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Abstract. This work is motivated by the observation that in DES-like ciphexs it 
is possible to choose the round functions in such a way that every non-trivial 
one-round characteristic has small probability. This gives rise to the following 
definition. A mapping is called differentially uniform if for every non-mro input 
difference and any output difference the number of possible inputs has a uniform 
upper bound. The examples of differentially uniform mappings provided in this 
paper have also other desirable cryptographic properties: large distance from 
ailbe functions, high nonlinear order and efficient computability. 

1. Introduction 
The most successful and widely used block cipher has been the DES algorithm 

which was designed in the seventies. By the time, however, it has become too 
small, the key size being only 56 bits, and all attempts to increase the security 
by extending the DES by parallel or serial implementetations have failed. 

In recent years the DES has been extensively analyzed in order to  capture its 
properties of strength. Special attention has been focused on the nonlinearity 
properties of the round function, which is composed of permutations and eight 
small parallel substitution transformations, the S-boxes. It seems that the se- 
curity can be increased only by increasing the size of the S-boxes or possibly by 
replacing the set of small parallel substitutions by one large transformation with 
desirable properties. 

The necessary criteria for a substitution transformation or a round function 
of DES-like cipher include the following. 

(i) High nonlinearity, large distance from linear functions; 
(ii) High nonlinear order, the degrees of the outputbit functioiis are large: 
(iii) Resistance against the differential cryptanalysis; and 
(iv) Efficient construction and computability. 
To satisfy requirement (iii) it is enough that for every fixed nonzero input 

difference to the function no output difference occurs with high probability. In 
other words, it is required that there is a uniform upperbound to the probability 
of the possible output differences. If this holds 110 strong characteristics for the 
success of the differential cryptanalysis exist as was proven in [7 ] .  

The purpose of this paper is to give examples of transformations of GF( 2" ) 
with properties ( i )  - (iv). Moreover, all these transformations are extendable i n  
the sense that if parametrized by the length of the input, the complexity of the 
construction and implementation is polynomial but the security is exponential 
with key of linear length. 
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2. The resistance of DES-like ciphers against differential attacks 
Let (C,+) be a finite Abelian group, G' a subgroup of G, Fi : C + G' map- 

pings, and E, : G' + G such that Ei-Ei(0) is an injective group homomorphism, 
i = 1,2, .  . . , P. We define an r-round DES-like cipher over G as follows. 

Given  a plaintext x = (XL,  XR) E G' x G' and a key k = (kl, k z , .  . . , kr) E G' 
the ciphertext y = (YL,YR) is  computed in  r iterative rounds: 

Set x ~ ( 0 )  = XL and XR(O) = XR and 
compute for i = 1,2 , .  . . , r  

x(i) = (xL(i),xR(i)), where 

x ~ ( i )  = X R ( ~  - 1) and 
X R ( ~ )  = Fi(Ei(xR(i - 1)) + ki) + x ~ ( i  - 1). 

An s-round characterist ic x = x(a(O),. . . ,a(s)) of a DES-like cipher is a 
sequence of diflerences ~ ( i )  = ( a ~ ( i ) , ~ ~ ( i ) )  E G' x GI, i = 0,1 , .  . . , s, such that 
Q L ( ~ )  = Q R ( ~  - I) ,  i = 1 , 2 , .  . . , s .  

s, we say that x holds 
for x and k if X* - x = a(0) and 

Given x, X* E G' x G' and k = (k l ,  . . . , kR) E G', r 

x*(i) - x(i) =a(i), 

for all i = 1 , 2 , .  . . , s, or what is the same, 

Fi(Ei(x~(i  - 1) + Q R ( ~  - 1)) + ki)- 

Fi(Ei(xR(i - 1)) + ki) + a L ( i  - 1) = a R ( i )  
(1) 

for all i = 1,2 , .  . . ,s. 

function of x and k = ( k l ,  . . . , kd)  defined as follows 
In what follows we find it convenient to consider a characteristic x as a Boolean 

where for i =  1,2, ..., s weset 

Xi(x, ki) = 1 

if and only if (1) holds. 
The differential cryptanalysis of iterated ciphers [I] [4] makes use of s-round 

characteristics to carry forward the information of a fixed input difference from 
the first round to the sth round independently of the used key.  Given a plaintext 
pair (x, x*), chosen by the cryptanalyst ,  and the round keys kl,. . . , k,, unknown 
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t o  the cryptanalyst ,  a characteristic may or may not hold. The probability of 
the cryptanalyst's success, i.e., that a characteristic x = x(a(O), . . . ,Q.(s)) holds 
for a chosen plaintext pair (x, x * ) ,  x +a(O), is P ~ ( x ( x ,  K) = I ) ,  where the key 
K = (Ki,. . . , Ka) E G" is considered as a random variable. If the round keys 
K 1 , .  . . , K a  are independent then 

S 

~K(x(x, K )  = 1 )  = n PK,(xi(x, K i )  = 1) 
i = l  

i.e., the probability of a characteristic is the product of the probabilities of its 
rounds. 

To compute the one-round probabilities we assume that Ki is uniformly ran- 
dom. Let us denote 

ak(i  - 1 )  = Ei(QR(i  - 1 ) )  - Ei(0). 
Then 

PK,(X(X, Ki) = 1 )  =PK,{Fi(Ei(XR(i - 1) + a R ( i  - 1 ) )  + E(,) 

- Fi(Ei(XR(i - 1 ) )  + Ki) + a L ( i  - 1 )  = a ~ ( i ) }  
= p ~ , { F i ( E i ( x R ( i  - 1)) + I<; +&(i - 1)) 
- Fi(Ei(xa(i  - 1 ) )  + Ki) + a ~ ( i  - 1) = a ~ ( i ) }  

=Pz{Fi(Z +ak( i  - 1 ) )  - Fi (Z)  + a L ( i  - 1 )  = a R ( i ) } ,  

where Z E G is uniformly random. This shows, in particular, that the one-round 
probabilities are independent of x .  In the terminology of [4] this means that a 
DES-like cipher over an Abelian group is a Markov cipher with respect to the 
canonical difference. 

Given a, b E G' let us denote 

pF,(a,b) = Pz{Fi(Z + a) - Fi(z) = b} 

where Z E G is uniformly random. Then 

P K , ( x ( x ,  K i )  = 1 )  = p ~ , ( a l F ( ( i  - l ) , a ~ ( i )  - m ( i  - 1 ) ) .  

To prove resistance against differential cryptanalysis it suffices to show that 
for any given (or chosen) input pair ( x ,  x') the probability of guessing correctly 
the difference x * ( s )  - x(s), without any knowledge of the used key, is too small 
to be useful. 

the probability of getting x * ( s )  - x ( s )  = j3 from ( X I ,  x )  
with x* = x + a  is the sum of the probabilities of the different characteristics 
x(a(O), . . . ,a(s)) with a ( 0 )  = a, 4 s )  = p, that is 

Given x ,  a and 

c PK{X(Q(O),Q(l) ,  . . . ,Q(s - l ) , a ( s ) ) ( x ,  10 = 1 1 .  
4 0 )  = a  
a ( s )  = B  

Theorem 1 of [7] can be generalized to hold for a DES-like cipher over any 
Abelian group with different round functions. We have the following result. 
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THEOREM. Let the round keys of a DES-like cipher be independent and uni- 
formly random. Then for ail a, B E G' x G', B # 0 and for all x E G' x G' 

if s 2 4. If G' = G and Fi is a permutation for all i = 1 ,2 , .  . . , r ,  then the 
estimate holds for s 2 3. 

This motivates the following definition. 

DEFINITION. Let G1 and G2 be finite Abelian groups. A mapping F : G1 4 Ga 
is called differentially &uniform if for all a E GI, Q # 0, and f l  E G2 

Now the result of the theorem can be stated as follows: 
If the round functions of a DES-like cipher over  G are differentially 6 -un i form 

and the round keys are independent and uniformly random then for every given 
input pa i r  (x +Q,x),  a # 0, the average probability over  the keys t o  obtain an  
output diflerence j9 # 0 at the sth round, s 2 4, is less than or  equal t o  2(6/1G1)2. 

Examples of differentially 2-uniform mappine are the almost perfect nonlinear 
permutations of GF(2") as defined in [7]. If m - n output coordinates of a 
permutation of GF(2m) with property (P) (see [7]) are omitted the resulting 
mapping from GF(2m) to GF(2") is differentially 2m-n+1-uniform. 

The purpose of this paper is to give other examples. The following two facts 
are useful. 

PROPOSITION 1. Let A : GI + GI and B : G2 -c G2 be group isomorphisms 
and F : GI + Gz be differentially 6-uniform. Then B o F o A is differentially 
6- uniform. 

PROPOSITION 2. Let F : GI t G2 be a differentially &uniform bijection. Then 
the inverse mapping of F is differentially &uniform. 

3. Power polynomials F ( x )  = x2k+1 in GF(2")  and their inverses 
We shall first prove the following general results about the nonlinearity properties 
of power polynomial mappings. 
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PROPOSITION 3 .  Let F ( x )  = x2'+I be a power polynomial in GF(2")  and let 
s = gcd(k, n). Then F is differentially 2'-uniform. If 5 is odd ,  that is, F is 
a permutation, then the Hamming distance of  the Boolean function Jw(x) = 

for allw E GF(2") ,  w # 0. 

PROOF: Given a, p E GF(2") ,  a # 0,  the equation 

tr (wF(x))  from the set of  linear Boolean functions is equal to 2"-' - 2*-' 2 , 

(. +, )2"+1  + x2*+1 - - B  

has either zero or at least two solutions. Let x1 and xg be two different solutions. 
Then 

( X I  + x2) 2 k  a+ ( X I  + X 2 ) d k  = 0 

or equivalently, 
2 k - 1  - 2 " - 1  

( X I  + x 2 )  -a 

from which it follows that 

where G is the subfield of GF(2") of order 2'.  Hence given one solution xo  of 
( 2 )  the set of all solutions is xo + aG of cardinality 2 $ .  

TO prove the second part we make use of the technique of squared character 
sums. Let w E GF(2") ,  w # 0 and denote the Walsh transform of fw by pw. It 
suffices to show that 

Let t E GF(2").  Then 

Let y # 0 and denote by Ey the range of the linear mapping 

x H F ( x  + y )  + F ( x )  + F ( y )  = x 2 * y  + y2'x .  

Similarily as in the first part of the proof we see that the kernel of this linear 
mapping is y G .  Thus the dimension of the linear space Ey is n - s. For each 
y # 0 either 

tr(wf?) = 0 for all f l  E Ey, or (-1)"("@) = 0. 
BEE, 
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The vectors y for which tr(@) = 0 for all f l  E Ey or equivalently, 

for all x E GF(2"), form a linear subspace Y of GF(2"). So we have 

By definition of Y the function fu is linear on Y .  Hence it remains to show that 
Y has 2" elements. 

Let y E Y. Then 

2' 2 k  2' 2= 2' tr(wyx ) = tr(wy x) = tr(w y x ) 

for all x E GF(2"), which is equivalent to 

or, if y # 0, 
(wF(y))2'-1 = 1, 

from which we get exactly 2j - 1 nonzero solutions y ,  since F is assumed to be 
a permutation. This completes the proof. 

If n is odd, 1 < k < n and gcd(n,k) = 1, then the power polynomial 
F(x)  = x2*+' in GF(2") is a differentially 2-uniform permutation. The pub- 
lic key cryptosystem C' [5] is based on power polynomial permutations with 
n = (2& + 1)2' and k = b2', 1 5 b 5 1. By Proposition 3 the coordinate func- 
tions of these polynomials are the more linear the larger T is. Finally notice that 
for n = 2m the polynomial F ( x )  = x2'+l in GF(2") is never a permutation. 

The degree of a Boolean function f is the polynomial degree of the algebraic 
normal form off and is denoted by deg(f). Let us denote by w2(k) the 2-weight 
of a non-negative integer k .  One proof of the following well-known result can be 
found in [2]. 

PROPOSITION 4.  Let w E GF(2"),  w # 0 and let x H xe be a permutation of 
GF(2").  Then 

deg(tr(wxe)) = wz(e). 

The permutations x w xZkt1 in GF(2"), n odd, satisfy properties (i), (iii) and 
(iv) but their output coordinate functions are only quadratic. Their inverses, 
however, have degrees linearly growing with R .  
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PROPOSITION 5.  Let n be odd, gcd(n,k) = 1 and F ( x )  = x2*+l, 
F - ' ( x )  = x', where 

Then 

n- I - 
2 + t ' )  - 1 

22k - 1 
e =  - - k 2 2 ' k  mod (2" - 1) 

i = O  

with 

PROOF : 

m - 1  - n- 1 - 
1 a 

!(2k + 1) = 2(2'+')k + 22ik mod (2" - 1) 
i = O  i = O  
n 

= c 2 i k  mod (2" - 1) 
i = O  
n 

= c 2 i  mod (2" - 1) 
i=O 

- - 2nt1 - 1 mod (2" - 1) = 1 mod (2" - l), 

where the third equality follows from the fact that the mapping i H ki permutes 
the integers modulo n if gcd(n, k) = 1. 

As a conclusion we list the following properties of the inverse of F ( x )  = xZk+' 
in GF(2") with n odd and gcd(n, k) = 1. 

(i) h / ( F - ' )  = miryominL I,,,. minXEGq-p) d(tr(wF-'(x)) ,  L ( x ) )  = 
2"-1 - 2 + :  

(ii) deg(tr(wF-l(x)))  = w2((zk + l)-l mod (2" - 1)) = y; 
(iii) F-' is differentially 2-uniform; 

(iv) Using the fast exponentiation algorithm the computation of F - ' ( x )  is 
of polynomial time requiring squarings and multiplications in 
G F ( 2 " ) .  

The first property follows from Theorem 1 of [S] which says that h l ( F - ' )  = 
N ( F )  and from Proposition 3. 

4. The mapping F ( x )  = x-' in a finite field 
Let (F, .,+) be a finite field. Then the inversion mapping F : F - F 

x - ' ,  i f x # O  
0, if x = O  

F ( x )  = 

is well defined. 



62 

PROPOSITION 6.  The inversion mapping is differentially 4-uniform in (F, +). 

PROOF: Let Q, /l E F and Q # 0 and consider the equation 

Assume that  x # 0 and x # -a. Then ( 3 )  is equivalent to  

which has at most two solutions in F. If either x = 0 or x = -Q is solution to 
(3), then both of them are solutions and /3 = a-'. In that case (4) is equivalent 
to  

which may give two more solutions to (3). 

tuting x2 = (rx +a2 we obtain 
Let us solve (5) in the special case F = GF(2"). By squaring (5) and substi- 

x(x3 + a3) = 0, 

which has no other solutions than x = 0 or Q if gcd(3,2" - 1) = 1, or equivalently, 
if n is odd. If n is even then 3 divides 2" - 1. Let d = g(2" - 1). Then there 
are two more solutions, x = al+d and x = cr1tZd.  

We list the following properties of the inversion mapping in GF(2"). 
(i) N ( F )  = min,,,+ominL 1,". rnin,,Gpr2.) d(tr(wx-'), ~ ( x ) )  2 2"-' - 2 4 ;  

(ii) deg(tr(wx-')) = ~ 2 ( 2 "  - '2) = n - 1; 

(iii) F is differentially 2-uniform if n is odd and it is differentially 4-uniform 
if n is even; 

(iv) The Euclidean algorithm computes x-l  in polynomial time with respect 

Acknowledgements. The author's attention to  the mapping x H x-l was drawn 
by C. Carlet. He observed that the high nonlinearity property [i) was actually 
proven in the work of Carlitz and Uchiyama [3]. L. R. Knudsen provided the 
author with examples demonstrating the difference between the odd and even 
case in (iii). 

to n. 
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5. A mapping derived from the exponent mapping in a prime field 
Let p be a prime and consider the Abelian group G = {0,1,. . . , p  - 1) with 

the modulo p addition. Let u be an element of order q in the finite field GF(p) .  
We define a mapping F : G + G as follows: 

F ( t )  = u", for t E G, 
where the exponentiation is computed in GF(p).  

Let a , p  E G and a # 0. Then the equation 
&+a) mod P - u" = p (6) 

is equivalent to 
u " + ~  - uz = p and 0 5 t 5 p -  a - 1 (7) { :z+a-P-uz = p a n d p - a l t < p - l .  (8) 

Since the solution t of 

is unique modulo q it follows that (7) has at most [ 7 1  solutions in G. Similarily 
equation (8) has  at most [fl solutions in G. Consequently equation (6) has a t  
most 

solutions in G. We have proved the following. 

PROPOSITION 7. Let F be the mapping from the set of integers modulo a prime 
p to itself as defined above using exponentiation and an element of order q in 
G F ( p ) .  Then F is differentialy (7 + 1)-uniform. 

The mapping F defined in this section seems to be complex enough to be used 
as round function of a DES-like cipher over the integers modulo a prime with a 
small number of rounds. The computational complexity of such a cipher grows 
with the order of the base element u. Proposition 7 shows the trade-off between 
the complexity of the enciphering (and deciphering) algorithm and the security 
against differential cryptanalysis. 
6. Other security aspects. 

Let us consider as an example a r-round DES-like cipher over G = (GF(2"), @) 
with round functions F,(x) = x-l.  From known plaintext-ciphertext pairs one 
gets polynomial equations of low degree (linear with the number of rounds) from 
which the round keys can be easily solved. The same is true if round functions 
Fi(x)  = x3 are used. Note the number of known plaintext-ciphertext pairs 
needed is constant with n. This number is at  most linear with n if the inverses 
of x I+ xZkt1 are used as round functions. 

However, the high nonlinear order of the inversion mapping and the inverses 
of x2*+l comes into effect if these mappings are combined with appropriately 
chosen linear or affine permutations which may vary from round to round and 
depend on the secret key. Hereby the virtues (i), (ii) and (iv) presented in $1 
are not destroyed since they are linear invariants. By Proposition 1 the same is 
true for the differential uniformness that quarantees (iii). 

Ux+Q - u " = P  

[.=I + [q = + 1 
9 'I 
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An anonymous referee of this paper posed a natural question whether our 
approach is relevant to the situation where an attacker uses a notion of difference 
other than xor in his differential cryptanalysis attack. In our view, regarding 
DES-like ciphers, resistance against zor-differential analysis has no less crucial 
relevance as resistance against linear approximation. 

Naturally, as well as a cryptanalyst may try any type of approximation he may 
try any type of differentials. Since all our examples of differentially uniform map- 
pings in GF(2") are multiplicative, we should consider differential cryptanalysis 
with respect to  the multiplicative difference 

x * x - l 1  for x * ,  x E GF(2").  

Let us assume that F is a multiplicative permutation and A a linear permutation 
in GF(2"). Then for a DES-like cipher with F o A as a round function, the 
probability of every one-round multiplicative differential with a # 1 is 

P K { F ( A ( x a @  IC))F(A(x @ I<-))-' =a} = 

P K { F ( ( A ( x a )  @ A ( I I ) ) ( A ( x )  @ A ( K ) ) - ' )  = B }  = 
2-" I 

since the mapping 

z - (a @ z)(b @ z)-' 

is a permutation in GF(2") if a # b and we set (a @ z)(b @ z)-l = 1 for z = b. 
Recent related work. 

Some of the results of this paper were independently obtained by T. Beth 
and C. Ding. They present also more examples of almost perfect nonlinear 
permutations in their paper which is the next to  follow in these proceedings. 
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