
Using Symbolic Model Checking to Verify the Railway
Stations of Hoorn-Kersenboogerd and Heerhugowaard

Cindy Eisner

IBM Haifa Research Laboratory
Matam Advanced Technology Center

Haifa, 31905 Israel
eisner@il.ibm.com

Abstract. St ålmarck’s proof procedure is a method of tautology checking that has
been used to verify railway interlocking software. Recently, it has been proposed
[SS98] that the method has potential to increase the capacity of formal verification
tools for hardware. In this paper, we examine this potential in light of an experiment
in the opposite direction: the application of symbolic model checking to railway
interlocking software previously verified with St ålmarck’s method. We show that
these railway systems share important characteristics which distinguish them from
most hardware designs, and that these differences raise some doubts about the
applicability of St ålmarck’s method to hardware verification.

1 Introduction

St ålmarck’s proof procedure is a method of tautology checking that has been used to
verify railway interlocking software [GKV94, Fok95]. Based on the observation that
these systems are hardware-like, it has been suggested that this method may have the
potential to increase the capacity of formal verification tools for hardware [SS98].
Indeed, Biere, Cimatti, Clarke and Zhu [BCCZ98] have built a symbolic model checker
in which boolean decision procedures like St ålmarck’s method replace BDDs.

In this paper, this potential is examined in light of an experiment in the opposite
direction: the application of symbolic model checking to railway interlocking software 1 .
It is shown that the two railway stations commonly cited as successful applications of
St ålmarck’s method are robust: most properties required of them hold for all states in
the state space rather than holding for the reachable states only. It is also shown that
these models exhibit locality, in that only a small number of inputs toggle in any one
counter-example to a non-valid formula. Finally, we show that the properties checked
for these models belong to a subset of CTL formulas we call AGAX formulas. We show
how the characteristics of robustness and locality cause these models to be particularly
suitable to symbolic model checking of AGAX formulas, and speculate that robustness
also aids the application of St ålmarck’s method to these types of formulas. Finally, we
note that most hardware systems do not exhibit robustness, which raises doubts about
the applicability of Stålmarck’s method to hardware.

1 The models of stations Hoorn-Kersenboogerd and Heerhugowaard used in this paper are the
property of Holland RailConsult and are used with permission.

L. Pierre and T. Kropf (Eds.): CHARME 99, LNCS 1703, pp. 97-109, 1999.
 Springer-Verlag Berlin Heidelberg 1999

The remainder of this paper is structured as follows. Section 2 covers the basics
of symbolic model checking. Section 3 describes the structure of railway interlocking
software in the language VLC, and the structure of properties required of such software.
Section 4 discusses the application of symbolic model checking to the verification of
such software, and defines AGAX formulas, which are typical of those used to ver-
ify VLC models. Section 5 defines robustness and locality, analyzes why it is "easy" to
model check AGAX formula in robust systems, and shows how locality can be used to aid
counter-example generation for false formulas. Section 6 presents experimental results
of the application of symbolic model checking to the stations at Hoorn-Kersenboogerd
and Heerhugowaard. Section 7 concludes with some speculation regarding the applica-
tion of Stålmarck’s method to robust systems, and casts doubt on the applicability of
Stålmarck’s method to hardware verification.

2 Preliminaries

CTL, or Computation Tree Logic [CE81], is a temporal logic useful for reasoning about
the ongoing behavior of reactive systems, and is the logic used by the symbolic model
checker SMV [McM93]. In CTL, temporal operators occur in pairs consisting of A or
E, followed by F, G, U, or X, as follows:

1. Every atomic proposition is a CTL formula, and
2. If f and g are CTL formulas, then so are �f� �f � g�� AXf�EXf�A�fUg�� E�fUg�

The remaining operators are viewed as abbreviations of the above, as follows:
f �g � ���f ��g�,AFg � A�trueUg�,EFg � E�trueUg�,AGf � �E�trueU�f �
and EGf � �A�trueU�f �.

The semantics of a CTL formula is defined with respect to a model M . A model
is a quadruple (S� S0� R� L), where S is a finite set of states, S0 � S is a set of initial
states, R � S � S is the transition relation, and L is the valuation, a function mapping
each state with a set of atomic propositions true in that state. We require that there is at
least one transition from every state. A computation path of a model M is an infinite
sequence of states �s0� s1� s2� � � �� such that R�si� si�1� is true for every i.

The notationM� s j� f means that the formula f is true in state s of model M . The
notation M j� f is equivalent to �s � S0 M� s j� f . The semantics of a CTL formula
is defined as follows:

M� s j� p�	 p � L�s�, where p is an atomic proposition
M� s j� �f �	M� s
j� f

M� s j� f � g�	M� s j� f and M� s j� g

M� si j� AX f �	 for all paths �si� si�1� �����M� si�1 j� f

M� si j� EX f �	 for some path �si� si�1� �����M� si�1 j� f

M� si j� A�fUg� �	 for all paths �si� si�1� ����� �k � i such that M� sk j� g, and �j
such that i
 j � k�M� sj j� f

M� si j� E�fUg��	 for some path �si� si�1� ����� �k � i such that M� sk j� g and �j
such that i
 j � k�M� sj j� f

98 Cindy Eisner

Emerson and Clarke [CE81b] have shown that the operators of CTL can be char-
acterized as fixed points. This is the basis of CTL model checking. In symbolic CTL
model checking, fixed points are frequently expensive to calculate, and their calculation
is one of the sources of state space explosion. In the sequel, we will show a way to avoid
this explosion for the railway stations of Hoorn-Kersenboogerd and Heerhugowaard.

3 Railway interlocking software in the language VLC

The language VLC is described in full by Groote, Koorn and van Vlijmen [GKV94].
Briefly, a VLC program describes a reactive system which continually executes control
cycles. In each control cycle a set of inputs is latched, which means that their value cannot
change during the control cycle. Then, the next state value of the internal variables and
outputs is calculated. The outputs are transmitted simultaneously to the outside world
at the end of the calculation. Finally, the internal variables and outputs are latched.

For the most part, a VLC program consists of a group of boolean equations describing
the next state function of the internal variables and outputs, where ’+’ indicates boolean
or, ’*’ indicates boolean and, and ".N." indicates boolean not. A time delay may be
associated with a boolean equation, which means that the assignment is executed only
if the right hand side of the equation has been true for the number of control cycles
indicated by the time delay.

Following is an example given by [GKV94]:

1 DIRECT INPUT SECTION
2 I
3 OUTPUT SECTION
4 U
5 CODE SYSTEM SECTION
6 CURRENT RESULT SECTION
7 R
8 SELF-LATCHED PARAMETER SECTION
9 V
10 TIMER EXPRESSION RESULT SECTION
11 Q
12 BOOLEAN EQUATION SECTION
13 APPLICATION = Example
14 TIME DELAY = 2 SECONDS BOOL Q = I
15 BOOL R = Q + V
16 BOOL V = Q * .N.R
17 BOOL U = V
18 END BOOLEAN EQUATION SECTION

Fig. 1. An example VLC program

The boolean assignment to Q on line 14 in Figure 1 is time delayed by 2 seconds
(where one second indicates one control cycle). This means that Q will get the value

99Using Symbolic Model Checking to Verify Railway Stations

TRUE only if I is TRUE and was also TRUE in the previous 2 control cycles. The
boolean assignment toR on line 15 will use the new value ofQwhen calculatingQ�R,
because it appears after the assignment to Q in the sequential order of the program
statements. Similarly, the boolean assignment to V on line 16 will use the new values
of Q and R to calculate Q � �R and the boolean assignment to U on line 17 will use
the new value of V .

Properties verified by Groote et al [GKV94] and Fokkink [Fok95] are propositional
formulas using current state variables and past state variables, as follows: ifV is a current
state variable, then V j 1 indicates its value one cycle in the past, V j 2 indicates its
value 2 cycles in the past, etc.

4 The application of symbolic model checking to VLC code

In order to apply symbolic model checking to VLC code, it is necessary to translate VLC
to the input language of the symbolic model checker. Here we describe the translation to
the language EDL, a dialect of SMV [McM93] accepted by the symbolic model checker
RuleBase [BBEL96].

The explanations which follow use the "Little Yard" of [GKV94] in VLC (Figure 2)
and EDL (Figure 3).

1 DIRECT INPUT SECTION
2 I
3 OUTPUT SECTION
4 Pr Pn A B C
5 CODE SYSTEM SECTION
6 CmdA CmdB CmdC Cmdr
7 CURRENT RESULT SECTION
8 E
9 SELF-LATCHED PARAMETER SECTION
10 TIMER EXPRESSION RESULT SECTION
11 P
12 BOOLEAN EQUATION SECTION
13 APPLICATION = LY
14 BOOL E = A * B * C + A * B + A * C + B * C
15 TIME DELAY = 1 SECONDS BOOL P = I
16 BOOL Pr = .N.A * .N.B * .N.C * Cmdr
17 BOOL Pn = .N.Pr
18 BOOL A = CmdA * .N.CmdB * .N.CmdC * .N.E * P * Pn
19 BOOL B = CmdB * .N.CmdA * .N.CmdC * .N.E * P * Pr
20 BOOL C = CmdC * .N.CmdA * .N.CmdB * .N.E * P * Pn
21 END BOOLEAN EQUATION SECTION

Fig. 2. Program "Little Yard" in VLC

100 Cindy Eisner

1 – inputs
2 var I, CmdA, CmdB, CmdC, Cmdr: boolean;
3 – next state variables
4 var Pr out, Pn out, A out, B out, C out, E out, P out: boolean;
5 assign next(Pr out) := Pr;
6 assign next(Pn out) := Pn;
7 assign next(A out) := A;
8 assign next(B out) := B;
9 assign next(C out) := C;
10 assign next(E out) := E;
11 assign next(P out) := P;
12 – counters
13 var P count(0): boolean;
14 assign init(P count(0)) := 0;
15 next(P count(0)) := if !(P temp) then 0 else P count inc(0) endif;
16 define P count inc(0) := if P count(0)=1 then 1 else P count(0)+1 endif;
17 – current state symbols
18 define E := A out&B out&C out | A out&B out | A out&C out | B out&C out;
19 define P := P temp & (P count(0)=1);
20 define P temp := I;
21 define Pr := !A out & !B out & !C out & Cmdr;
22 define Pn := !Pr;
23 define A := CmdA & !CmdB & !CmdC & !E & P & Pn;
24 define B := CmdB & !CmdA & !CmdC & !E & P & Pr;
25 define C := CmdC & !CmdA & !CmdB & !E & P & Pn;

Fig. 3. Program "Little Yard" in EDL

4.1 Current vs. latched state variables

There is one important semantic difference between VLC code and EDL that is im-
mediately obvious in the syntax: VLC is sequential in nature, i.e., the order of the
statements matters (as in most software languages), while EDL code is parallel - there
is no importance to the order of statements (as in most hardware languages). Therefore,
the translation must take into account the position of each VLC statement as follows: if
the variable V is used in an expression which appears before the assignment of a new
value to V , the old, latched value of V should be used in the calculation. If the variable
V is used in an expression which appears after the assignment of a new value to V , the
new value of V should be used in the calculation.

Thus, in the VLC statement on line 14 of Figure 2, the signals A and B and C refer
to the values the previous cycle, because no new values have yet been set. The equivalent
EDL statement is that on line 18 in Figure 3 in which we must explicitly state (by the
use of the � out variables) that the assignment to E uses the previous values. On the
other hand, in the VLC statement on line 17 of Figure 2 the signalPr refers to the value
the current cycle, because Pr receives a new value in a statement appearing above this
statement in the code. This translates into the EDL statement of line 22 in Figure 3 in
which we explicitly state (by the use of the current state symbolPr) that the assignment

101Using Symbolic Model Checking to Verify Railway Stations

to Pn uses the current value of Pr.

4.2 Time delay statements

The time delay statements of VLC are translated into temporary variables which count
up to the delay, and whose value is tested to have reached the delay before assignment
to the signal being assigned. Thus, the time delayed boolean assignment of line 15 in
Figure 2 is translated into the EDL counter of lines 13-16 in Figure 3 plus the assignment
of line 19. In this small example, a one-bit counter is used, but of course it is usually the
case that a wider counter is needed.

4.3 Translation of propositional formulas to CTL

The formulas used by [GKV94] and [Fok95] have the property that they are translatable
into a subset of CTL formulas described below. We will see below that this aids the
model checking process for the railway stations in question.

Definition 1 (nested-AX formula). A nested-AX formula is defined as follows:

1. Every propositional formula is a nested-AX formula
2. If f is a nested-AX formula, then AXf is a nested-AX formula
3. If p is a propositional formula and f is a nested-AX formula, then p � AXf is a

nested-AX formula

Definition 2 (AGAX formula). An AGAX formula is defined as follows: if f is a
nested-AX formula, then AGf is an AGAX formula

Definition 3 (Depth). The depth of an AGAX formula is the number of AX operators
it contains.

The propositional formulas used by [GKV94] and [Fok95] as described in section 3
translate into AGAX formulas in CTL as follows. The current state variables and past
state variables are "shifted into the future" by as many cycles as are needed to get rid of
the past. For instance, the propositional formula

��74 R ACO J 1� 74 R ACO�� 68 R ACO (1)

is equivalent to the propsitional formula

�74 R ACO J 1 � ��74 R ACO� 68 R ACO� (2)

We shift the past state variable 74 R ACO J 1 to the current state variable 74 R ACO
by dropping the J 1, and the current state variables to next state variables by adding an
AX. The result is the equivalent CTL formula

AG��74 R ACO� AX��74 R ACO� 68 R ACO�� (3)

102 Cindy Eisner

4.4 Motivation for the remainder of this paper

Using the translations described above, the models of stations Hoorn-Kersenboogerd and
Heerhugowaard were converted into the input format of RuleBase. The station Hoorn-
Kersenboogerd required approximately 200 variables after reduction and was checked
relatively easily. However, station Heerhugowaard, which required approximately 600
variables after reduction, showed surprising results. Despite the large size, some formu-
las were checked easily. However, other formulas suffered from state space explosion
during model checking, despite the fact that they induced the exact same model as the
easily checked formulas. An investigation into the reasons for this difference led to the
work described in this paper.

5 Robustness and locality in symbolic model checking

In this section we will define robustness and locality, and show how these properties aid
the model checking of AGAX formulas.

5.1 Robustness

A formula AGf is true in a model if the formula f is true in all reachable states of the
model. Informally, a system is robust with respect to a formula AGf if f is true for all
states of the model and not only the reachables, or if f is false in the model.

Definition 4 (Robust). Let M � �S� S0� R� L� and M � � �S� S�R� L�. A model M is
robust with respect to a specification f if M j� f �M � j� f .

It was observed in the experiments described below that the railway models checked
were robust with respect to almost all (47 out of 51) formulas. In the sequel, we will call
a model robust when we assume that it is robust with respect to most of the formulas
we require to hold.

5.2 Model checking AGAX formulas in robust models

Consider the process of model checking the followingAGAX formula in a robust model:

AG�a� AXb� (4)

First, we negate b to get �b. Then, we take a backward symbolic step to find the set
of states which modelEX�b. Finally, we intersect the result with the set of states which
model a to get the set of states BAD which models a � EX�b. There are two cases.
Either the intersection of BAD with the reachables is non-empty, and then the original
formula is false in the model, or the intersection is empty, and the original formula is
true in the model. In order to decide, the model checking algorithm will take backward
symbolic steps until either an initial state is seen, or a fixed point is reached.

However, if the model is robust with respect to the formula and the original formula
is valid, the set BAD is the empty set and the fixed point calculation will be trivial. In

103Using Symbolic Model Checking to Verify Railway Stations

fact, the process of model checking any model which is robust with respect to a valid
AGAX formula will consist of a number of backward symbolic steps equal to the depth
of the AGAX formula, plus one trivial fixed point calculation.

For a false AGAX formula, the set BAD will not be empty, and the backward
symbolic steps will not be trivial. However, the fact that BAD is not empty is itself
indicative that the formula is false.

At this point we have an explanation for the behavior observed in Section 4.4. The
question was why some formulas model checked easily while others, which induced the
same reduction, suffered from state space explosion. The answer is that the formulas
which model checked easily were true formulas, with respect to which the model was
robust. Thus, the set BAD was empty, and the fixed point calculation was trivial. The
formulas which suffered from state space explosion were false formulas, for which the
set BAD was not empty.

For a model which is designed to be robust, we have discovered a decision procedure
which is faster than full symbolic model checking: simply compare set BAD with the
empty set. However, we have still not solved the problem of generating a counter-
example for false formulas. We would like to be able to generate a counter-example
while avoiding state space explosion. This is the subject of the next subsection.

5.3 Generating counter-examples

One way to generate a counter-example is to notice that in a model which is designed
to be robust, it is not necessary to show a counter-example in the original model M .
Rather, it is enough for a counter-example to show that the model is not robust, that
is, that the formula is false in model M � of definition 4. This can be done without any
changes to the symbolic model checker itself, as follows.

Definition 5 (Non-deterministic inputs method). Code the initial states of the model
to be the set of all states.

In EDL, this is accomplished by coding assign init�v� :� f0� 1g; for every state
variable v in the model.

Now, if the formula is false, the set BAD will be non-empty as before. However, the
path from an initial state to BAD will be trivial. If the formula is true, the set BAD will
be empty as before, and the fixed point calculation will be trivial.

Possibly (indeed, most probably) the counter-example generated according to the
non-deterministic inputs method will not start in a true initial state of modelM . However,
if the model is intended to be robust, the counter-example generated in this manner is
sufficient to show that it is not so, and is therefore useful. In the sequel, we use the
following definitions to distinguish between a counter-example generated from model
M , and one generated from model M �.

Definition 6 (True counter-example). A true counter-example is a counter-example
which starts in some initial state.

Definition 7 (Bogus counter-example). A bogus counter-example is a counter-example
which starts in some state which is not an initial state.

104 Cindy Eisner

Until we have generated it, there is no useful bound on the length of a true counter-
example for most CTL formulas. However, it is easy to see that there exists a bogus
counter-example to an AGAX formula with length exactly equal to the depth of the
formula plus one. For instance, the formula

AGp (5)

where p is a propositional formula, has depth 0. A true counter-example will consist
of a path from an initial state to some state in which�p, while a bogus counter-example
can consist simply of a state in which �p, and thus will have length 1. The formula

AG�p� AXq� (6)

where p and q are propositional formulas, has depth 1. A true counter-example will
consist of a path from an initial state to some state in which p holds, followed by a state
in which �q, while a bogus counter-example can consist simply of a state in which p

holds followed by a state in which �q, and thus will have length 2.
In the case that a true counter-example in model M is desired, we can make use of

locality to generate it as described below.

5.4 Locality

The definition of locality is informal, and leads to a heuristic method of searching for a
true counter-example for models which exhibit it.

Definition 8 (Locality). A model has locality if for every false formula, there exists a
counter-example in which most inputs have constant value.

It was observed in the experiments described below that all counter-examples gen-
erated for false formulas exhibited locality. Intuitively, this makes sense for railway
models, because the properties which prevent trains from crashing or derailing must be
local properties: dependent on only the behavior of "close" tracks or signals. In other
words, to push it to the extreme: the fact that two trains do not crash in Amsterdam
should not be dependent on the state of a signal in Istanbul. Thus, if a counter-example
exists, there should also exist a counter-example in which signals on "far" tracks are
quiet.

We have seen previously that if a system is robust, no fixed point calculations are
needed to decide on the validity of an AGAX formula. Further, if we are willing to
accept a counter-example which is bogus, we can also generate a counter-example with
less symbolic steps than needed for a true counter-example. Now we will show how to
make use of locality to generate a true counter-example for a robust system when the
symbolic steps cause state space explosion.

The method heuristically searches for the inputs which are not needed in the counter-
example. It then sets these to 0 and uses pre-model checking reductions [BBEL96] to
reduce the size of the model. The method is as follows:

Set half of the inputs to 0, check the formula. Probably the result finds that the
formula is true. This is inconclusive, so free up some of the inputs and rerun. If the

105Using Symbolic Model Checking to Verify Railway Stations

run does not terminate quickly (i.e., starts a fixed point calculation), then the formula
is false even with the inputs chosen set to 0. Choose some more inputs to set to 0 from
the half not previously chosen, and so on, until the model is small enough to complete
a true counter-example generation.

6 Experimental Results

The experimental results presented below support the observations made above regard-
ing model checking robust models, and demonstrate the effectiveness of the proposed
heuristic for counter-example generation of robust models which exhibit locality.

The railway stations were verified in four modes:

1. the properties are checked for all states of the system
2. the properties are checked only for the reachable states of the system
3. the properties are checked for all states of the system with the aid of some simple

invariants which are separately checked
4. the properties are checked only for the reachable states of the system with the aid

of some simple invariants which are separately checked

The first mode assumes that the systems are robust, while the second conforms more
closely to the way the VLC code is used in practice. The third and fourth modes were
used as a way to deal with the size problems of the station at Heerhugowaard [Fok99].

6.1 Station Hoorn-Kersenboogerd

Four invariants used by mode 3 were checked in mode 1 with a run time of 9 seconds
and memory usage of 33 MB2. Thus, the invariants themselves were found to be robust.

Forty-seven formulas were checked for station Hoorn-Kersenboogerd, including all
the formulas described in [Fok95], as well as some additional formulas [Gro98]. The
formulas included known true and known false formulas which were checked in modes
1, 2 and 3 as described above using the model checker RuleBase [BBEL96]. Results are
shown per rule in Table 1 below, where a rule is a group of formulas.

Notice that there is little if any difference in run time between modes 1 and 2 for
rules containingonly true formulas. This is because the additional fixed point calculation
needed by mode 2 is trivial for formulas which are true in mode 1. The additional fixed
point calculation can be significant in the case of a false formula. This is especially
evident in rules spoor1 and page11. Finally, in all cases, the use of invariants significantly
speeded the model checking.

The model is robust with respect to all formulas with the exception of 4 formulas of
rule page11. All results agreed with the expected results of [Gro98, Fok95], with one
exception. RuleBase found one formula of rule page7 to be false which was found to
be true by [Fok95]. After some additional investigation, this formula was confirmed as
false by the current version of the tool used in the original work [Gro99]. This formula is
now under investigation by Holland RailConsult. This leads to an important conclusion

2 All statistics shown are for an IBM RS/6000 workstation model 140.

106 Cindy Eisner

Table 1. Run time and memory usage for Station Hoorn-Kersenboogerd

Rule Vars mode 1 mode 2 mode 3
run time memory false run time memory false run time memory false

spoor1 209 64 s 35 MB x 766 s 51 MB x 5 s 36 MB x
spoor2 209 1 s 31 MB 1 s 31 MB 1 s 32 MB
spoor3 209 1 s 31 MB 1 s 31 MB 1 s 32 MB
spoor4 209 1 s 31 MB 1 s 31 MB 1 s 32 MB
page6 209 28 s 29 MB 37 s 30 MB 1 s 32 MB
page7 215 468 s 80 MB x 574 s 198 MB x 152 s 80 MB x
page8 215 114 s 42 MB 112 s 47 MB 28 s 43 MB
page9 215 121 s 43 MB 88 s 45 MB 28 s 44 MB
page10 215 115 s 43 MB 70 s 51 MB 29 s 46 MB
page11 215 423 s 43 MB x 42316 s 216 MB 37 s 36 MB
page12 215 74 s 33 MB 33 s 31 MB 22 s 34 MB
page13 215 75 s 33 MB 33 s 31 MB 21 s 34 MB
page14 209 28 s 29 MB 37 s 31 MB 1 s 32 MB

of this experiment: for safety critical systems, it is necessary to apply two independent
methods of formal verification.

The longest true counter-example was of length 126 cycles.

6.2 Station Heerhugowaard

Forty-five invariants were checked in mode 1 with a run time of 1-2 minutes per invariant.
Thus, the invariants for station Heerhugowaard were found to be robust.

Four formulas from [Gro98] were checked for this station. The formulas were
checked in modes 1, 2, 3 and 4 as described above using the model checker RuleBase
[BBEL96]. Results are shown per rule in Table 2 below, where a rule is a group of
formulas.

Table 2. Run time and memory usage for Station Heerhugowaard

Rule Vars mode 1 mode 2 mode 3 mode 4
run run run run
time memory false time memory false time memory false time memory false

hh2 594 522 s 162 MB x space out 778 s 166 MB x space out
hh3 594 337 s 157 MB 280 s 144 MB 263 s 149 MB 263 s 151 MB
hh4 594 416 s 247 MB 287 s 149 MB 268 s 149 MB 277 s 149 MB
hh5 588 space out space out space out space out

For this station, as for station Hoorn-Kersenboogerd of the previous section, it
is apparent that for rules containing only true formulas (hh3 and hh4), there is little
difference in run times between modes 1 and 2, because the fixed point calculations are

107Using Symbolic Model Checking to Verify Railway Stations

trivial for true formulas in a robust model. In station Heerhugowaard the difficulty of
the fixed point calculations for false formulas is evident. Neither of the rules containing
false formulas could complete when a fixed point calculation was needed.

The heuristic method described in Section 5.4 was used to create true counter-
examples for rules hh2 and hh5 (note that bogus counter-examples were created easily
for them, and should be enough to debug a robust model in the usual case). Results are
shown in Table 3 below.

Table 3. Run time and memory usage for heuristic generation of counter-example

Rule Vars (original) Vars (after heur.) heur. iterations run time memory
hh2 594 189 7 2370 s 89 MB
hh5 588 165 10 51 s 55 MB

For these rules, results agreed with those described in [Gro98].
The length of the longest true counter-example was 124 cycles.

7 Conclusions and future directions

We have seen that symbolic model checking of AGAX formulas can avoid fixed point
calculations by making use of the robustness of a model. This includes true formulas and
bogus counter-examples for false formulas. In addition, we have seen how locality can
be used to heuristically reduce models, thus enabling true counter-example generation
even for very large (almost 600 state variables) models.

The use of robustness is not limited to model checking, however. It is also applicable
to the use of Stålmarck’s method, and can be used to limit the unfolding of the model to
the depth of the formula. Indeed, for the work described in [GKV94] and [Fok95], this
is exactly what was done [Fok99]. The following calculation shows that it was done out
of necessity: The station Heerhugowaard has 4789 triples per cycle. If robustness had
not been used, 4789 * 124 = 593836 triples would have been needed to generate the
counter-example of length 124. This is above the size of the largest formula reported by
[SS98], which was 350000.

Although [BCCZ98] report good results for some hardware models typically difficult
for BDD-based methods, for instance multipliers, the above calculations cast doubt
on the applicability of Stålmarck’s method for verification of typical control intensive
hardware. This is because control intensive hardware does not usually exhibit robustness,
and a quick calculation indicates that well in excess of 350000 triples would be needed
to create the counter-examples we see in our hardware. The intuition that Stålmarck’s
method performs best for robust models is strengthened by the authors of [BCCZ98]
themselves, who, in a new paper [BCRZ99] propose a methodology based on first
weeding out the easy cases: those formulas for which the system is robust.

These results are not conclusive, of course. Future work involves experiments in
applying Stålmarck’s method to large hardware models. Finally, we have seen that for
safety critical systems, (at least!) two methods of formal verification should be used.

108 Cindy Eisner

Acknowledgements

Thanks are due to Jan Friso Groote for supplying the railway models used in this
paper, and to Holland RailConsult for agreeing to such. Thank you to Wan Fokkink
for supplying the invariants which enabled the verification of station Heerhugowaard.
The help of both Jan Friso Groote and Wan Fokkink in investigating the discrepancy of
section 6.1 was greatly appreciated. Thank you to Sharon Keidar for implementation of
optimizations to RuleBase which solved the size problems for these models. Thank you
to Shoham Ben-David for careful review and important comments.

References

[BBEL96] I. Beer, S. Ben-David, C. Eisner, A. Landver, "RuleBase: an Industry-Oriented Formal
Verification Tool", in Proc. 33rd Design Automation Conference 1996, pp. 655-660.

[BCCZ98] A. Biere, A. Cimatti, E. Clarke, Y. Zhu, "Symbolic Model Checking without BDDs",
in TACAS ’99, to appear.

[BCRZ99] A. Biere, E. Clarke, R. Raimi, Y. Zhu, "Verifying Safety Properties of a PowerPC
Microprocessor Using Symbolic Model Checking without BDDs", submitted, CAV ’99.

[CE81] E.M. Clarke and E.A. Emerson, "Design and synthesis of synchronization skeletons
using Branching Time Temporal Logic", in Proc. Workshop on Logics of Programs,
Lecture Notes in Computer Science, Vol. 131 (Springer, Berlin, 1981) pp. 52-71.

[CE81b] E.M. Clarke and E.A. Emerson, "Characterizing Properties of Parallel Programs as
Fixed-point", in Seventh International Colloquium on Automata, Languages, and Pro-
gramming, Volume 85 of LNCS, 1981.

[CG+95] E. Clarke, O. Grumberg, K. McMillan, X. Zhao, "Efficient Generation of Counterex-
amples and Witnesses in Symbolic Model Checking", Design Automation Conference
1995, pp. 427-432.

[Fok95] W.J. Fokkink, "Safety criteria for Hoorn-KersenboogerdRailway Station", Logic Group
Preprint Series 135, Utrecht University 1995.

[Fok99] W.J. Fokkink, personal communication to C. Eisner.
[GKV94] J.F. Groote, J.W.C. Koorn and S.F.M. van Vlijmen: "The Safety Guaranteeing System

at Station Hoorn-Kersenboogerd." Technical Report 121, Logic Group Preprint Series,
Utrecht Univ., 1994.

[Gro98] J.F. Groote, personal communication to C. Eisner.
[Gro99] J.F. Groote, personal communication to C. Eisner.
[McM93] K.L. McMillan, "Symbolic Model Checking", Kluwer Academic Publishers, 1993.
[SS98] M. Sheeran and G. Stålmarck, "A Tutorial on Stålmarck’s Proof Procedure for Propo-

sitional Logic", in Second International Conference on Formal Methods in Computer-
Aided Design, FMCAD ’98, Volume 1522 of LNCS, 1998, pp. 82-99.

109Using Symbolic Model Checking to Verify Railway Stations

	1 Introduction
	2 Preliminaries
	3 Railway interlocking software in the language VLC
	4 The application of symbolic model checking to VLC code
	4.1 Current vs. latched state variables
	4.2 Time delay statements
	4.3 Translation of propositional formulas to CTL
	4.4 Motivation for the remainder of this paper

	5 Robustness and locality in symbolic model checking
	5.1 Robustness
	5.2 Model checking AGAX formulas in robust models
	5.3 Generating counter-examples
	5.4 Locality

	6 Experimental Results
	6.1 Station Hoorn-Kersenboogerd
	6.2 Station Heerhugowaard

	7 Conclusions and future directions
	References

