : If it is an acquire operation and the acquirer P; is different from the releaser
Pr, whose local clock variable value is v,., then:
0 <k <N —1:uv;k] =mazx(vj[k],v[k]).

T9 @ Uj[j] = ’Uj[j} + 1.

Hence, at a remote acquire, the acquirer P; sends its current clock value to
the releaser P.. This one sends back all the intervals “covered” by its own local
vector clock, but not by P;’s, including the identification of the pages that have
been modified in each interval. Each identification is stored in a structure called

A Node Count-Independent Logical Clock 817

write-notice. When receiving a write-notice, the acquiring process invalidates its
corresponding local page (invalidate protocol). The first access to an invalid page
will cause a page fault. The faulting process will then ask for all the updates that
it does not have yet, applying them in the order defined by the causality of the
intervals. These updates come in the form of diffs, a word-by-word comparison
between a copy of the original page and its last version. Each diff is associated
with a write-notice which in its turn is associated with an interval.

LRC DSMs usually offer to application two types of synchronization vari-
ables: locks and barriers. The first ones are used to control accesses to shared
memory critical regions, while the second ones to sequence the execution of the
program. Both of them can be mapped onto an acquire and/or release opera-
tions. Operations on a lock can be directly mapped onto acquire or release
operations: obtaining a lock corresponds to an acquire operation, while granting
it corresponds to a release. A barrier is a synchronization point, executed in
parallel by all processes, where each process incorporates consistency informa-
tion (write-notices) from all other processes. After the execution of a barrier,
the local vector clocks of all processes are set to the same value. Basically, when
arriving at a barrier each process performs a release operation, sending to the
barrier manager process the intervals that the latter does not have. On the other
hand, the departure from the barrier is seen as an acquire, since the manager
process sends to all other processes the intervals that they do not have yet.
Thereby, if Iy is the set of intervals that happened before a barrier call and
Lapar is the set of intervals that happened after it, we have:

Vij € Ippar and Vig € Igpar : 45 — ik (barrier property).

a (0) T (0) a(l) (1) a(l) T
PO 01 01 1 01 02 02

0
1000 2.0.0.0 30221 4022 6.1.53 Y7153
1 A
" ST
Py ! . -
' 5253 \5353%
U A
A}
a@© I a0 r(0)
a m . \
P, 21 21 1 \2! 21 Y 2 2

° * ») °
0,0,1,0 10020 r2030 2040 K 7.3,6,7 73,17
1 ' ‘\
[" Y
A)
Py \= 0021 20022 35354 ¢3557356 [J7357
a(r(a (0) a1 r(1
31 31 . 31 32 32 31 .
barrier barrier
— Jlock 0 51,53 84,88
-=---» Jock 1

Fig. 1. LRC timing diagram based on vector clocks.

Figure [shows the partial ordering timing diagram corresponding to opera-
tions on 2 locks made by 4 processors. A barrier is called two times. For simpli-
city, shared memory operations or data structures (write-notices, diffs) are not
shown. The notations a,;(!) and r;;(l) respectively represent the jth acquire or

818 Luciana Bezerra Arantes, Bertil Folliot, and Pierre Sens

release operation of processor P; on lock [. Each synchronization operation is
timestamped with v;[0], v;[1], v;[2], v;[3].

3 LRC Based on Barrier-Lock Clocks

Vector clocks precisely control causality of LRC synchronization operations.
However, their size is proportional to the number of processes of the system,
which can be quite huge in a large-scale DSM. Due to LRC transitive propaga-
tion of updates, several of them can be included in a synchronization message.

As explained in the last section, at a barrier, processes set their local vector
clocks to the same value. Thus, barriers could be seen as stop points for the
restarting of a new set of lock operations, i.e., a program execution could be
divided into barrier-intervals and each barrier-interval would be subdivided into
lock-intervals. A new barrier-interval would begin at each barrier call, while a
lock-interval at each acquire or release operation on a lock. This is exactly the
idea behind the barrier-lock clock.

A barrier-lock timestamp is represented by the tuple (b,vl);, where b; is
a barrier call counter and wl; is a per lock vector. Similar to per processor
vector clocks, barrier-lock ones precisely control LRC happened-before partial
ordering. At each barrier call, the counter b; of all processes is incremented,
while their lock vector vl; is reset. On the other hand, for controlling processes’
operations on locks within a single barrier-interval, the concept of the poset-
diagram, as presented by Mattern in [0], is used. This diagram shows the logical
relationship of events. If a — b, than it is possible to follow a path of causality
from a to b, which is easier seen in the poset-diagram. The timing diagram and
the poset-diagram are isomorphic. Figure 2illustrates the poset-diagram, related
to the operations on locks 0 and 1 of the first barrier-interval of figure [il.

a (0) r (0) a(r (1)
01 01 01 01
h e Y
Py
a(n ao 1o
21 21 21 21
P, o— =9 ®
Py
a) r 1)
31 31

Fig. 2. Lock-intervals poset-diagram within a barrier-interval.

As locks are used to control processes’ accesses to shared data critical re-
gions, lazy release consistency protocol assures that a lock can only be held by

A Node Count-Independent Logical Clock 819

one process at a time. Its behavior is like a token. This means that if two ac-
quire or release operations on locks are mutually independent, they correspond
to operations on different locks. It is guaranteed that two processes are not going
to increment the same entry of their local variable vl concurrently. Therefore,
for timestamping synchronization operations on locks, we can employ a vector
variable where each of its entry is associated with a lock. The size of the barrier-
lock clock is then L 4+ 1, L being the number of locks used by the application.
Very often this number is quite small (e.g. barrier-like programs). It is worth
remarking that it is the “lock token” behavior that justifies why, in spite of the
fact that Charon-Bost [3] has proved that causality can only be characterized
by vector clocks with IV entries, we have managed to have a clock, that pre-
cisely captures causality, but whose size can be smaller than the total number
of processes (nodes) N. In other words, since locks are held in mutual exclu-
sion, operations on them can be represented as the union of L chains (paths of
causality). Hence, a vector of L entries is sufficient to characterize causality of
synchronization operations on locks.

Let N be the number of processes (nodes) of the system and L, the number
of locks used by the application. A barrier-lock clock timestamp of processor P;
is represented by the tuple (b, vl);, where vl has dimension L. A new timestamp
is computed based on the following rules:

rq : If it is assigned to a new barrier-interval:
a: 0<i<N—-1:{0<k<L-1:0l]k]=0};
b: 0<i<N-—-1:b=0b;+1;

ro ¢ If it is assigned to a new lock-interval, corresponding to an acquire or release
operation on lock [:
a : in the case of an acquire operation in which the acquirer process Pj is
different from the releaser Pr:
0<k<L-1:vlk] =mazx(vl;k], vl [k]);
b: vl[l] = ol + 1.

Figure[Blshows the same figure 1, using barrier-lock timestamps. The notation
b-v1[0],v1[1] is used for each timestamp assigned to a synchronization operation.

For comparing two timestamps, (b,vl) and (b',vl’), the following relations
are defined:

b<t/
- (byl) < (V00" & < or
(b=V) and (vl <ol

(b="b") and (vl =2l =0)
- (byol) || (b 0l") & < or
(vl <vl’) and =(vl” < vl)

The above relations guarantee that the barrier-lock clocks are also strongly
consistent. So, for any two intervals ¢ and ¢’, respectively identified by (b, vl) and
(t/,vl’) timestamps, we have:

820 Luciana Bezerra Arantes, Bertil Folliot, and Pierre Sens

a (0) I (0) a(l T (1) a(l T (1)
01 o1 1 02 02

N 0
v hd

0 -8
0-1,0 02,0 02,5 0-2,6 o1 1023,
l' A
' a 1 “
P : 1 1 :
! v
h 1-1,0 1-20
N A
A
ao r© v a© 1
am 1M i 21 21 ' 2 2
P e L v
0-0,1 0-02% ;032 042 ' 1-54 1-6,4
\ N v
1 1 “
Y003 0-0.4 130 3133 134 [1-44

Py - &
a (0) a(l) T T(0)
. 31 2 32 31 :
barrier barrier
> lock 0 1-00 2:00
e - lock1

3

Fig. 3. LRC based on barrier-lock clocks.

i — 1 & (bvl) < (b, 0l)

Proof. If i and i’ belong to different barrier-intervals, then b < b (rule rq). If
they belong to the same barrier-interval (b =1b'), let i, with (b, vl”") timestamp,
be the latest interval that directly precedes i’ and [the lock corresponding to
the synchronization operation (acquire or release) which started interval ¢’. If
7 and 1" belong to different processes then i’ refers to the interval that be-
gins with the acquire of I, which has been released with the ending of i”’. Then
vl = max(vl” ;vl') + 1 (rule ro.a and ro.b). If they belong to the same process
then vl’[l] = vl”[l] + 1 (rule r2.b). Hence, in both case vl” < vl’. We can apply
this arguments to any pair of intervals belonging to all paths of causality that
lead to 4’. Due to the transitive dependency property of LRC intervals, we have
that vl < vl’.

Conversely, if b < ¥, intervals ¢ and i’ belong to different barrier-intervals.
Then, based on the barrier principle, described in the previous section, ¢ — 7’
On the other hand, if b = b’ then i and ¢’ are lock-intervals within the same
barrier-interval. Let (b,vl"”) be the greatest timestamp smaller than v’ within
this barrier-interval. If these timestamps have been created by different pro-
cesses, then (b, vl’) corresponds to the acquire of lock [, whose releasing operation
has been identified by (b, vl”); if they belong to the same process, they corres-
pond to totally order intervals and i’ occurred before i’. Then, based on the
LRC happened-before partial ordering, i directly precedes ¢/, which means
that "/ — /. Applying this same arguments for each pair of lock-intervals be-
longing to all paths of causality that lead to ¢’ and considering the transitive
property of LRC protocol, we have i — 4’ O

3.1 Performance

In order to verify the feasibility of the barrier-lock clocks, we have implemented
a prototype, replacing the traditional vector clocks by the barrier-lock ones in
TreadMarks software DSM, version 0.10.1. The tests have been made on top

A Node Count-Independent Logical Clock 821

of 8 Sun-sparc-5 stations linked by a 100 Mbit/s Ethernet backbone with 5
well-known applications: SOR and TSP (distributed by TreadMarks [1]), IS and
3D FTT (NAS benchmark [2]) and Barnes-Hut(SPLASH benchmark [7]). The
number of locks used by these applications are quite small (from 0 to 2). For
showing the scalability of a LRC DSM, we have simulated a platform with a huge
number of nodes by increasing the constant that specifies the number of processes
in the system. We have then measured the number of bytes exchanged between
the processes at synchronization operations. Figure [4 shows the ratio: number
of bytes of synchronization messages on top of barrier-lock LRC prototype / the
number of bytes of synchronization messages on top of TreadMarks.

*
=} 3D FFT
-—-m— Barnes

0.8

0.6

0.4

0.2

barrier-lock prototype LRC bytes / TreadMarks bytes

60 80 100 120 140
simulated number of processes

Fig. 4. Ratio of data exchanged at synchronization operations.

We can remark a considerable cut down in the amount of data exchanged at
synchronization operations when the barrier-lock clocks are used, since all the
applications use a small number of locks.

4 Related Works

TreadMarks [1] was the first DSM to implement the LRC memory model. Auto-
matic Update Release Consistency (AURC) [10] and Home-based Lazy Release
Consistency (HLRC) [10] are variations of LRC protocol. The three of them
employ vector clocks to ensure the causality of synchronization operations. The
last two adopt a “home-based” protocol in which updates of a page are eagerly
propagated to a home node associated with the page.

Some authors have proposed a different implementation of Mattern and Fidge
vector clocks. For instance, in Singhal and Kshemkalyani technique [§], a
process sends to another only those entries of its vector clock that have been
modified since they have last communicated to each other. Hence, the size of
the message exchanged between processes is reduced. Fowler and Zwaenepoel

822 Luciana Bezerra Arantes, Bertil Folliot, and Pierre Sens

[b] have proposed a vector clock implementation where each process only keeps
direct dependencies on others. This implies in a considerable cut in memory
storage and communication overhead. However, for capturing transitive causal
relations, it is necessary to recursively trace causal dependencies.

There are some clocks, as the plausible ones [9], that can be constructed
with a constant number of entries, independently of the number of nodes of the
system. However, even if they offer a high level of ordering accuracy, they do not
guarantee that certain pairs of concurrent events will not be ordered. Therefore,
they are not appropriate for implementing LRC protocol, as this ordering can
lead to unnecessary consistency operations and remote requests.

5 Conclusions

We have presented the barrier-lock clocks, whose size is proportional to the
number of synchronization variables used by a DSM application. They have
been modeled to precisely capture causality of synchronisation operations of lazy
release consistency protocol. As their size is not affected by the number of nodes
of the system, these clocks are quite appropriate for scaling DSM systems that
provide such protocol. The proof that barrier-lock clocks can precisely control
causal ordering of synchronization operations was presented in section 3, while
the results of section 4 validate them.

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony and W.
Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of Worksta-
tions. IEEE Computer, 29(2):18-28, February 1996.

[2] D. Bailey, J. Barton, T. Lasinski and H. Simon. The NAS Parallel] Benchmark.
Technical Report 103863, NASA, July 1993.

[3] B. Charon-Bost. Concerning the Size of Logical Clocks. Information Processing
Letters, 39:11-16, July 1991.

[4] C. Fidge. Logical Time in Distributed Computing Systems. IEEE Computer,
24(8):28-33, August 1991.

[5] J. Fowler and W. Zwaenepoel. Causal Distributed Breakpoints. In the 10th Inter-
national Conference on Distribute Computing Systems, pages 131-41, 1990.

[6] F. Mattern. Virtual Time and Global States in Distributed Systems. In Workshop
on Parallel and Distributed Algorithms, Elsevier (Holland), October 1988.

[7] P.Singh, W. Weber and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-memory. Computer Architecture News, 20(1):5-44, March 1992.

[8] M. Singhal, M. and A. Kshemkalyani. An Efficient Implementation of Vector
Clocks. Information Processing Letters, 33:47-53, August, 1992.

[9] F. Torres-Rojas, F. and M. Ahamad, Plausible Clocks: Constant Size Logical
Clocks for Distributed Systems. In the 10th International Workshop on Distributed
Algorithms,Bologna(Italy), Octobre, 1996.

[10] Y. Zhou, L. Iftode and K. Li. Performance Evaluation of Two Home-Based Lazy
Release Consistency Protocols for Shared Virtual Memory Systems. In the 2nd
Symposium on Operating Systems Design and Implementation, Octobre 1996.

	Introduction
	Lazy Release Consistency Overview
	LRC Based on Barrier-Lock Clocks
	Performance

	Related Works
	Conclusions

