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Abstruct. A new public key cryplosyslem based on elliptic curves over the 
ring %n is described. The scheme can be used for both digital signature and 
encryption applications, docs not expand the amount of data that needs to be 
transmitted and appears to be immune from homomorphic attacks. The main 
advantagc of this systcm ovcr othcr similar elliptic curve based systems is 
that thcrc is very little restriction on the types of elliptic curves and types of 
primes (comprising the arithmetic modulus, n) that can be used. In addition, 
the system works on fixed elliptic curves. Problems associated with 
imbcdding plaintext onto a curve are avoided by working within a multiple 
group structure. This enablcs the encryption and decryption operations to be 
performed on only the first coordinate of points on the given curve. The 
sccurity of the systcm relics on the difficulty of factorising large composite 
numbers. 

I Introduction 

An analoguc of the Diffie-Hellman key exchange protocol [l]  based on the use of 
clliptic curvcs was first proposed by Miller [2] in 1985. Elliptic curve based 
analogues of the ElGamal scheme and the Massey-Omura scheme followed in 1987 
and are dcscribcd in [3]. The first elliptic curve based analogue to the RSA scheme 
was introduccd in 1991 [4]. Three trapdoor one-way functions (TOFs), based on 
elliptic curves over the ring Zn, were proposed. The first class of function, denoted a 
"type 0" TOF, can only be used in a digital signature scheme, and not in a public key 
cryptosystcm. The second, denoted a "type 1" TOF, has the commutative property and 
can be used for the same applications as RSA, however, its use restricts the types of 
primes (forming thc arilhmctic modulus) and the types of elliptic curves that can be 
used. Thc third class, denoted "type 2", is the Rabin generalisation of the type 1 
schcmc. 

In this papcr a ncw public kcy cryptographic scheme (or TOF) based on elliptic 
curves ovcr a ring Zn is proposed that overcomes most of the limitations of the 
schcmes proposed in [4]. In common with RSA, security is based on the difficulty of 
factorising composite numbers formed by the product of two large primes (and not the 
discrcte logarithm problem on elliptic curves on which the schemes presented in [21 
and 131 arc based). In the ncw schcme the message or plaintext is represented by the 
first (or x) coordinatc of a point P = (x, y)  on an elliptic curve, y2 I x3 + ax + b 
modulo n,  with t'ixcd parameters (a and b). Ciphertext, Xe, is produced by computing 
thc first coordinate only of  the point P multiplied by e (the encryption multiplier). 
Thc plaintcxt is rccovcrcd by computing the first co-ordinate only of the point eP = 
( x c ,  yc) multiplicd by onc of lour possible decryption multipliers, di, i = 1 to 4 
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(assuming n is the product of two large primes, p and 4). The appropriate value of di 

to be used is determined by the values of the two Legendre symbols 
n 
5 where w = x, + ax, + b modulo n. Digital signatures are produced in a similar 

fashion. The Chinese Remainder Algorithm may also be used to reduce the 
computation time involved in the decryption procedure and in the production of digital 
signatures. 

A brief review of the basic definitions and facts about elliptic curves over a finite field 
is given in Section 2. Section 3 introduces the concept of a "complementary" group 
on an elliptic curve over a finite field. The proposed encryption scheme and the rules 
used to compute the first coordinate of a point on an elliptic curve are described in 
Sections 4 and 5, respectively. Sections 6 and 7 summarise the encryption and digital 
signature schemes in terms of the first coordinate of a point on an elliptic curve. 
Finally, the basis for scheme's immunity to homomorphic attack is given in Section 
8. 

2 Elliptic Curves (mod p) 

LeA p be a prime, greater than 3, and let a and b be integers chosen such that 

4a3 + 27b2 f 0 (mod p). (1) 

Then Ep(a.b) dcnotes the elliptic group modulo p whose elements, (x,y), are pairs of 
non-negative integers less than p satisfying 

y2 = x3 + ax + b (mod p), (2) 

together with a special (identity) element denoted 00 and called the point at infinity. 
The operation on two points, P and Q, 10 produce a third point, R, is termed 
"addition" and is written as 

P + Q = R .  (3) 

I fP=  (xl,Y1) and Q = (x2,y2), then R = (x3,y3) is determined by the following rules: 

X 3  = h2 - xi  - x2 (mod p) (4) 

where 



42 

If Q is the identity element, then P + Q = Q + P = P. 

The order of thc group, denoted IEp(a,b)l, is given by: 

IEp(a,b)l = 1 + t((t) + 1) 
x= 1 

where (t) is the Legendre symbol and z I x3 + ax + b (mod p). 

This equation is easy to verify by noting that, in addition to the point at infinity, for 
a given valuc of x: 

(1) thcre arc two valucs of y that correspond to that value of x, if z is a quadratic 
residue modulo p; 

(2) thcrc is one valuc of y that corresponds to that value of x, if z E 0 modulo P; 
and 

(3) thcre arc no valucs of y that correspond to that value of x. if z is a quadratic non- 
rcsiduc modulo p. 

A polynomial-time algorithm, due to Schoof [ 5 ] ,  for computing the order of an 
elliplic group over a finite ficld cxisk However, even though it is far more efficient 
than computing (7) directly, it is not practical for large p. Practical techniques for 
computing thc order of an elliptic group modulo p, for large p with stated properties, 
are discussed in [61. Two particular cases using these techniques are described in [71 
and are as follows. 

In thc first caw, if p is an ordinary prime which is congruent to 1 modulo 4, r is a 
complex primc that divides p and is congruent to 1 modulo 2 + 21, and D is any 
intcger not divisible by p thcn thc order of Ep(-D,O) is 

- 
where (:), is the fourth power symbol and r is the conjugate of the complex 

intcger r. 

For cxamplc, if p =13 and r = 3 + 2i, Lhcn 
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lE13(-l,O)l 
IE13(1,O)I 
IE13(-2,0)1 
IE13(2,0)1 

= 14 - (1)(3 + 2i) - (1)(3 - 2i) = 8 
= 14 - (-1)(3 + 2i) - (-1)(3 - 2i) = 20 
= 14 - (i)(3 + 2i) - (-i)(3 - 2i) = 18 
= 14 - (-i)(3 + 2i) - (i)(3 - 2i) = 10. 

In the second case, if p is an ordinary prime which is congruent to 1 modulo 3, r is a 
cubic prime that divides p and is congruent to 2 modulo 3, and D is any integer not 
divisiblc by p thcn the order of E,(O,D) is 

- 
IE,(O,D)I = p + I + (y)6 r + (?>, r (9) 

- 
where (f;)6 is h c  sixth power symbol and r is the conjugate of the cubic integer f .  

IE13(0,1)1 = 14 + (02)(-4 - 30) + (o)(-I + 30) = 12 
IE13(0,2)1 
IE13(0,3)1 

= 14 + (-1)(-4 - 30) + (-l)(-1 + 3 ~ )  = 19 
= 14 + (1)(-4 - 30) + (I)(-] + 30) = 9 

IE13(0,4)1 
IE13(0.5)1 
IE13(0,6)1 

= 14 + (a)(-4 - 30) + (w2)(-I + 30) = 21 
= 14 + (-0~)(-4 - 30) + (-u)(-I + 3 ~ )  = 16 
= 14 + (-o)(-4 - 30) + (-0*)(-1 + 30) = 7 

Note: It  is wcll known that 

IEp(a,b)l = p + 1 + a, 
for every elliptic curve over Fp. 

where la1 5 2 6  

3 Complementary Group on a Given Elliptic Curve (mod p) 

Definirion: Let p be a prime, greater than 3, and, again, let a and b be integers chosen 
such that (1) holds. In addition, let Ep(a,b) denote the elliptic group modulo p 
whose clcmcnis, (x,y), satisfy cquation (2),  as before, but where y is an indeterminant 
in the ficld Fp for non-negative integer values of x. That is, y is of the form y = u 6  
(mod p), where u is a non-negative integer less than p and v is a fixed quadratic non- 
residue modulo p. The identity element, DO, and the "addition" operation are identical 
to those defined in the prcvious section. 

It  is easy to show that all group axioms hold for the above definition. For example, if 
P = (XI ,YI) = (XI .DIG) and Q = (x2,yz) = ( ~ 2 . ~ 2 6 )  are two elements in the group, 
then R = (x3,y3) = (x3,u3&) is also in the group (closure), i.e.. 
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where, i f  XI f. x2 (mod p), 

The ordcr of this "complemcntary" group is given by 

I Ep(a,b) I = 1 + $( l  - ( 5 ) )  
X = l  

whcrc (i) is the Lcgcndrc symbol and z = x3 + ax + b (mod p). 

In this case, in addition to the point at infinity, for a given value of x: 

(1) there arc two values of y ihat correspond to that value of x, if z is a quadratic 
non-rcsiduc modulo p; 

(2) thcrc is one value of y that corresponds to that value of x ,  if z = 0 modulo p; 
and 

(3) thcrc are no valucs of y [hat correspond to that value of x. if z is a quadratic 
rcsidue. 

Supposc thcrc are A values of x for which (i) = 1, B values of x for which 

0 and C valucs of x for which (s) = -1.  In addition, since x must be in one of p 

possiblc rcsiduc classcs, 

A+B+C = p. (17) 

From (7) and (lo), 

IEp(a,b)l = 1 + 2A + B = 1 + p + a, 

i.e., 2A +B = p + a 
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Consequently, from ( I @ ,  (17) and (18), 

I Ep(a,b) I = 1 + 2C + B = 1 + 2p - (2A + B) = 1 + p - a 

4 Encryption Scheme 

Sclcct two primcs, p and q, and let n = pq denote the arithmetic modulus. Select an 
elliptic curve with thc parameters a and b where gcd(4a3 + 27b2, n)  = 1. Let IEp(a.b)l 
= l + p + a ,  I Ep(a,b) I = I+p-rx, IEq(a,b)l = I+q+p and I E$,(a.b) I = l+q-p. I t  is 
assumcd hat thc order of these groups can be determined using the techniques referred 
to in Scction 2 .  In addition, Ict x represent thc plaintext and s the ciphertext (where 0 
5 x ,  s n-I). 

Encryption is then defincd as 

(s,t) 5 (x,y)#c (mod n), (20) 

wherc (x,y)#e (or cP) dcnotcs the point P = (x,y) "multiplied" by e. Multiplication of 
a point P by i is defincd as the addition of the point P to itself i times. 

Dccryption is dcfincd as 

(XJ)  E (s,t)#di {mod n), 

wherc 

e.di E 1 (mod N,), i = 1 to 4, 

N1 = Icm(p+l+a, q+l+p) 

N2 = Icm(p+l+a, q+l-p)  

N3 = Icm(p+ 1-0, q+ 1 +p) 

N4 = Icm(p+ 1 -a, q+l -p) 

z I x3 + ax + b (mod n), 

y = 6, 

I =  G, 

w s3 + as + b (mod n), and 
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Altcmativcly, the decryption time may be reduced, by a factor approaching 4, by 
computing (21) modulo p and modulo q and then combining the results via the 
Chinese Rcmaindcr Thcorcm. 

Notc that only thc first coordinaies, x and s, have to be computed in this scheme. 
Computation of the second coordinates, y and t, can be avoided using the rules and 
algorilhm dcscribcd in 171. Thc rules are summarised in the following section. 

Notc also that i f  p. q,  a and b are chosen so that a = p = 0 in equations (24) to (27). 
thcn Ni = Icm(p+l, q+l) remains fixed for all i. Consequently, dj is fixed for all i, 

and dccryption is indcpendcnt of the Lcgcndre symbols, 

5 Rules for Computing the First Coordinate of a Point on 
an Elliptic Curve 

In  thc clliptic group Ep(a,b) (or Ep(a,b) ), let (Xj,yi) 

(mod p), thcn 
(x,y)#i (mod PI. If Yi f 0 

2 
(xi  - a)2  - 8 b x ;  

4(xi + axj  + b )  
x2 i  5 3 (mod P). 

In addition, i f  x i  $ xi+ l  and x f 0 (mod p). thcn 

Unfortunatcly congrucncc (33) cannot be used if x 5 0 modulo p (or 9). However, it 
can be shown thai thc congrucncc can be rearranged to give 

4b + 2(a - x ; x ; + l ) ( x i  + x j + t )  
X 2 j + l  I- 2 - x  (modp) 

( x i  - x i + ~ )  

which is valid for all 0 5 x I p-l (and consequently for all 0 5 x 5 n-1 when 
computations arc performcd modulo n). I t  can be shown that x i  is never congruent to 
X i + l  modulo p (or q) during thc course of computing s I xe modulo n, as given by 
(20). Similarly S i  is ncvcr congruent to si+l modulo p (or q) during the course of 
computing (21). Howcvcr, i t  is possible (although extremely unlikely) that yi may 
become congrucni to 0 modulo p (or q) during the course of computations and 
thcrcforc for ( 3 2 )  to bccomc undcfined. The way around this problem is to use 
homogcncous coordinatcs and thcrcfore avoid division until the final stage of the 
cncryption or dccryption prtxdurc. 
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X Y Homogeneous coordinates are formed by setting x = (mod p) and y = z (mod p). 
If  (Xi, yi) (Xi/Zi, Yi/Zi) (X/Z, Y/Z)#i (mod p), computational rules (32) and 
(34) can bc reslatcd in the following form. 

X2j  E (Xi - fli )2 - 8bX;Zi (mod n) 

Z2i 

(35) 

(36) 

2 2  3 

3 2 3  
~ 4 Z i ( X j  + aXiZi t bZi)  (modn) 

2 2  
X2i+l 5 2[4bZ, Z,+l + 2(aZiZj+1 + XiXi+I)(XiZi+1 + Xi+lZi)] 

- X(XiZi+l - Xi+lZi):! (mod n)  (37) 

6 The Encryption Scheme in Terms of the First Coordinate 
of a Point on an Elliptic Curve 

Encryption and Dccryption as dcfincd in (20) and (21) can be rewritten in terms of the 
notation of Section 5 as: 

s I xc = XJZ, (mod n) whcreX=xand Z =  1,and (39) 

where S = s, Z = 1 and di is as dcfined by (22) to (31). 

7 Digital Signature Scheme in Terms of the First 
Coordinate of a Point on an Elliptic Curve 

A digital signature, s, is formed by computing: 

S 3 Xdindi (mod n) 

where X = x is the mcssagc or plaintext, Z = 1 and d; is as defined by (22) to (31) 
with Y. 3 x3 t ax + b (mod n) rcplacing w in (24) to (27). 

Signaturc verification is pcrlormcd by computing: 

x = S J Z ,  (mod n) whcrcS=sand Z =  1. 

8 Homomorphic Attack 

Lct sl and s2 represent t w o  signatures produced for the messages x i  and x2 
respectively. I f  it is possible to determine the second coordinates, t i ,  t2, y1 and y2. 
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corrcsponding to the the above first coordinates, then it is possible to create a new 
signaturc, s, on a new message, x,  by using the addition rules given in Section 2 
(using modulo n rather than modulo p arithmetic), i.e., a new signature point: 

(43) (S,L) = (Sl J l )  + (s2,tz) 

can bc computcd that corrcsponds to the new message point: 

(XJ> = (Xl9Y1) + (X2.Y2). (44) 

In fact, only 11 and 12 nccd to be determined since x can be found, once s is known, 
by using congruence (42). 

Values for t i  and t2 can bc treated as indeterminants and computed using (30) and 
(31), i.c., 

3 
t i  = whcrc w l  = s, + as1 + b (mod n)  

12 = 6 whcrc w2 = 4 + as2 + b (mod n)  

The ncxt stcp is to climinatc one of' the indctcrminants, say t2. If  t2 is written in the 
form, t2 = u G ,  then s is givcn by (scc Section 3): 

1 - u  2 s = (G) wi - s1 -  s2 (mod n> (45) 

The only remaining problem is to dctermine the value of u = d x  (mod n). 
Howcvcr, i t  is impossiblc to I'ind a squarc root modulo n unless thc prime factors of n 
arc known. Conscqucntly, u cannot bc dctermincd from w2 and wl, even if wdwl is 
a quadratic rcsiduc modulo n (in most cases, an integer value of u will not exist, since 
wgwi will no1 bc a quadratic rcsiduc modulo n). Thus, whilst it is possible to add a 
point to itscll' any numbcr of timcs in this scheme, it is impossible to add two 
arbitrary points logcthcr if only the first coordinates of the points are known (unless 
the primcs (p and q) comprising the arithmetic modulus, n, are also known). As a 
rcsult, i t  appears that a ncw signaturc cannot be created from two old signatures. For 
the samc rcason, the activc attack dcscribcd in [4] will also not succeed. 

9 Conclusions 

A ncw public kcy cryptographic schcmc based on elliptic curvcs ovcr a ring Zn has 
bccn proposcd. Thc main advantage of thc scheme is that i t  can be used on elliptic 
curvcs with arbitrary paramctcrs. In addition, digital signatures can be produced that 
are of thc samc s i x  as the mcssagc. Furthcrmore, the scheme does not appear to be 
pronc to homomorphism attacks. Finally, the tcchniques used in this scheme can be 
employcd to producc an clliptic curve analogue of the Pollard Rho  method of 
fac torisa ti on. 
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