A New Elliptic Curve Based Analogue of RSA

N. Demytko

Telecom Australia Research Laboratories
770 Blackburn Road, Clayton, Victoria, 3168
Australia

Abstract. A new public key cryplosystem based on elliptic curves over the
ring Zp is described. The scheme can be used for both digital signature and
encryption applications, does not expand the amount of data that needs to be
transmitted and appears to be immune from homomorphic attacks. The main
advantage of this sysiem over other similar elliptic curve based systems is
that there is very little restriction on the types of elliptic curves and types of
primes (comprising the arithmetic modulus, n) that can be used. In addition,
the system works on fixed clliptic curves. Problems associated with
imbedding plaintext onto a curve are avoided by working within 2 multiple
group structure. This enables the encryption and decryption operations lo be
performed on only the first coordinate of points on the given curve. The
sccurity of the system relies on the difficulty of factorising large composite
numbers.

1 Introduction

An analogue of the Diffie-Hellman key exchange protocol [1] based on the use of
clliptic curves was first proposed by Miller [2] in 1985. Elliptic curve based
analogues of the ElGamal scheme and the Massey-Omura scheme followed in 1987
and are described in {3]. The first elliptic curve based analogue to the RSA scheme
was introduced in 1991 [4]. Three trapdoor one-way functions (TOFs), based on
elliptic curves over the ring Zy, were proposed. The first class of function, denoted a
"type 0" TOF, can only be used in a digital signature scheme, and not in a public key
cryptosystem. The second, denoted a "type 1" TOF, has the commutative property and
can be uscd for the same applications as RSA, however, its use restricts the types of
primes (forming the arithmetic modulus) and the types of elliptic curves that can be
used. The third class, denoted "type 2", is the Rabin generalisation of the type 1
scheme,

In this paper a ncw public key cryptographic scheme (or TOF) based on elliptic
curves over a ring Z;, is proposed that overcomes most of the limitations of the
schemes proposed in [4]. In common with RSA, securily is based on the difficulty of
factorising composite numbers formed by the product of two large primes (and not the
discrete logarithm problem on elliptic curves on which the schemes presented in [2]
and (3] arc based). In the new scheme the message or plaintext is represented by the
first (or x) coordinate of a point P = (x, y) on an elliptic curve, y2=x3 +ax +b
modulo n, with fixed parameters (a and b). Ciphertext, xe, is produced by computing
the first coordinate only of the point P multiplied by ¢ (the encryption multiplier).
The plaintext is recovered by computing the first co-ordinate only of the point eP =
{x¢, yo) multiplied by onc of four possible decryption multipliers, dj,i=1to 4
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(assuming n is the product of two large primes, p and q). The appropriate value of d;

to be used is determined by the values of the two Legendre symbols (E) and (vj:)

3 . . . .
where w = x;, + axe + b modulo n. Digital signatures are produced in a similar

fashion. The Chinese Remainder Algorithm may also be used to reduce the
computation time involved in the decryption procedure and in the production of digital
signatures.

A brief review of the basic definitions and facts about elliptic curves over a finite field
is given in Section 2. Section 3 introduces the concept of a “complementary” group
on an elliptic curve over a finite field. The proposed encryption scheme and the rules
used to compute the first coordinate of a point on an elliptic curve are described in
Sections 4 and 5, respectively. Sections 6 and 7 summarise the encryption and digital
signature schemes in terms of the first coordinate of a point on an elliptic curve.

Finally, the basis for scheme's immunity to homomorphic attack is given in Section
8.

2 Elliptic Curves (mod p)
Let p be a prime, greater than 3, and let a and b be integers chosen such that
4a3 + 2762 £ 0 (mod p). ¢))

Then Ep(a,b) denotes the clliptic group modulo p whose elements, (x,y), are pairs of
non-negative integers less than p satisfying

y2=x3+ax+b (modp), @

together with a special (identity) element denoted o= and called the point at infinity.
The operation on (wo points, P and Q, 1o produce a third point, R, is termed
"addition" and is written as

P+Q=R. (€))
If P = (x1,y1) and Q = (x2,y2), then R = (x3,y3) is determined by the following rules:
x3=A2-x;-x2 (mod p) @

y3=XA(x1-x3)-y1 (modp) )

where
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y1-¥2 e
X1 - %2 if x1 # x2 (mod p)
A= Bx% + a ©
21 if x; = x2 and y; # -y2 (modp)

If Q is the identity element, thenP+ Q=Q +P=P.

If xy = xg and y; = -yp (mod p), then P + Q = o0, i.c., P = -Q or (x2,-¥2) = -(x2,y2)
(mod p).

The order of the group, denoted {Ep(a,b)l, is given by:

Ep(ab)=1+ i((i) + l) ™
x=1

where (%) is the Legendre symbol and z = x3 + ax + b (mod p).

This equation is easy to verify by noting that, in addition to the point at infinity, for
a given valuc of x:

(1) there arc two values of y that correspond to that value of x, if z is a quadratic
residue modulo p;

(2) there is onc value of y that corresponds to that value of x, if z = 0 moduto p;
and

(3) there are no values of y that correspond to that value of x, if z is a quadratic non-
residuc modulo p.

A polynomial-time algorithm, due to Schoof [5], for computing the order of an
elliptic group over a finite ficld exists. However, even though it is far more efficient
than computing (7) directly, it is not practical for large p. Practical techniques for
computing the order of an elliptic group modulo p, for large p with stated properties,
are discussed in [6]. Two particular cases using these techniques are described in [7]
and are as follows.

In the first case, if p is an ordinary prime which is congruent to 1 modulo 4, r is a

complex prime that divides p and is congruent to 1 modulo 2 + 2i, and D is any
intcger not divisible by p then the order of Ep(-D,0) is

Ecpoi=p+1- (2), - (®), 7 ®)

where (%) 4 is the fourth power symbol and T s the conjugate of the complex

integer r.

For cxample, if p=13 and r =3 + 2i, then
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E13-1,0) =14 -(1)3 +2i) - (1)3-2i) =8
[E13(1,0) = 14-(-1)(3 +2i) - (-1)(3 - 2i) =20
E3(-20) =14 - ()3 + 2i) - ()3 - 2i) = 18
E1320) =14 - (-)3 + 2i) - ()3 - 2i) = 10.

In the second case, if p is an ordinary prime which is congruent to 1 modulo 3, ris a
cubic prime that divides p and is congruent to 2 modulo 3, and D is any integer not
divisible by p then the order of Ep(0,D) is

[Ep(O.D)i=p+1+ (%)6 T+ (4;12)6 T &)

where (x;) 6 is the sixth power symbol and 1 is the conjugate of the cubic integerr.

For example, if p =13 and r = -4 - 3@, where @ = 2™/3, then

IE13(0,1) =14 + (02)(-4 - 30) + (®)(-1 + 3w) = 12
[E13(0,2)! =14+ (-1)(-4 - 30) + (-1)(-1 + 3w) = 19
IE13(0,3)] = 14 + (1)(-4 - 30) + (1)(-1 + 30) =9

[E13(0,4) =14 + (0)(-4 - 3w) + (02)(-1 + 3w) = 21
[E13(0,5) =14 + (-w?)(-4 - 30) + (-0)(-1 + 3w) = 16
E13(0,6)l =14 + (-0)(-4 - 30) + (-02)(-1 + 30) =7

Note: It is well known that

Ep(ab)l=p+1+a,  wherelols Wp (10)

for every elliptic curve over Fp,

3 Complementary Group on a Given Elliptic Curve (mod p)

Definition: Let p be a prime, greater than 3, and, again, let a and b be integers chosen
such that (1) holds. In addition, let Ep(a,b) denote the elliptic group modulo p
whose clements, (x,y), satis{y equation (2), as before, but where y is an indeterminant
in the ficld Fp for non-negative integer values of x. That is, y is of the form y = u\/;
{mod p), where u is a non-negative integer less than p and v is a fixed quadratic non-
residue modulo p. The identity element, oo, and the "addition" operation are identical
to those defined in the previous section.

It is easy to show that all group axioms hold for the above definition. For example, if
P=(x1yn =K ‘Ul\/;) and Q = (x2,¥2) = (xz,uz\/;) are two elements in the group,
then R = (x3,y3) = (x3,u3VV) is also in the group (closure), i...

(x1,y1) + (x2,y2) =(x3,y3) (mod p), an
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where, if x1 #x2 (mod p),

X1 - X2

y3 = ((:: :;}xl - x3) - ul)\/; (mod p), (13)

or, if x; = x9 and yq # -y (mod p),

(3)(]2 + a
= X1 - 4
x3 ol RREIRE ! (mod p) (14)

3)(]2 +a
y3 = Zupv X1 - x3) - u; Vv (modp) @15)

The order of this "complementary” group is given by

| Ep(ab) =1+ i(] . (%)) (16)

x=1

X3 = (ul - uz)ZV - X1 -x2 (mod p) (12)

where (:;) is the Legendre symbol and z = x3 + ax + b (mod p).

In this casc, in addition to the point at infinity, for a given value of x:

(1) there arc two values of y that correspond to that value of x, if z is a quadratic
non-residue modulo p;

(2) there is one value of y that corresponds to that value of x, if z = 0 modulo p;
and

(3) there are no values of y that correspond to that value of x, if z is a quadratic
residue.

Suppose there are A values of x for which (%) = 1, B values of x for which (‘%) =

0 and C valucs of x for which (g) = -1. In addition, since x must bc in one of p

possible residuc classes,

A+B+C = p. a7
From (7) and (10),

IEp(a,b)l=]+2A+B=1+p+a,

1e,2A+B=p+a (18)
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Consequently, from (16), (17) and (18),

| Ep(ab) I=1+2C+B=1+2p-QA+B)=1+p-a 19

4 Encryption Scheme

Sclect two primes, p and g, and let n = pq denote the arithmetic modulus. Select an
elliptic curve with the parameters a and b where ged(4a3 + 27b2, n) = 1. Let [Ep(a.b)!

= 1+p+a, | Ep(ab) | = 1+p-a, [Eq(a,b)l = 1+q+B and | Eg(a,b) | = 1+q-B. It is
assumed that the order of these groups can be determined using the techniques referred
to in Section 2. In addition, lct x represent the plaintext and s the ciphertext (where 0
<£x,s<n-1).

Encryption is then defincd as

(s,0) = (x.y)¥c  (mod n), (20

where (x.y)#e (or ¢P) denotes the point P = (x,y) "multiplied” by e. Multiplication of
a point P by i is defined as the addition of the point P to itself i times.

Deceryption is defined as

(x,y) = (s,)#d;  (mod n), (21
where

edi=l (modN;), i=1t04, (22)
gede. Np =1, i=11w04, (23)
N = lem(p+1+a, g+1+B) if (g‘—) =1and G) =1, 24
Nj = lem{p+1+a, g+1-B) if (1—3»!) =1and (%) #1, (25
N3 = lem(p+1-0, q+1+B) if (g) #1and (%) =1, (26)
N4 = lem(p+1-a, g+1-B) i (pﬁ) # 1 and (‘—:) 21, @n
z=x3 +ax +b (modn), (28)
y=Vz, (29)
was? +as+b (mod n), and 30

t=Vw. 31)
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Alternatively, the decryption time may be reduced, by a factor approaching 4, by
computing (21) modulo p and modulo q and then combining the results via the
Chinese Remainder Theorem.

Notc that only the first coordinates, x and s, have 1o be computed in this scheme.
Computation of the second coordinates, y and t, can be avoided using the rules and
algorithm described in [7]. The rules are summarised in the following section.

Note also that if p, g, a and b are chosen so that a = B = 0 in equations (24) to (27),
then Nj = lem(p+1, q+1) remains fixed for all i. Consequently, d; is fixed for all i,

and decryption is indecpendent of the Legendre symbols, (g) and (-Z)

S Rules for Computing the First Coordinate of a Point on
an Elliptic Curve

In the clliptic group Ep(a,b) (or Ep(ab) ), let (x,yi) = (x,y)#i (mod p.Ifyi# 0
(mod p), then

(xi2 -a)2 - 8bx;
xgi= —5——— (mod p). (32)
4(x; + axj + b)

In addition, if x; # x;+1 and x # 0 (mod p), then

(a - xixi+1)2 - 4b(xj + Xj41)

X(x; - xj41)?

X2i+1 = (mod p) (33)

Unfortunately congruence (33) cannot be used if x = 0 modulo p (or ). However, it
can be shown that the congruence can be rearranged 1o give

4b + 2(a - xiXj+ (X] + Xj+1)
(xi - xj+1)2

X2i+] = - x (mod p) (34)

which is valid for all 0 € x < p-1 (and consequently for all 0 £ x < n-1 when
compuiations arc performed modulo n). It can be shown that x; is never congruent to
xi+1 modulo p (or q) during the course of computing s = x, modulo n, as given by
(20). Similarly s; is ncver congruent 10 sj+) modulo p (or q) during the course of
computing (21). However, it is possible (although extremely unlikely) that y; may
become congruent to ) modulo p (or q) during the course of computations and
therefore for (32) to become undefined. The way around this problem is to use
homogeneous coordinates and therefore avoid division until the final stage of the
encryption or decryption procedurc.
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Homogenecous coordinates are formed by setting x = % (modp)and y = % (mod p).

If (x;, v3) = (Xy/Z;, YJZ) = (X/Z, Y/Z)4i (mod p), computational rules (32) and
(34) can be restated in the following form.

X2 = (xi2 - a2i2)2 - 8bxizi3 (mod n) 33
3 2 3
Zyi  =4Zi(X +aXiZ; +bZ;) (modn) (36)

2.2
X2iv1 =Z[AVZZ, | + 2aZiZiv1 + XiXi+1)XiZiv1 + Xi41Zi)]
- X(XiZis1 - Xi+1Zi)* (mod n) €p)

Zois1 = Z(XiZis1 - X;41Z)? (mod n) (38)

6 The Encryption Scheme in Terms of the First Coordinate
of a Point on an Elliptic Curve

Encryption and Decryption as defined in (20) and (21) can be rewritten in terms of the
notation of Section § as:

s=xe = Xo/Ze (mod n) where X =xand Z=1, and (39
X = sq; = S4;/Zq; (mod n) 40)

where S =, Z = 1 and d; is as dcfined by (22) to (31).

7 Digital Signature Scheme in Terms of the First
Coordinate of a Point on an Elliptic Curve

A digital signature, s, is formed by computing:

s = Xd;/Zd; (mod n) @1

where X = x is the message or plaintext, Z = 1 and d; is as defined by (22) to (31)
withz = x3 + ax + b (mod n) replacing w in (24) to (27).

Signaturc verification is performed by computing:

x = So/Ze (mod n) where S=sand Z= 1. 42)

8 Homomorphic Attack

Let s7 and sp represent two signatures produced for the messages xj and x2
respectively. If it is possible to determine the second coordinates, ty, t2, yi and y2,
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corresponding to the the above first coordinates, then it is possible to create a new
signature, s, on a new message, x, by using the addition rules given in Section 2
(using modulo n rather than modulo p arithmetic), i.e., a new signature point:

(.0 = (s1,11) + (s2,12) (43)
can be compuied that corresponds o the new message point:

) = (x1y D + (x2,y2). 44)

In fact, only 1y and 13 need to be determined since x can be found, once s is known,
by using congrucnce (42).

Values for 11 and 17 can be treated as indeterminants and computed using (30) and
(31, ic.,

tj =vVw; where wy Es?+as1 +b (modn)

tp=Vwy where wyps= sg +as2+b (modn)

The next siep is to eliminate one of the indclerminants, say t. If tp is written in the
form, ta = u¥ wi, then s is given by (sce Section 3):

{1 -u\2 ]
s= (55 ) Wi csin (moan) @)

The only remaining probicm is to dctermine the valuc of u = v wg/wy (mod n).
However, it is impossible 10 find a square root modulo n unless the prime factors of n
arc known. Conscquently, u cannot be determined from wo and wy, even if wp/wy is
a quadratic residuc modulo n (in most cases, an integer value of u will not exist, since
wa/wi will not be a quadratic residue modulo n). Thus, whilst it is possible to add a
point 1o itsclf any numbecr of times in this scheme, it is impossible to add two
arbitrary points together if only the first coordinales of the points are known (unless
the primes (p and q) comprising the arithmetic modulus, n, are also known). As a
result, it appears that a new signature cannot be created from two old signatures. For
the same reason, the active attack described in [4] will also not succeed.

9 Conclusions

A ncw public key cryptographic scheme based on elliptic curves over a ring Zp has
been proposed. The main advantage of the scheme is that it can be used on elliptic
curves with arbitrary paramclers. In addition, digital signatures can be produced that
are of the samc size as the message. Furthermore, the scheme does not appear to be
pronc to homomorphism attacks. Finally, the techniques used in this scheme can be
employed to produce an clliptic curve analogue of the Pollard Rho method of
factorisation.
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