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Abstract. The problem of recovering the phase on a known binary m-sequence 
that  is corrupted by a binary noise source is considered. This problem arises in the 
cryptanalysis of stream ciphers formed from a nonlinear combination of msequences. A 
synchronization procedure is developed for even span n. The procedure obtainr a reliable 
estimate or the phase of an msequence of span n from unreliable estimates of the phases 
of a small number of shifts of a fixed m-sequence of span n / 2 .  These latter estimates can 
be obtained from a variety of methods available in the literature. The procedure result8 
in a reduction of complexity but requires observing on the order of the square root of the 
m-sequence's period. 

1 Introduction 

In this paper we focus on the problem of recovering the phase on a known binary 
m-sequence that is corrupted by a binary noise source. This problem arises in crypt- 
analysis and a number of methods have been suggested for its solution ([CS], [MS], [s], 
[ZH]). More precisely, we assume that we observe some terms of the binary sequence 
r = E's + n, where s is the normal form of a known m-sequence of span n, E is the 
sequence shift-left operator (that is, ( E s ) ,  = (s ) ,+~ ) ,  n is a sequence of independent 
and identically distributed binary random variables with probability p that ni = 0, 
and the addition is modulo 2. We wish to recover the unknown phase 1.  We call this 
the blind synchronization problem to distinguish it from the usual synchronization 
process that takes advantage of approximate knowledge of the correct phase t. 

We develop a blind synchronization procedure applicable when the span n of the 
m-sequence is even. We show how a reliable estimate of the phase of an m-sequence 
of span n can be obtained from unreliable estimates of the phases of the shifts of a 
fixed m-sequence of span n/2. A variety of approaches can be applied to obtain these 
latter estimates [CS], [MS], [S], [ZH]. The decrease in span from n to n/2 can result 
in a dramatic decrease in overall complexity. However, this complexity reduction is 
achieved at the expense of having to observe on the order of the square root of the 
m-sequence's period. 

Section 2 reviews the array properties of m-sequences that we need, including the 
definition and properties of the shift sequence. Section 3 describes the new array blind 
synchronization procedure. Section 4 gives a performance analysis for the technique, 
and section 5 is the conclusion. 

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT '93, LNCS 765, pp. 168-180, 1994. 
0 Springer-Verlag Berlin Heidelberg 1994 



169 

2 Shift Sequences of m-Sequences 

Let f be a primitive polynomial of degree n, rn an integer dividing n, u = 
(2n - 1) / (2m - l ) ,  and (z a root o f f .  Then a is a primitive element of CF(2") and 
@ = a" is a primitive element of GF(2m). Let Trk denote the trace mapping from 
GF(2") to GF(2ml). The shift sequence e = (eo, e l , .  . . , ep-2)  of f for m dividing n 
is defined by 

00, if Trk((zk) = 0 
e k = {  e, if Tr",aC) = p' 

The sequence e is called the shift sequence because when the m-sequence s = 
(Try(a')) is arranged in a 2" - 1 by v array, the nonzero columns of this array 
are comprised of shifts of the column m-sequence c = (Try(@')). In particular, for 
Ic = 0,1,. . . , u - 1, column k of this array is identically zero if ek = 00 and otherwise 
is equal to E'kc. 

The finite elements of the shift sequence can be viewed as elements of the integers 
modulo 2" - 1, denoted by Z2m-1.  By convention we have for any e E Z p - 1 ,  e f 
00 = 00 and 00 f M = M. The shift sequence can be extended periodically, that is, 
the subscripts of e can be regarded modulo 2" - 1. 

The shift sequence satisfies the following facts. The first two follow easily from 
the definition; the third is proved in [GI. 
FACT 1. The first u terms of the shift sequence determine the remaining terms: For 
a = 1 , 2  ,..., 2 m - 2 ,  

(eavreov+lr.. . , eav+v-l) = (eo + a, el + a , ,  . . , ev-i + a ) .  

FACT 2. For n = 2m, eo = 00 corresponds to the single zero column. 

FACT 3. The shift sequence satisfies a uniform modular difference property: For a 
fixed integer difference offset k f 0 (mod u ) ,  the list .of ddferences Ak = ( e j + k  - e, 
(mod 2" - 1 )  : j = 0,1,. . . , u - 1 )  contains each element of Zp-1 exactly 2n-2m 
times. 

3 Array Blind Synchronization 

Let s = (3,) = (TrT(ai)) be the normal form of a known m-sequence of span n, 
with n = 2m. We assume that an unknown phase t of (I is transmitted and that r = 
E's+n is observed. We also assume the existence of a blind synchronization procedure 
for m-sequences of span n, denoted by BS(n,N), where N denotes the number of 
observed terms used. See, for example, the procedures described in [CS], [MS], [S], 
and [ZH]. In this section we describe a procedure that uses multiple applications of 
BS(n/2, I), for some integer I, to produce an estimate for t .  

The array blind synchronization procedure begins by collecting IV 
where u = (22m - 1) / (2m - 1 )  = 2m + 1 ,  and by forming the 1 x v array 

... ru-1 pi p1 ... 

f lu-1 

r,+l ... rV+, ... I' r( I -1)w f ( ~ - ~ ) u + l  * - * r(I-I)u+j .. . 

Al(r) = . 

terms of r, 
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We assume that the array Al(s) for the underlying m-sequence s of span n has the 
following form 

L ~ ( u + l - l ) u + w  S(u+l- l )u+w+l  . . ' '(U+/-l)V+W+J ' '  ' 

where the integers u and w satisfy 0 5 w 5 u - 1, 0 5 u 5 2m - 2, and t = uv t w. 
We wish to determine reliable estimates for the unknown sequence offsets u and w. 

The nonzero columns of Al(s) correspond to shifts of the column m-sequence 
c = (Trf"(aU')), where the shift sequence is denoted by e = (eO,e l , .  . . , e p - 2 ) .  For 
n = 2m, shift-sequence fact 2 implies there is a single zero column corresponding to 
eo = 00, but the position of this zero column is unknown in the array Al(s). Also, for 
n = 2m, shift-sequence fact 3 implies that the modular differences in A t  are distinct 
for each difference offset k. Thus each Ak corresponds to a vector of length u with 
exactly two co entries and with the remaining 2m - 1 entries corresponding to the 
distinct elements of Z p - 1 .  

Since the column sequence c is known, the blind synchronization procedure 
BS(m,1) can be applied to the first two columns of Al(r) to derive estimates 20 
and of the shifts euv+, and euu+w+lr  respectively. The difference dlo = 21 - 20 
(mod 2m - 1) occurs in some unique position in the sequence of first differences A1 of 
e. If the column sequence estimates are both correct, then by shift-sequence fact 1, 
B i o  z 21 - 20 3 euu+w+l - euu+, e,+l*+ u - (e, + u) E ew+l - e, (mod 2m - I ) ,  
and the unique position determined by dlo reveals the sequence offset w ,  as well as 
w + 1. It then follows that u z tl - e, (mod 2m - l ) ,  and the sequence can be 
synchronized. 

However, the estimates 20 and 2, are subject to error. If at  least one of the 
estimates is in error, then the position P determined by 81, will be some other ar- 
bitrary value in the range of possible positions. To resolve this possibility, the blind 
synchronization procedure BS(m, I) is applied to the third column of Al(r) to obtain 
the estimate 22 of the third column shift euv+w+2. If the estimates d l  and 22 are 
correct, the difference 821 I 22 - 21 (mod 2m - 1) reveals the positions w + 1 and w t 2 in-Al.  It is the consistent determination of position w + 1 by the differences 
dlo  and d21 that signals that the estimates are most likely correct, and the computed 
sequence offsets are accurate. 

If the positions determined by 210 and 6 2 ,  are inconsistent, then at least one of 
the estimates d o ,  21, and 22 is in error. It could be that only the second estimate is 
wrong, implying that the difference 820 3 22 - do (mod 2" - 1) would correspond 
to the correct shift-sequence positions w and w + 2 in the sequence of unique second 
differences A2. To verify this would require computing d3 using the blind synchre 
nization procedure BS(m,I) on the fourth column of Al(r). Then the differences dn., 
631,  and 830 would each yield a pair of positions to check. 

In summary, the array blind synchronization procedure continues to estimate col- 
UIM shifts using BS(m, I) and then uses differences to obtain corresponding positions 
from the list of unique first differences A,,  second differences A2, third differences A3, 
etc. We assume that differences involving incorrect estimates will yield corresponding 
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positions that are uniformly spread over the range of possible positions. Note that 
as rn increases it becomes less likely that two such randomly determined positions 
will collide. O n  the other hand, differences from correctly estimated column shifts 
will cluster and produce collisions at  the correct sequence offset. A collision will oc- 
cur as soon as three correct column estimates (or three consistent incorrect column 
estimates!) are obtained. When the first collision of positions occurs, we stop the pro- 
cess and use the three estimates involved to determine the estimates of the sequence 
offsets. 

Before giving the precise algorithm for array blind synchronization, we construct 
the necessary data structures. Given integers k and d, 1 5 Ic 5 2m - 1 and 0 5 
d 5 2m - 2, by the distinct modular difference property there is a unique pair of 
positions {P, P + k} in the shift sequence, with 1 <_ P 5 2"', such that d 9 ep+k -ep 
(mod 2m-1). The position P corresponds to the position that doccurs at in the list of 
differences 4 k .  A (P - 1) x (2m - 1) position array is defined by position(k, d) = P .  
Since we exclude the difference M, the values of position(k,d) range from 1 to 2", 
except for position 2m+ 1 -k, which would be paired with e p + l  = M. The algorithm 
creates for the j t h  estimated column shift k, a list of up to j distinct positions (exactly 
j positions if the algorithm does not stop at the j t h  estimate). This list, denoted by 
list(j),  contains the right-hand positions, that is, P + k ,  obtained from t h e j  differences 
involving the j t h  estimate. The value P +- k is reduced modulo v in step 4 to account 
for the row length of A(s). 

Array blind synchronization procedure: 

1. Collect Iu terms of r and form Al(r); 

2. Set j = 0, list(0) = 0, and wrap = 0; 

3. Apply the blind synchronization procedure BS(rn,I) to the j t h  column of Adr) 
to obtain the estimate 6 ,  of the shift of the column m-sequence c; if j = 0, then 
increment 1 by 1 and repeat step 3; 

4. For each difference offset k, 1 5 k 5 j ,  compute the difference d,,]-k 5 el - el-t 
(mod 2m - 1); if position(k,i,,,-k) occurs in list(j - k), then go to step 6; else 
add position(k,d,,,_k) t k (mod u )  to list(j); 

- .  

5 .  Increment j by 1 and go to step 3; 

6. Set P = position(k, d,,,-k). 

7. The estimate for w is 3 = P + k - j ;  if 3 c 0, then add v = 2m + 1 to the 

8. The estimate for u is 1 E t?, - ep+k - wrap (mod 2m - 1); 

estimate t3 and set wrap = 1; 

9. stop. 

When step 6 is reached, position(k, d,,,-k) corresponds to a position in the shift 
sequence corresponding to two consistent differences: adding k to it gives the right- 
most position of the second consistent difference corresponding to the last estimate 
2,; subtracting j yields the estimate 3 of the position w involved in the first estimate: 
60 = eGv+,i,. The condition rt c 0 in step 7 is true when one of the estimated ~ 0 1 ~ ~  
shifts corresponds to the constant column. Adding u to the estimate produces the 
correct non-negative integer value of tb. The estimate for u can then be obtained as 
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in step 8, with the variable wrap set to 1 in the case where one of the column shifts 
corresponds to the constant column. 

Before giving an example of the algorithm, we prove that after step 4 is com- 
pleted, list(j) contains distinct entries. 

PROPOSITION 1. If dl j values of k in step 4 are processed without satisfying the 
stopping condition, then list(]) contains 3 distinct entries. 

PROOF: We show that if list(]) contains a repeated entry, then the algorithm would 
have already stopped a t  the first occurrence of that entry. Suppose for some j ,  
there exist kl and k2, 1 5 kl c kz 5 j ,  such that position(kl,d,,,+) + kl 3 

P I position(k2,c&,,-k2) + k2 (mod v). Suppose 2, I ep + u (mod 2m - 1). 
Then d ~ , 3 - k ,  = e, - eJ+ = ep - ep-tl (mod 2* - 1) implies i J - k l  P ep-tl + u 
(mod 2m-1) .  Similarly, e , - k 2  ep-k2+u (mod 2m-1). ThUs,d,-~I,J-kl-(kz-kI) = 
d,-!,,J-kz = i l - k ,  - i , -k2  S ep+ - ep-k2 (mod 2m - I), and SO pOSitiOn(k2 - 
ki,d,-kl,,-~,-(k,-k,))+k2-ki P-kl (mod u )  would have been added to l i s t ( j -k l )  
when the estimated shift 2]-kl was processed. But then position(k1,8,,,-hl) = P - ~ I  
(mod v) occurs in list(j - kl), and the algorithm would have stopped at kl before 
completing all j values of k. This is a contradiction. 

Example: Let s be generated by the primitive polynomial f(x) = x8 + x4 + x3 + 
x2+1. Thenv = 17,and thecolumnsequenceisc= (000100110101111),generated by 
g(x) = t'+x+l. Theshift sequence is e = ( ~ , 2 , 4 , 2 , 8 , 1 2 , 4 , 0 , 1 , 9 , 9 , 1 4 , 8 , 5 , 0 , 3 , 2 ) .  
The first five difference offsets are: 

j:  0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  
e,: c o 2  4 2 8 1 2 4  0 1 9  9 1 4 8  5 0 3 2 

dJ+l,) : 00 2 1 3 6 4 7 1 1 1 8 0 5 9 1 2 1 0 3 1 4 m  

- * .  - 

- 

d,+2,,: 00 0 4 10 11 3 12 9 8 5 14 6 7 13 2 60 1 
d J + 3 , 1 :  00 6 8 2 7 4 5 9 13 14 11 1 10 12 00 0 3 
dj+4,j:  00 10 0 13 8 12 5 14 7 11 6 4 9 00 3 2 1 
dJ+s,J: 00 2 11 14 1 12 10 8 4 6 9 3 00 13 5 0 7 

Note that offsets k = 2,3,4, and 5 use (e18,elg,e2o,e21,e22) = (el + 1,ez + l ,e3 + 
1, e4 + 1, es + 1) = (3,5,3,9,13). 

The position array is: 

difference: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
k = l :  9 7 1 14 4 10 3 5 8 11 13 6 12 2 15 
k = 2 :  1 16 14 5 2 9 11 12 8 7 3 4 6 13 10 
k = 3 :  15 11 3 16 5 6 1 4 2 7 12 10 13 8 9 
k = 4 :  2 16 15 14 11 6 10 8 4 12 1 9 5 3 7 
k = 5 :  15 4 1 11 8 14 9 16 7 10 6 2 5 13 3 

Suppose ( & , & 1 , 5 ~ , & )  = (14,6,0,3). The  list array after iteration j = 3 and 
k = 1 is: 

list(0) 0 
list(1) 6 
list(2) 12 1 
list(3) 15 
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Then for j = 3,and k = 2. d31 = 3 - 6 = 12 and position(2,12) = 6, which 
appears in l i s t ( l ) ,  and the algorithm jumps to step 6. Step 7 computes the estimate 
CJ = position(k,&,-&) + k - j = 6 + 2 - 3 = 5 and step 8 computes the estimate 
u = e 3 - e 8 = 3 - 1  = 2 .  Notethat (20 -2 , i l  - 2 , d j - 2 ) = ( 1 2 , 4 , l ) = ( e s , e s l e 8 ) .  . .  

i 
Next s u p p o s e , ( ~ o , ~ l , e 2 , e 3 , e 4 , ~ ~ )  = (2,0,8,5,4,9).  The list array after iteration 

= 5 and k = 1 is: 
list(0) 0 
list(1) 3 
list(2) 9 13 
list(3) 13 11 2 
list(4) 16 6 8 2 
list(5) 11 

Then for j = 5 and k = 3, 8 5 3  = 9 - 5 = 4 and position(2,il) = 2, which appears 
in list(3), and the algorithm jumps to step 6. Step 7 computes the estimate 12 = 
position(k, d l , j - k )  t k - j = 2 +  2 - 5 = -1. Since 12 < 0, the estimate is modified to 

= -1 + 17 = 16 and wrap is set to 1. Step 8 computes the estimate 6 = 6s -e4  - 1 = 
9 - 8  - 1 = 0. Note that ( 2 0 7 & , & )  = (2,5,9) = (e16,e19,e21) = (e16,e2 + 1.q + 1). 

4 Performance Analysis 

In this section we give a performance analysis for the array blind synchroniza- 
tion procedure. We assume that a given blind synchronization procedure BS(m, I )  
produces an estimate of the unknown phase of the j t h  column of the array Al(r) 
with a probability of error P,,~(m,I ,p)  and a computational complexity Cp,,(m, I ,  p ) ,  
where recall p is the agreement probability that r, = s,+(. Our goal is to determine 
the probability of error Parray of the array blind synchronization procedure and its 
computational complexity. We begin with a noise only case that provides an upper 
bound on the expected number of applications of BS(m, I) required. 

4.1 Uniformly  De te rmined  Shift  Sequence  Posit ions 

Suppose that we are given a sequence of estimates 60, il, . . . whose differences 
correspond to positions in A, that are drawn uniformly and independently from the 
range 1 to zrn, inclusive. We model the behavior of the array blind synchronization 
procedure in this situation using a multiple component version of the classic birthday 
repetition problem [F, page 311. We use this model to determine how long we can 
expect the algorithm to run before we receive three consistent shifts. 

Let s t o p ( j )  be the event that the array blind synchronization procedure stops 
while processing i j ,  and stop(j) be the event that the algorithm does not stop. Define 
the probabilities 

- 

q; = P ( s t o p ( j )  I stop(j - 1)) 

1 - q, = P(stop(j) 1 s t o p ( j  - 1)). 

Since three terms are required before stopping, P(stop(0)) and P(stop(1)) are both 
zero. 

- 
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The array blind synchronization procedure can be described by the state diagram 
depicted in figure 1. Here open circles denote that the algorithm has not stopped 
yet, while closed circles are where the algorithm halts. The q1 are the transition 
probabilities. The probability of reaching any given state is the sum over all paths 
from the starting state to the ending state of the probability of following that path. 
(In figure 1 there is aunique path from the starting state to any given ending state.) 
The probability of a path is just the product of the transition probabilities multiplied 
by the probability of the starting state. Thus we see that for 1 2 2: 

j: 0 1 2 3 4 

Figure 1. State Diagram for t h e  Ar ray  Blind Synchronization P rocedure  

We wish to evaluate the q J .  Suppose that we do not stop at the j t h  estimated 
shift. Then for each difference offset k ,  1 5 k 5 j in step 4 of the array blind 
synchronization procedure, the difference d1,]-k i a, -.i,-k (mod 2m - 1 )  determines 
a position(k,d,,)-k) that does not occur in l i s t ( j  - k ) ,  which by proposition 1 has 
j - k distinct entries. If we assume that the new positions are determined uniformly 
in the range 1 to 2m, then the probability that the new position is not in l ist( j  - k) 
is 

M - (1 - k) 
M '  

where M = zm - 1 (there are 2"' possible positions, but one value is excluded because 
of the 00 term). 

Assuming independence, we take 

M - ( j - k )  M - ( J - l )  M - ( j - 2 )  M - 1  M .=n M - M  M M M  

I 
- ...-.-. 

k=1 

However, this value is not accurate because we have not forced the elements of the form 
position(&,8J,J-k) + & (mod v )  in Ust(j) to be distinct as required by proposition 1. 
To accurately model this extra requirement, the probability of adding the second 
element to l i s t ( j )  would have to depend on which value wa,s chosen for the first 
element and so forth. This soon leads to a large number of cases. For large values of 
M that we are interested in, simulations indicate that it is safe to ignore this extra 
requirement. This is because, aa we shall see, the array blind synchronization p r o m  
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halts before it is likely that a repeated element is encountered in the formation of 
list( j). 

Figure 2 shows a graphical comparison between the experimentally determined 
probability of stopping and our simple model. The simulation, unlike the analysis, 
forced the elements of l i s t ( j )  to be distinct. The solid curve in the figure is the 
theoretical prediction and the dashed curve is the probability distribution derived 
from 250,000 experimental trials for iM = 216 - 1 corresponding to span n = 32. The 
close agreement between the curves in figure 2 suggests that the assumptions used in 
the calculation of the q, are accurate. (The rise at  the end of the empirical curve is 
because lengths greater than or equal to 150 were accumulated in one bin.) 

0.018 I 1 
0.016 - 
0.014 - 

e 0.012- 
.- - .- 

0 20 40 60 80 100 120 140 160 

Stopping Column 

Figure  2. Probabi l i ty  Dis t r ibu t ion  for Stopping at Co lumn j 
in Array  Blind Synchronization P r o c e d u r e  (n = 32) 
(Theore t ica l  C u r v e  Solid; Empirical  C u r v e  Dashed) 

The expected number of columns processed by the array blind synchronization 
procedure can be calculated using this simple model. These means represent an upper 
bound on the expected number of applications of the column blind synchronization 
procedure BS(m, I ,  p) when there is a sequence present. These means are listed below 
for some representative values of the span n: 

span n Mean 
16 11.8 
20 17.9 
24 27.5 
28 42.7 
32 66.9 
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4.2 Probabi l i ty  of Error of A r r a y  Blind Synchronization 

We next examine the case that the column blind synchronization procedure pro- 
duces an estimate d, that has a probability of error P,,l(rn, I ,  p) = Q and thus is correct 
with probability /3 = 1 - a. Figure 3 shows a transition diagram that distinguishes 
stopping correctly,or incorrectly. The open circles represent non-terminal states. The 
closed circles represent stopping incorrectly due to three consistent shifts. Obtaining 
a correct estimated shift corresponds to moving down one row in the diagram. Fi- 
nally, the last row of closed squares represent stopping correctly, that is, three correct 
estimated shifts have been obtained. 

The transition probabilities q, are the same as those in the previous section. The 
r, give the probability that the array blind synchronization procedure halts correctly, 
given that the third correct estimated shift has been obtained. When the third correct 
estimated shift is encountered, the algorithm may still halt incorrectly. This is because 
the third correct estimated shift may be consistent with one or more earlier wrong 
estimated shifts, and this incorrect consistency is encountered first by the algorithm. 
Thus the probability of stopping incorrectly when two correct estimated shifts have 
been received is composed of two parts, based on whether the last shift is correct or 
not. In our experiments, we set rI equal to q l .  This value is only an approximation, 
since it ignores the consistency that must occur with the third correct estimated shift. 

It is straightforward to calculate the path probabilities to obtain for j 2 2: 

C, = P(stop a t  j correctly) = a’-383q2q3 . . ‘q)-irJ 

I, = P(stop a t  j incorrectly) 

These probabilities satisfy 

122 

The probability of error for the array blind synchronization procedure is 

Parray(n, ~ c o l ( m ,  1 , ~ ) )  = C 11. 
122 

The probability of stopping correctly is 1 - Parray, which is the sum of the C,. Note 
that changing the value of rl will change both C, and I,, but the sum C, + I,, which 
is the probability of stopping at the j t h  shift, remains unchanged. 

To test our analytic results, we applied the array blind synchronization procedure 
to three actual m-sequences of spans 16, 24, and 32. The primitive polynomials were 
respectively t 1 6  +z5 +z3 +z2 + 1, z2‘ +t‘ +r3 +I + I, and z3*+ z22 +r2 +z+ 1. For each 
probability of column shift error a considered, an estimated shift sequence was derived 
from the actual shift sequence by selecting a correct shift with probability P ;  otherwise 
an incorrect shift was selected uniformly from the remaining 2m -2  possibilities. The 
array blind synchronization procedure waa then applied. This process waa repeated 
1000 times and statistics on the number of estimated shifts used and the number of 
correct phases obtained were tallied. 
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Number 
Correct 

0 

1 

2 

j: 0 1 2 3 4 

3 

Figure 3. State Diagram for t h e  Array Blind Synchronization Procedure 

Figure 4 is a comparison of the analytic and simulation results for the expected 
number of columns processed by the array blind synchronization procedure as a func- 
tion of the probability that the column estimates are in error. There is very good 
agreement between the analytic and simulation results. Also, as the column error 
probability approaches 1, the expected number of columns processed approaches the 
upper bound computed previously. Figure 5 is a comparison of the analytic and simu- 
lation results for the probability of error for the array blind synchronization procedure 
as a function of the probability that the column estimates are in error. Here we see 
that the agreement is not quite as good, due to our choice of r,. Note that the closer 
fit between the experimental and theoretical curves in figure 4 can be explained by 
the fact that the expected number of columns processed is independent of the value 
of r ] ,  depending instead on the C, + I,. 

Two facts are clear from these results. The modest expected number of columns 
processed means that the expected computational complexity of the array blind syn- 
chronization procedure is dominated by the computational complexity of the column 
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blind synchronization procedure Cp,, (rn,I ,p) .  This should be much less than the 
complexity of applying the column blind synchronization procedure directly to the 
m-sequence of span n. Furthermore, to obtain a fixed probability of error Parray, a 
rather high probability of error Pcol(m,I,p) in the column shift estimation can be 
tolerated, with the situation improving for increasing span. Increasing the value of 
Pcol(m, 1 , p )  decreasesthe computational complexity Cp,,(rn, I ,  p). Also, larger values 
of Pcol(m, I, p) permit smaller values of I .  This is useful since the parameter I deter- 
mines the amount lu of observed sequence required in the array blind synchronization 
procedure. 

0' 
0 0.1 0 . 2  0.3 0 .4  0.5 0.6 0.7 0.8 0 . 9  1 

Probability of Column Error 

Figure 4. Average Number of Estimated Column Shifts used 
by Array Blind Synchronization as a F'unction of Probability of Error 

of Column Shift Estimation 
(Theoretical Curves Solid; Empirical Curves Dashed) 

5 Conclusion 

In this paper we developed a blind synchronization procedure applicable to m- 
sequences with even span n. In particular we showed how a reliable estimate of 
the phase of an m-sequence of span n CM be obtained from unreliable estimates of 
the phases of a relatively small number of shifts of a fixed m-sequence of span n/2. 
The computational complexity of the procedure is  dominated by the complexity of 
determining the phases of the smaller m-sequence of span n/2. The decrease in span 
from n to n/2 should result in a dramatic drop in complexity. 

The procedure requires observing on the order o f the  square root of the period 
of the sequence. The observed terms are arranged in an array containing 2"12 + 1 
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Figure 5. Probability of Error for Array Blind Synchronization as 
a Function of Probability of Error of Column Shift Estimation 

(Theoretical Curves Solid; Empirical Curves Dashed) 

columns. The number of rows of this array can be minimized using the fact that the 
estimates of the phases of the shifts of the fixed m-sequence of span n / 2  can have a 
high probability of error. Only a very small percentage of these terms are actually 
used in the procedure, and the required m-sequences of span n / 2  can be collected 
directly using decimations of 2"j2 + 1. In the future, specific performance gains for 
the published blind synchronization procedures could be explored ([CSJ, [MS], [ S ] ,  
[ZH]), although we note that precise performance analyses of these techniques may 
have to be derived first. 

The array blind synchronization procedure can be generalized to other factoriza- 
tions of the span n, but the case n = 2m is the most practical. This is mainly because 
for other factorizations, the long dimension of the array grows. It is also the case that 
the modular differences no longer are distinct when n/m # 2, which would further 
complicate the procedure. 
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