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Abst rac t  

In this paper we propose a video scrambling technique which scans a picture stored in a 

frame buffer along a pseudc-random space filling curve. We describe several efficient methods for 

generating cryptographically strong curves, and show that they actually decrease the bandwidth 

required to transmit the picture. 

1. Introduction. 

Video signals play a predominant role in modern society in diverse applications such as en- 

tertainment, telecommunications and military surveillance. In many applications it is essential 

to guarantee the privacy of this signal. However, the standard cryptographic techniques may be 

inadequate for three basic reasons : 

1) 

2) 

3) 

The transmitted signal is analog. 

The transmission rate is very high. 

The allowabie bandwidth is limited, and can be accommodated only when the grey levels 

of adjacent pixels are highly correlated. 

Wyner [Wl,W2] suggested a method of scrambling a discrete time analog sequence by using 

a large family of linear orthogonal invertible transformations which he described, that result in a 

negligible expansion of bandwidth. However, these transformations are not easy to compute, and 

in the case of video signals they do not exploit the two dimensional nature of the signal. 

C. Pomerance (Ed.): Advances in Cryptology - CRYPT0 '87, LNCS 293, pp. 398-417, 1988. 
0 Springer-Verlag Berlin Heidelberg 1988 



A video picture is usually transmitted by scanning its elements (pixels). The frame is scanned 

from top to bottom and from left to right; this is the conventional raster scan. Our approach is 

to effect a pixel permutation by changing the scanning order without changing the pixels’ values. 

The scanning order is determined by the encryption key, and-should be changed occasionally (but 

not necessarily every frame). Since we want to preserve the correlation between the grey levels of 

adjacent transmitted pixels, we propose to scan the picture with a connected curve i.e. a Space 

Filling Curve (SFC). 

The encryption method is as follows : 

a. Pseuderandomly choose a Space Filling Curve. 

b. Transmit an analog signal that represents the grey levels of successive pixels along this 

curve. 

The corresponding decryption method is : 

a. Choose the same SFC (by using a shared cryptographic key). 

b. Fill a frame buffer with the received signal by following the SFC. 

We can use the interframe redundancy and generalize our scheme to 3 dimensions. This is 

done by storing several consecutive frames in several frame buffers and finding a random SFC 
for the 3 dimensional collection of frame buffers. The use of a 3-dimensional SFC increases the 

number of possible SFCs by many orders of magnitude, increases the confusion of a would be 

attacker and further improves the signal’s bandwidth, but increases the cost and complexity of the 

implement at ion. 

Let G be the infinite graph whose vertex set consists of all points of the plane with integer 

coordinates and in which two vertices are connected if and only if the (Euclidean) distance between 

them is equal to 1. A gr id  graph is a vertex induced subgraph of G. Let vz and vy be the 

coordinates of the vertex v. A rectangular grid graph R(m,n) is a grid graph whose vertex set is 

{v : 1 5 vZ 5 m and 15 va, 5 n}. 

We shall consider the frame-buffer as a rectangular grid graph R(rn,n), whose vertices are 

the pixels. It follows that the Space Filling Curve is a Hamiltonian path in R(n, m). The problem 

of finding Hamiltonian paths between specified pairs of vertices in rectangular grid graphs 

examined by Itai et al [IPS], who showed how to construct one path. Our goal i3 to find many 

Hamiltoaian paths, and we do not require specific endpoints. The ideal, of course, is to have an 
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efficient algorithm which produces all Hamiltonian paths. However, a large family of Hamiltonian 

paths may be sufficient if we are careful about its cryptographic quality. To see what can go wrong, 

consider the following algorithm for generating Hamiltonian paths: 

Algorithm A .  

Start at the upper left comer of the rectangle and move to the right. 

Repeat until all vertices are visited : 

Move straight ahead until visiting all unvisited vertices in this direction. At the last 

vertex decide (by the next pseudo-random bit) : either turn a 90" turn, or make a U-turn 

(towards unvisited vertices). 

Figure 1. An example of a SFC generated b y  
Algorithm A in a 16 b y  16 rectangular gn'd. 

Algorithm A is very efficient, it  generates a large family of (":rT2) Hamiltonian paths, and 

it can be easily implemented. A typical scanning order produced by this algorithm is given in 

Fig. 1. However, this cryptosystem is easy to break with a ciphertext-only attack. Notice that 

we have long lines and turning points of two kinds: one is the 90" turn, and the other is the 

U-turn (180 degrees turn). Adjacent vertices from two lines which are connected by a U-turn are 

highly correlated. In order to locate the points where U-turns have been taken, it is s a c i e n t  to 

test for local symmetry points along the transmitted path i.e. for segments whose values are 

almost palindromes. Finding these points is quite easy, and thus breaking the cryptosystem is 

straightforward. 

We conclude the introduction with a remark about the number of SFCs UN in a square lattice 

of N points. By Orland et al. [OID] we have (for large N) 

1.471SN = 2°.5573N 
2.2073N = 21.1423N 

in 2D square lattice 
in 3D cubic lattice. 

u.v - 
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This demonstrates the advantage of using a 3-dimensional SFC. The confusion of a naive attacker 

is enlarged by a factor of 

which is more than 2150000 for N = 512 x 512. 

2. Tile and Merge 

The method of producing Hamiltonian circuits discussed in this section is based on the concept 

of first Covering all vertices by disjoint elementary circuits, and then merging these circuits into 

a single Hamiltonian circuit. Since our aim is to produce many Hamiltonian circuits we shall 

introduce randomness both in the covering and in the merging processes. While it is easy to 

produce d the possible rnergings of a certain cover of a grid graph using the concept of spanning 

trees, the production of every possible cover (with a probability greater then zero) seems to be 

hard. 

By using the tile-and-merge method we introduce efficient algorithms for producing exponen- 

tially many Hamiltonian circuits in a rectangular grid graph. A large subset of these Hamiltonian 

circuits can be encoded by only 1 bit per pixel. The algorithms can be easily extended to 3D. 

2.1 The General Method 

Let G be an undirected graph. Consider disjoint circuits C,,C2,.. .,Ck that cover all the 

vertices of G. Defme two circuits Ci and Cj to be neighbors if there is zm edge el = (u1 ,u i )  in 

Ci , and an edge e2 = (v2,vh) (= (v6,uz) ) in Cj such that there are edges fi = (v1 ,vz )  and 

fz = ( u ’ , , ~ ; )  in G. Note that fi and f2 complete e l  and e2 into a square. If C; and Cj are 

neighbors then we can connect them into one circuit Cij which covers exactly the same vertices as 

Ci and cj by replacing e l  and e2 by fi and f2. Denote this replacement as a legal replacement 

and denote (e l ,e2)  as a legally replaced c o u p l e  (LRC) in (Ci,  Cj). Note that between 2 circuits 

there may be several legal replacements but only one of them may be (randomly) chosen. ‘Thus 

by a single legal replacement we reduce the number of circuits by 1. If we start with k circuits 

then after k - 1 legal replacements we are left with a Hamiltonian circuit. This leads directly to 

the following definitions and algorithm for finding a random Hamiltonian circuit in a general 
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graph. 

Let G be a graph. Given k disjoint circuits C1, C2,. . . ,Ck over G, define a graph Gk = 

(V', Ek) where v k  = { C1, C2, . . . , Ck} and Ek = { (C;, Cj) : Ci and Cj are neighbors }. For each 

(Ci,Cj) E Ek let L!, be: L;, = { ( e l , e 2 )  : el and e2 are LRC in (C;,Cj)}. Note that in a grid 

graph, edges of a legally replaced couple are adjacent edges that are located in different circuits. 

Denote two circuits to be ezternal if neither of them is surrounded by the other. The circuits 

c1, c2,. . . , Ck are called a tile of G. If the circuits are all external in pairs then we say that they 

are ezternal circuits and we denote the tile as an external tile. 

Algorithm SPAN 

Given a grid graph G which has a Hamiltonian circuit: 

1) Choose k disjoint external circuits C1, Cz,. . . , Ck that Cover all the vertices of G s.t. Gk 
(as defined above) is connected. 

2) 

3) 

Randomly choose a spanning tree for Gk. 

For each edge (Ci, C,) in the spanning tree randomly choose a legally replaced couple in 

Lf, and perform the legal replacement. 

0 0 0  

Figure 2. ( a )  An ezample of covering circuih and a Jpanning tree over them in 

a 16 by 16 rectangular grid. ( b )  The resulting Hamiltonian circuit. 

THEOREM 1. 

Note that the fact that the initial tile is external is necessary for the correctness of the algo- 

rithm, since Gh may become disconnected during the execution of the algorithm when some of the 

The output circuit of algorithm Span is a Hamiltonian circuit in G .  
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circuits are internal. 

Algorithm Span can be generalized so that it can find more Hamiltonian circuits after a cower 

was selected i.e. to enhance the randomness of the output circuit. This may be done by a slight 

modification of the algorithm with an insignificant degradation in efficiency. The main idea is to 

use an adaptive process that takes into account the new edges (in Gk) and LRCs which are created 

after each replacement of edges (in G). 

If we could randomly choose all the combinations of elementary disjoint circuits that cover 

all the vertices in G then we would have a complete solution to the problem of finding all the 

Hamiltonian circuits, but this seems to be a hard problem. On the other hand there are some 

choices we can easily m&e. The most trivial choice is to make all Ci squares of 4 vertices (for the 

sake of simplicity we assume that the dimensions of the grid are even). The next natural choice is 

to make a l l  ci rectangles of 6 vertices. Note that in this case a ‘legal replacement’ as done in step 3 

of Span can often be done in two ways; one of them should be randomly selected. A combination 

of the two choices results in an exponential number of tilings ( 2 y ) .  

2.2 Tile by Squares* 

When G is tiled-by-squares only (the trivial choice), Span generates a very small subset of 

the set of &I Hamiltonian circuits. Still, using the tile-by-square procedure Span constructs a set 

of Hamiltonian circuits with exponential cardinality. Moreover, the tile-by-squares procedure has 

a large advantage in coding the circuit. In addition, it can be conveniently analyzed and is the 

natural basis for extensions to more general graphs. 

A simple and convenient method of encoding the scanning order is to add to each pixel the 

information of the next step in the scan. Thus, after arriving at a pixel, we can use this information 

and a Finite State Machine in order to know what is the next pixel in the scan. Obviously for any 

SFC we can locally use log2 3 sz 1.585 bits per pixel (on the average) to represent Forward, Left 

In the beginning of our research Ron Rivest had communicated to us an idea of generating a Hamil- 

Finding a spanning tree for the n by n rectangular grid graph, for which each vertex is the center 
of a square in G. 
Surrounding the spanning tree using the edges of G. 

* 
tonian circuit in a 2n by 271 rectangular grid graph G in two steps: 

1) 

2) 
Algorithm Span restricted to the tileby-squares strategy produces exactly the same Hamiltonian cir- 
cuits. 
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or Right. However, if we could save the information with only 1 bit per pixel then this could be 

significant in practical implementations. 

CLAIM 1. The SFCs that are generated by algorithm Span using tile-by-squares can be 

(constructively) encoded by only 1 bit per pixel. 

Figure 3. A 6 by 6 Manhattan orientation 

rectangular grid graph 

Let G M  be a directed grid graph with a Manhattan orientation as in Fig. 3. 

CLAIM 2. The set of Hamiltonian circuits that can be generated by algorithm Span re- 

stricted to tile-by-squares is exactly the set of Hamiltonian circuits in GM. 

Using I<asteleyn’s exact enumeration [Icas] we have 

COROLLARY 1. The number of Hamiltonian circuits that can be constructed by Span 

using tile-by-squaxes is 3°.4206334N. 

Considering the cryptographic strength of the scheme we have 

COROLLARY 2. Given a picture of blackkwhite (horizontal or vertical) strips of one pixel 

width scrambled using a SFC, we can easily reconstruct the SFC that was used. 

The SFC which is constructed by a tile-by-squares can be exposed by a single blackkwhite 

pattern which is simple and therefore has a reasonable probability to occur (at least locally) in 

real transmissions. Thus, although the tile-by-squares technique, when used in algorithm Span, is 

economically attractive, it provides a much weaker scheme than the more general techniques which 

tile the plane with elementary circuits of various sizes and shapes. 

3. The Ham+ Algorit.hm 

In this section we describe an efficient algorithm which can produce all the Hamiltonian circuits 
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of the rectangular grid R(m,n) plus ‘almost Hamiltonian’ circuits that miss  up to vertices in 

the (rn - 1)’th row. Every Handtonian circuit has a positive probability to be generated in each 

run, and in our application the almost Hamiltonian circuits are just as useful as the Hamiltonian 

circuits. 

3.1 General Description 

Algorithm HAM+ constructs the Hamiltonian circuit by scanning the rows of the array from 

top to bottom. We shall enumerate the rows from top to bottom and the columns from left to right. 

After the (i - 1)’th iteration the rectangle R(i - 1,n) is completely covered with disjoint paths 

whose endpoints are all in the i’th row. In the i’th iteration the t’th row is f l e d  by advancing the 

endpoints. No endpoint is left inside R(i, n) and no path becomes a circuit. This is accomplished 

by letting the endpoints of each path identify each other as partners. In the final two rows we 

tie the paths together in order to get a global circuit, but in the process we may miss some of 

the vertices in the (m  - 1)’th row. We do not know how to complete the process without this 

additional degree of freedom. 

When stationed at a vertex, we choose the edges connected to it in the circuit by choosing 

two of its neighbors. The idea is to pseudo-randondy choose between all possible choices in a way 

that would not prevent us froin successfully generating the promised circuit. However, it is not 

guaranteed that all circuits have the same probability to be generated because when stationed at 

a vertex in the i’th row. the probability of an edge to be chosen should be dependent on the (i - 1) 

rows; this fact is not taken into consideration in the algorithm. 

A full description of algorithm Ham+ (along with its non-obvious proof of correctness) will 

be given in tlic full paper. 
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Figire  4 .  A c i w u i t  t h a t  W ( L J  genera ted  b y  Ham+ 

(note t he  G m i s s i n g  ver t i ce s  at the  last but o n e  row). 

3.2 Discussion 

The  number of missed vertices is N,,,isJed 5 It is possible to reduce the  number of 

missed vertices if we begin to  tie the disjoint paths in the (rn - 2)'th or earlier rows. An interesting 

question that  is left opcn is ivl int  is the minimal loolahead required to generate exactly the set of 

all Hamiltonian circuits'' 

In the application of H.I.?i'I+ for video scrambling, the problem of missed vertices can be 

overcome by several techniques. For instance by transmitting the rectangle R(m - 2,n). The 

relative number of missed certices '"';;,;;<d is less then & (which is 0.065% for rn = 512). Therefore 

the influence of the missed i.ertices on the overall performance is negligible. 

The complexity cf t!ie algoritiiin is O ( m n ) ,  since each pixel is considered only once. T h e  

algorithm is efficient, i: call be easilj, implemented and i t  can  generate all Hamiltonian circuits 

Dlus extra circuits tha: cn:i '3% used 3s well. 
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4. Autocorrelations of a Random ’Typical’ Picture’s Signals 

We wish to examine the autocorrelation function p(k) of the scrambled signal and compare it 

with the autocorrelation p ( R )  of the original signal. Let pk(R) be the probability that two points 

in the SFC that are k seperated have the Euclidean distance R in the grid and let Ek be the 

expectation with respect to pl;(R).  For a random picture of an isotropic stationary model (where 

the twc-dimensional autoconelation function depends only on the Euclidean distance between 

points) we have 

for k <5: { the number of pixels in a line }. 

It was shown in [Ren] that 

where u = i, 0 = 1.93f0.27,S = 4.6f0.06 in two dimensions and u = 0.59,B = 0.67f0.34,6 = 2.6f 

0.06 in three dimensions; Ak is a normalizing factor. Recall the form of the autocorrelation function 

of a (simplified) isotropic model (a first-order Marlcov process) [NL] p ( R )  = e-aR. Together with 

Eq. (0.1) and (0.2) it  implies 

In Fig. 5 we show the autocorrelation functions of a raster scan signal (A) ,  a random two- 

dimensional SFC scan signal (B) and a random three-dimensional SFC scan signal (C’). The higher 
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autocorrelations in the SFC scan signals make it possible to reduce the bandwidth required to 

transmit the encrypted signal conipzued to the bandwidth required to transmit the original signal 

(or alternatively, for a given bandwidth, to gain a picture of better quality when its signal is 

scrambled before transmission). Unlike most other analog encryption schemes, our scheme actually 

compresses the signal. A related compression algorithm (which cannot be used as a cryptosystm) 

was recently proposed in [LZ]. 

5 .  Demonstrative Simulations 

Faithful to the saying “seeing is believing” we applied our scheme to two pictures that are 

considered typical examples: A detailed Landscape picture and a Head tY Shoulder picture. In order 

to simulate the effect of a low pass filter of p% on a transmitted video signal we applied a Fourier 

Transform on the (one dimensioiial) signal, zeroed all (100 - p)% high frequency coefficients, and 

performed an inverse Fourier Transform of the result. 

Each picture was transformed into a signal using four scans: a (conventional) Raster Scan, 

two scans along different SFCs generated by Ham+, and a Random Scan in which the pixels 

in each row were randomly permuted. Each signal was filtered with low pass filters of p% with 

p = 80,60,40,20,10,5,1. 

In Fig. 8.a we can see how the video signals of the Landscape picture, obtained by the four 

scans, are displayed on a screen when a descrambler is not used. The plain signal appears at the 

upper row of the figure. The signals that were obtained by the SFCs scans appear at  the second 

and third rows of the fi-pre. The signal that was obtained by the Random scan appears at  the 

lower row of the figure. 
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Figure 6. The  ar~tocorrelations of the Raster Scun signal ( A ) ,  the SFCs' signals (B  and C) 

and of the R a n d o m  Scan  signal in the Landscape picture in the range 0-90 ( a )  and  0-900 (b) .  

Fig. 6 shows the behavior of the autocorrelation functions in the ranges 0-30 and 0-300. The 

Raster Scan's function behaves as expected - it rises to a second peak at 256 due to the line-to-line 

correlation; refer to Franks [Fr]. The SFCs' functions continue the descent, demonstrating the loss 

of the line-to-line correlations; this loss occurs while on the other hand, there is an enhancement 

of correlation in the range 0-230 (in comparison with the Raster Scan's function). The  Random 

Scan's function looks like a &function. 

Figure 7. The integrals of the PSDs of the 4 signals. 

The bandwidths of the 4 scans are demonstrated by showing the integrals Ips of the PSDS. 

An I, shows the amount of power that remains in a signal after a low pass filtering is applied; 

therefore, the higher the I p ,  the better is the scm. Fig. 7 shows all 4 Ips. The integral of the 

Random scan's PSD is, as expected, a straight line. The Raster Scan's PSD is much better; it is 

the curve just above the Random Scan's line. However, i t  is not as good as the PSDs of the SFCs 
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which are the two top curves. 

The difference between the SFCs’ Ips and the Raster Scan’s I, is especially emphasized in the 

range of about 5-25% of the spectrum. This is the range where we expect the most significant 

improvements of performance of the scrambled signal in comparison with the original signal; i.e. 

we get a picture of better quality if we scramble it before transmission via a low-pass channel. 
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In Fig. 10.a we can see how the video signals of the Head & Shoulder picture, obtained by 

the four scans, are displal-ed on a screen when a descrambler is not used. The filtered Head & 

Shoulder pictures axe shown in Fig. 10 b,c,d and in Fig. 11. 

(a) 

Figure 12. 32 pixels b y  32 pixels 5% filtered Head d Shoulder pictures. 

( a )  A Raster Scan’s picture. ( b )  A SFC Scan’s picture. 

In order to create the effect of looking-from-a-distance we reduced the 5% filtering Head & 

Shoulder pictures of the Raster Scan and an SFC Scan to 32 pixels by 32 pixels pictures (Fig. 

1.2 ). Naturally, local disturbances are diminished. We see that the Raster Scan’s picture is not 

recovered; we observe no improvement in the quality due to the reduction in size. On the other 

hand, the SFC’s picture seem to have lost very little information. 

Figure 13. 32 pixel3 b y  32 pixels 1% f i l t e red  Head & Shoulder pictures. 

( a )  .-I Rnvter Scan’s picture. ( b )  A SFC Scan’s picture. 

The improvement of tile signal by its scrambling is also demonstrated in Fig. 13 - the 1% 

filtering Head & Shoulder pictures of the Raster Scan and of an SFC scan, reduced to 32 pixels by 

32 pixels pictures. In the Raster Scan’s picture we can only guess - that the shadow was origin&’ 

a Head & Shoulder picture. while in the SFC’s picture we can still observe some details. 
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Finally we give in Fig. 14 a closer look at a typical ciphertext produced by the SFC encryption 

scheme, and challenge the reader to guess what is tile corresponding picture. 
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