
Two Schemes to Improve the Performance of a

Sort-Last 3D Parallel Rendering Machine with
Texture Caches

Alexis Vartanian, Jean-Luc Béchennec, and Nathalie Drach-Temam

LRI, Université Paris-Sud,
91405 Orsay France,

(alex,jlb,drach)@lri.fr

tel: 33 1 69 15 42 22
fax: 33 1 69 15 65 86

Abstract. A sort-last 3D parallel rendering machine distributes the tri-
angles to draw to different processors. When building such a machine
with each processor having a texture cache, the texture locality is worse
and the performance is reduced. This article investigates two schemes
to preserve this locality while keeping a good load balancing: triangle
slicing and locality aware triangle distribution. With both schemes, the
speedups are improved between 2 and 6 times.
Keywords: Cache memories, multiprocessing, application specific archi-
tecture, parallel rendering, texture mapping.

1 Introduction

Multimedia applications are now expected to be the main consumer of comput-
ing power in the coming years. Among these applications, real-time 3D image
rendering has raised a lot of attention this year as most microprocessor manu-
facturers are releasing new instruction set extensions (Intel SSE) mainly aimed
at accelerating geometry transformations of PC microprocessors. Such a trend
reduces the performance gap between a high end PC with a 3D accelerator and
a workstation with expensive ASICs. As 3D rendering contains a fair amount
of parallelism, a parallel machine with PC 3D accelerators could offer a good
performance/price ratio.

There are many ways to use parallelism in 3D rendering. Molnar have given
a classification of all kinds of machines. In this paper, according to this classifi-
cation, we focus on a sort-last machine based on PC 3D accelerators. In such a
machine, the triangles to be drawn are distributed among independent pipelines
that do both geometry transformations and texture mapping on the same data.
The PixelFlow machine is the best known sort-last 3D computer. This architec-
ture has two main advantages: it is not necessary to redistribute the triangles
between the geometry stage and the texture mapping stage and dynamic load
balancing can be used. However these architectures have a main drawback: as
each pipeline can render anywhere on the screen, all processors need to transfer

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 757–760, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



758 Alexis Vartanian, Jean-Luc Béchennec, and Nathalie Drach-Temam

their frame buffer to one processor. This part of the machine requires a high
bandwidth.

This is the reason why most research on sort-last machines has focused on
this part of the pipeline. However, when such a machine is based on PC 3D
accelerators, they will have an internal texture cache. Hakura and Gupta have
shown that a cache works very well in handling texture locality. But when texture
caches are used in a 3D parallel machine, a problem arises. If two triangles are
rendered in different pipelines and if some texels 1 were reused between the
two triangles, there could be less locality on a parallel machine compared to a
sequential machine. In our previous work, we have observed such a phenomenon.
We have shown that a synchronous sort-middle architecture performance was
strongly reduced if such a phenomenon was taken into account. We have also
evaluated sort-last machines and shown that some benchmarks could suffer from
this phenomenon.

32crush 32massi blowout massive quake room3 teapot_ truc640

0

10

20

30

37.86

Benchmark

Sp
ee

du
p

1

2

8

32

64

128

Fig. 1. Speedup compared to a single processor machine with triangle set size,
with a 64 processor machine having texture caches of 16KB.

In this study, we evaluate two schemes to deal with this problem. These
evaluations are based on event-driven simulations of the architecture on different
3D benchmarks. The first section presents the performance of the machine with
the second scheme: we try to find out a distribution of the triangle that does
not break the locality and we show that it generates load unbalance. The second
section shows how we solve that problem with triangle slicing. The third section
presents the overall performance when both schemes are used 2.

1 A texel is a pixel in the texture.
2 An more detailed version of this paper is available at http://www.lri.fr/∼alex/.



Two Schemes to Improve the Performance 759

2 The Impact of Load Unbalance

The main idea of our whole study is to find out a triangle distribution algorithm
that improves the locality. The algorithm we use in this study is the following:
each time a geometry engine has finished its work, it asks the distributor for a
set of N consecutive (in the submission order) triangles. With this algorithm,
we expect to increase the cache locality. However if we try to use this algorithm
alone, we don’t success in increasing the performance as seen in figure 1. We see
that speedup is not increasing with N. Moreover, the best value for N is not the
same for all the benchmarks. It means that when this algorithm is used, it is not
clear whether it increases or decreases the performance. This is due to the fact
that the load balancing heavily depends on the big triangles. And our algorithm
might send a set of very big triangles to the same processor. We are going to
present a solution to this issue.

3 Triangle Slicing

The suggested scheme is the following. Each time a triangle has more pixels
than S, the distributor cuts it into two fair slices. It does that while any trian-
gle is bigger than S. We have measured the impact of such a scheme on load
balancing with a perfect cache. If we cut any triangle having more than 2500
pixels, the negative impact of the first scheme disappears and the speedup with
64 processors is the same with any set size.

However, such a scheme has an impact on the locality. When a big triangle
is sliced, two effects are expected. The locality might be improved: as triangles
are smaller, the lines could be shorter. If a texel is shared between two pixels on
the same row, the duration between the two uses depends on the line size. If the
line is too long, the texels might have been evicted from the cache because of a
conflict or a capacity problem. On the other hand, when a triangle is sliced, the
pixels of the side could have less locality. As far as these pixels are concerned, the
duration between the texel uses is far longer with slicing. Before slicing, these
texels were immediately reused. With slicing, they have to wait for the complete
triangle to be drawn.

We observed that the impact of the two phenomena were highly dependent
on the slicing method used. When a triangle is cut into two triangles, we have
to choose on which side we add a vertex. We evaluated different algorithms
and showed that it is better to choose the highest side than the biggest side. It
generates less high triangles than the other. If the triangles are less high with
the same size, they must have a greater width. As we said before, this is an
important issue for the locality.

4 Evaluation of the Distribution Scheme

We now measure the performance of the architecture with triangle slicing. We
observe on figure 2 that, for all the benchmarks, performance increases with N.



760 Alexis Vartanian, Jean-Luc Béchennec, and Nathalie Drach-Temam

32crush 32massi blowout massive quake room3 teapot_ truc640

0

10

20

30

40

50

60

Benchmark

Sp
ee

du
p

1

4

20

40

100

200

Fig. 2. Speedup compared to a single processor machine with triangle set size,
with a 64 processor machine having texture caches of 16KB. Triangle are sliced
if bigger than 1000 pixels with the algorithm 2.

This is what we expected: the locality is improved by our algorithm. However
for quake and teapot.full performance starts to decrease if N is greater than 40.
To understand that phenomenon we measured the average cache miss rate of
all the processors. We saw that for all the benchmarks, the miss rate decreases
between 1 and 40 and increases with N after 40. We have the following analysis
of this behavior: if too many triangles are sent, the number of triangles to be
redistributed at the end of the frame increases. The impact of this on perfor-
mance depends on the bus load at this period. It shows that if we want to have
the optimal performance with any benchmark, a set size of 40 should be used.

5 Conclusion

In this study, we have seen that the performance of a sort-last parallel machine
aimed at real-time 3D rendering and based on PC 3D accelerators greatly de-
pends on texture cache behavior and on load balancing. We have seen that any
attempt to manage the locality with a good distribution was limited by the big
triangles. We have presented a solution to this problem: triangle slicing. How-
ever, if this is done, locality can be greatly reduced. To avoid this behavior, we
have suggested a slicing algorithm that keeps a good locality. With that slicing
algorithm, we have shown that if the distributor sends 40 triangles to a pipeline
each time it is free, the locality is increased and the performance is better. With
these two schemes, we are able to increase the speedup between 2 and 6 times.

This paper is a summary of our work. A more detailed version with complete
references is available at http://www.lri.fr/∼alex/.


	Introduction
	The Impact of Load Unbalance
	Triangle Slicing
	 Evaluation of the Distribution Scheme
	Conclusion

