Using Symbolic Model Checking to Verify the Railway
Stations of Hoor n-K er senboogerd and Heer hugowaard

Cindy Eisner

IBM Haifa Research Laboratory
Matam Advanced Technology Center
Haifa, 31905 Israel
eisner@il.ibm.com

Abstract. Stalmarck’sproof procedureisamethod of tautol ogy checkingthat has
been used to verify railway interlocking software. Recently, it has been proposed
[SS98] that the method haspotential to increasethe capacity of formal verification
toolsfor hardware. Inthis paper, weexaminethispotential inlight of anexperiment
in the opposite direction: the application of symbolic model checking to railway
interlocking software previously verified with Stélmarck’s method. We show that
theserailway systemsshareimportant characteristicswhichdistinguish them from
most hardware designs, and that these differences raise some doubts about the
applicability of StAlmarck’s method to hardware verification.

1 Introduction

Stalmarck’s proof procedure is a method of tautology checking that has been used to
verify railway interlocking software [GKV 94, Fok95]. Based on the observation that
these systems are hardware-like, it has been suggested that this method may have the
potential to increase the capacity of formal verification tools for hardware [SS98].
Indeed, Biere, Cimatti, Clarke and Zhu [BCCZ98] have built a symbolic model checker
in which boolean decision procedures like Stalmarck’s method replace BDDs.

In this paper, this potential is examined in light of an experiment in the opposite
direction: the application of symbolic model checking to railway interlocking software?.
It is shown that the two railway stations commonly cited as successful applications of
Stalmarck’s method are robust: most properties required of them hold for al states in
the state space rather than holding for the reachable states only. It is also shown that
these models exhibit locality, in that only a small number of inputs toggle in any one
counter-example to a non-valid formula. Finally, we show that the properties checked
for these modelsbelong to a subset of CTL formulaswe call AGAX formulas. We show
how the characteristics of robustness and locality cause these modelsto be particularly
suitable to symbolic model checking of AGAX formulas, and speculate that robustness
also aids the application of StAlmarck’s method to these types of formulas. Finally, we
note that most hardware systems do not exhibit robustness, which raises doubts about
the applicability of StAlmarck’s method to hardware.

1 The models of stations Hoorn-Kersenboogerd and Heerhugowaard used in this paper are the
property of Holland Rail Consult and are used with permission.

L. Pierre and T. Kropf (Eds.): CHARME 99, LNCS 1703, pp. 97-109, 1999.
© Springer-Verlag Berlin Heidelberg 1999

98 Cindy Eisner

The remainder of this paper is structured as follows. Section 2 covers the basics
of symbolic model checking. Section 3 describes the structure of railway interlocking
softwareinthelanguage VL C, and the structure of propertiesrequired of such software.
Section 4 discusses the application of symbolic model checking to the verification of
such software, and defines AGAX formulas, which are typical of those used to ver-
ify VLC models. Section 5 defines robustness and locality, analyzes why it is "easy" to
model check AGAX formulain robust systems, and showshow locality can beusedtoaid
counter-example generation for false formulas. Section 6 presents experimental results
of the application of symbolic model checking to the stations at Hoorn-Kersenboogerd
and Heerhugowaard. Section 7 concludes with some speculation regarding the applica-
tion of Stalmarck’s method to robust systems, and casts doubt on the applicability of
StAlmarck’s method to hardware verification.

2 Preiminaries

CTL, or Computation Tree Logic [CE81], isatemporal logic useful for reasoning about
the ongoing behavior of reactive systems, and is the logic used by the symbolic model
checker SMV [McM93]. In CTL, temporal operators occur in pairs consisting of A or
E, followedby F, G, U, or X, asfollows:

1. Every atomic propositionisa CTL formula, and
2. Iffandgare CTL formulas, thensoare—f, (fAg), AXf, EX f, A[fUgq], E[fUg]

The remaining operators are viewed as abbreviations of the above, as follows:
fVvg=-(-fA-g), AFg = AltrueUg|, EFg = E[trueUyg], AGf = ~E[trueU—f]
and EGf = - AftrueU—f].

The semantics of a CTL formula is defined with respect to a model A/. A model
isaquadruple (S, So, R, L), where S is afinite set of states, Sp C S isa set of initid
states, R C S x S isthetransitionrelation, and 7 isthe valuation, a function mapping
each state with a set of atomic propositionstrue in that state. We require that thereis at
least one transition from every state. A computation path of a model M is an infinite
sequence of states (so, s1, 52, - - -) such that R(s;, s;4+1) istrue for every i.

Thenotation M, s = f means that theformula f istruein state s of model M. The
notation M |= f isequivdenttoVs € So M, s = f. The semantics of a CTL formula
is defined as follows:

M, s |E p <= p € L(s), where p isan atomic proposition

M,sE-f<<— MslEf

M,sEfAhg<= M,sEfandM, sy

M, 8 ': AX f<:>foral| pathS(Si,Si+1,...),M, Sit+1 ': f

M, s; ': EX f<:>forsomepath (SZ',SZ'_|_1,...),M, Siy1 ': f

M, s; ': A[ng] < for all pathS(Si,Si+1,...),E|k > iSUChthaIM, Sk ': q, ande
suchthati < j <k, M,s; E f

M, s; = E[fUyg] < for some path (s;, si41, ...), 3k > i suchthat M, s;, = g and ¥
suchthati < j <k, M,s; E f

Using Symbolic Model Checking to Verify Railway Stations 99

Emerson and Clarke [CE81b] have shown that the operators of CTL can be char-
acterized as fixed points. This is the basis of CTL model checking. In symbolic CTL
model checking, fixed pointsare frequently expensive to cal culate, and their calculation
isone of the sources of state space explosion. In the sequel, we will show away to avoid
thisexplosion for the railway stations of Hoorn-Kersenboogerd and Heerhugowaard.

3 Railway interlocking softwarein thelanguageVLC

The language VLC is described in full by Groote, Koorn and van Vlijmen [GKV94].
Briefly, aVLC program describes a reactive system which continually executes control
cycles. Ineach control cycleaset of inputsislatched, which meansthat their value cannot
change during the control cycle. Then, the next state value of the internal variables and
outputs is calculated. The outputs are transmitted simultaneously to the outside world
at the end of the calculation. Finally, the internal variables and outputs are latched.

For themost part, aV L C program consistsof agroup of bool ean equations describing
the next state function of theinternal variables and outputs, where '+ indicates boolean
or, "*" indicates boolean and, and ".N." indicates boolean not. A time delay may be
associated with a boolean equation, which means that the assignment is executed only
if the right hand side of the equation has been true for the number of control cycles
indicated by the time delay.

Followingis an example given by [GKV94]:

1 DIRECT INPUT SECTION

21

3 OUTPUT SECTION

4U

5 CODE SYSTEM SECTION

6 CURRENT RESULT SECTION

7R

8 SELF-LATCHED PARAMETER SECTION
9V

10 TIMER EXPRESSION RESULT SECTION
11Q

12 BOOLEAN EQUATION SECTION

13 APPLICATION = Example

14 TIME DELAY =2 SECONDSBOOL Q=1
15BOOL R=Q+V

16 BOOL V =Q* .N.R

17BOOL U =V

18 END BOOLEAN EQUATION SECTION

Fig. 1. An example VLC program

The boolean assignment to @ on line 14 in Figure 1 is time delayed by 2 seconds
(where one second indicates one control cycle). This means that ¢ will get the value

100 Cindy Eisner

TRUFE onlyif I isTRUFE andwasaso T'RU E in the previous 2 control cycles. The
boolean assignment to R on line 15 will usethe new value of ¢) when calculating@ Vv R,
because it appears after the assignment to @ in the sequential order of the program
statements. Similarly, the boolean assignment to V' on line 16 will use the new values
of @ and R to calculate @ A —R and the boolean assignment to U on line 17 will use
the new value of V.

Properties verified by Groote et al [GKV94] and Fokkink [Fok95] are propositional
formulasusing current state variablesand past state variables, asfollows: if V isacurrent
state variable, then V_j_1 indicates its value one cycle in the past, VV_j_2 indicates its
value 2 cyclesin the past, etc.

4 Theapplication of symbolic model checkingto VL C code

In order to apply symbolic model checkingto VL C code, itisnecessary totranslate VLC
to theinput language of the symbolic model checker. Here we describe the translation to
thelanguage EDL, adialect of SMV [McM 93] accepted by the symbolic model checker
RuleBase [BBEL 96].

The explanationswhich follow use the "Little Yard" of [GKV94] in VLC (Figure 2)
and EDL (Figure 3).

1 DIRECT INPUT SECTION

21

3 OUTPUT SECTION

4PrPnABC

5 CODE SYSTEM SECTION

6 CmdA CmdB CmdC Cmdr

7 CURRENT RESULT SECTION

8E

9 SELF-LATCHED PARAMETER SECTION

10 TIMER EXPRESSION RESULT SECTION

11P

12 BOOLEAN EQUATION SECTION

13 APPLICATION =LY
14BOOLE=A*B*C+A*B+A*C+B*C

15 TIME DELAY =1 SECONDSBOOL P=1

16 BOOL Pr=.N.A * .N.B * .N.C* Cmdr

17 BOOL Pn=.N.Pr

18 BOOL A =CmdA * .N.CmdB * .N.CmdC * .N.E* P* Pn
19BOOL B=CmdB * .N.CmdA * .N.CmdC* .N.E* P* Pr
20BOOL C=CmdC* .N.CmdA * .N.CmdB * .N.E* P* Pn
21 END BOOLEAN EQUATION SECTION

Fig. 2. Program "Little Yard" in VLC

Using Symbolic Model Checking to Verify Railway Stations 101

1-inputs

2var |, CmdA, CmdB, CmdC, Cmdr: boolean;

3 —next state variables

4 var Pr_out, Pn_out, A_out, B_out, C_out, E_out, P_out: boolean;

5 assign next(Pr_out) := Pr;

6 assign next(Pn_out) := Pn;

7 assign next(A_out) := A;

8 assign next(B_out) := B;

9 assign next(C_out) :=C;

10 assign next(E_out) := E;

11 assign next(P-out) := P,

12 —counters

13 var P_count(0): boolean;

14 assign init(P-count(0)) := 0;

15 next(P-count(0)) := if !(P-temp) then 0 else P_count_inc(0) endif;
16 define P_count_inc(0) := if P_count(0)=1 then 1 else P_count(0)+1 endif;
17 — current state symbols

18 define E := A_out& B_out& C_out | A_out& B_out | A_out& C_out | B_out& C_out;
19 define P := P_temp & (P_count(0)=1);

20 definePtemp :=1;

21 definePr :=!A_out & 'B_out & !C_out & Cmdr;

22 definePn :=!Pr;

23 defineA :=CmdA & 'CmdB & !CmdC & 'E & P& Pn;

24 defineB :=CmdB & !CmdA & !ICmdC & 'E& P& Pr;
25defineC:=CmdC & !CmdA & 'CmdB & 'E& P& Pn;

Fig. 3. Program "Little Yard" in EDL

4.1 Current vs. latched state variables

There is one important semantic difference between VLC code and EDL that is im-
mediately obvious in the syntax: VLC is sequential in nature, i.e., the order of the
statements matters (as in most software languages), while EDL code is parallel - there
isno importanceto the order of statements (as in most hardware languages). Therefore,
the tranglation must take into account the position of each VL C statement as follows: if
the variable V' is used in an expression which appears before the assignment of a new
valueto V/, the old, latched value of 1 should be used in the calculation. If the variable
V is used in an expression which appears after the assignment of a new valueto V, the
new value of V' should be used in the cal culation.

Thus, inthe VL C statement on line 14 of Figure 2, the signals A and B and C refer
tothe valuesthe previouscycle, because no new values have yet been set. The equivalent
EDL statement is that on line 18 in Figure 3 in which we must explicitly state (by the
use of the x_out variables) that the assignment to £ uses the previous values. On the
other hand, inthe VL C statement online 17 of Figure 2the signal Pr referstothe value
the current cycle, because Pr receives a new value in a statement appearing above this
statement in the code. This translates into the EDL statement of line 22 in Figure 3 in
which we explicitly state (by the use of the current state symbol Pr) that the assignment

102 Cindy Eisner

to Pn usesthe current value of Pr.

4.2 Timedelay statements

The time delay statements of VL C are translated into temporary variables which count
up to the delay, and whose value is tested to have reached the delay before assignment
to the signal being assigned. Thus, the time delayed boolean assignment of line 15 in
Figure 2istrandatedintothe EDL counter of lines13-16in Figure 3 plusthe assignment
of line 19. In thissmall example, aone-bit counter is used, but of courseit isusualy the
case that awider counter is needed.

4.3 Trandation of propositional formulasto CTL

The formulas used by [GKV 94] and [Fok95] have the property that they are trandlatable
into a subset of CTL formulas described below. We will see below that this aids the
model checking process for the railway stationsin question.

Definition 1 (nested-AX formula). A nested-AX formulais defined as follows:

1. Every propositional formulais a nested-AX formula

2. Iffisanested-AX formula, then AX f isa nested-AX formula

3. If pisa propositional formula and f is a nested-AX formula, then p — AX f isa
nested-AX formula

Definition 2 (AGAX formula). An AGAX formula is defined as follows: if f is a
nested-AX formula, then AG f isan AGAX formula

Definition 3 (Depth). The depth of an AGAX formulais the number of AX operators
it contains.

The propositional formulas used by [GKV 94] and [Fok95] as described in section 3
trandate into AGAX formulasin CTL as follows. The current state variables and past
state variables are "shifted into the future" by as many cycles as are needed to get rid of
the past. For instance, the propositional formula

—(74_R_ACO_J 1V T74_.R_ACO) — 68_R_ACO Q)

is equivalent to the propsitional formula

~74_.R_ACO_J 1 — (=7A_R_ACO — 68_R_ACO) @

Weshiftthepast statevariable 74_R_ACO_J_1tothecurrent statevariable 74_R_ACO
by droppingthe _J_1, and the current state variables to next state variables by adding an
AX. Theresult isthe equivalent CTL formula

AG(~T4.R_ACO — AX(~TA_R_ACO — 68_R_ACO)) ©)

Using Symbolic Model Checking to Verify Railway Stations 103

4.4 Motivation for the remainder of this paper

Using thetrang ations described above, the model sof stations Hoorn-K ersenboogerd and
Heerhugowaard were converted into the input format of RuleBase. The station Hoorn-
Kersenboogerd required approximately 200 variables after reduction and was checked
relatively easily. However, station Heerhugowaard, which required approximately 600
variables after reduction, showed surprising results. Despite the large size, some formu-
las were checked easily. However, other formulas suffered from state space explosion
during model checking, despite the fact that they induced the exact same model as the
easily checked formulas. An investigation into the reasons for this difference led to the
work described in this paper.

5 Robustness and locality in symbolic model checking

In this section we will define robustness and locality, and show how these propertiesaid
the model checking of AGAX formulas.

5.1 Robustness

A formula AG f istrueinamoded if the formula f istruein al reachable states of the
model. Informally, a system isrobust with respect to aformula AG f if f istruefor al
states of the model and not only the reachables, or if f isfalse inthe model.

Definition 4 (Robust). Let M = (S, So, R, L) and M’ = (S, S, R, L). Amodel M is
robust with respect to a specification fif M = f — M’ E f.

It was observed in the experiments described bel ow that the railway models checked
were robust with respect to almost al (47 out of 51) formulas. In the sequel, we will call
a model robust when we assume that it is robust with respect to most of the formulas
we require to hold.

5.2 Modd checking AGAX formulasin robust models

Consider the process of model checking thefollowing AGA X formulain arobust model:

AG(a — AXD) 4

First, we negate b to get —b. Then, we take a backward symbolic step to find the set
of stateswhich model £ X —b. Finally, we intersect the result with the set of states which
model « to get the set of states BAD which models a A £ X —b. There are two cases.
Either the intersection of BAD with the reachables is non-empty, and then the original
formulais false in the model, or the intersection is empty, and the original formulais
truein the model. In order to decide, the model checking algorithm will take backward
symbolic steps until either an initial state is seen, or afixed point is reached.

However, if the model is robust with respect to the formulaand the original formula
isvalid, the set BAD is the empty set and the fixed point calculation will be trivial. In

104 Cindy Eisner

fact, the process of model checking any model which is robust with respect to a valid
AGAX formulawill consist of a number of backward symbolic steps equal to the depth
of the AGAX formula, plusonetrivial fixed point calculation.

For a false AGAX formula, the set BAD will not be empty, and the backward
symbolic steps will not be trivial. However, the fact that BAD is not empty is itself
indicative that the formulaisfalse.

At this point we have an explanation for the behavior observed in Section 4.4. The
guestion was why some formulas model checked easily while others, which induced the
same reduction, suffered from state space explosion. The answer is that the formulas
which model checked easily were true formulas, with respect to which the model was
robust. Thus, the set BAD was empty, and the fixed point calculation was trivial. The
formulas which suffered from state space explosion were false formulas, for which the
set BAD was not empty.

For amodel whichisdesigned to be robust, we have discovered adecision procedure
which is faster than full symbolic model checking: simply compare set BAD with the
empty set. However, we have still not solved the problem of generating a counter-
example for false formulas. We would like to be able to generate a counter-example
while avoiding state space explosion. Thisisthe subject of the next subsection.

5.3 Generating counter-examples

One way to generate a counter-example is to notice that in a model which is designed
to be robust, it is not necessary to show a counter-example in the original model A .
Rather, it is enough for a counter-example to show that the model is not robust, that
is, that the formulais falsein model A’ of definition 4. This can be done without any
changes to the symbolic model checker itself, as follows.

Definition 5 (Non-deterministicinputsmethod). Codetheinitial states of the model
to be the set of all states.

In EDL, this is accomplished by coding assign init(v) := {0, 1}; for every state
variable v in the model.

Now, if theformulaisfalse, the set BAD will be non-empty as before. However, the
path from an initial stateto BAD will betrivia. If the formulais true, the set BAD will
be empty as before, and the fixed point calculation will be trivial.

Possibly (indeed, most probably) the counter-example generated according to the
non-deterministic inputs method will not startinatrueinitial state of model A1 . However,
if the model isintended to be robust, the counter-example generated in this manner is
sufficient to show that it is not so, and is therefore useful. In the sequel, we use the
following definitions to distinguish between a counter-example generated from model
M, and one generated from model M’.

Definition 6 (True counter-example). A true counter-example is a counter-example
which startsin someinitial state.

Definition 7 (Boguscounter-example). Aboguscounter-exampleisacounter-example
which startsin some state which isnot aninitial state.

Using Symbolic Model Checking to Verify Railway Stations 105

Until we have generated it, there is no useful bound on the length of a true counter-
example for most CTL formulas. However, it is easy to see that there exists a bogus
counter-example to an AGAX formula with length exactly equal to the depth of the
formulaplus one. For instance, the formula

AGp)

where p isa propositional formula, has depth 0. A true counter-example will consist
of apath from an initial state to some state in which —p, while a bogus counter-example
can consist simply of a state in which —p, and thus will have length 1. The formula

AG(p — AXq) (6)

where p and ¢ are propositional formulas, has depth 1. A true counter-example will
consist of apath from an initial state to some state in which p holds, followed by a state
in which —¢, while a bogus counter-example can consist simply of a state in which p
holdsfollowed by a state in which —¢, and thus will have length 2.

In the case that a true counter-example in model A/ isdesired, we can make use of
locality to generate it as described bel ow.

5.4 Locality

The definition of locality isinformal, and leads to a heuristic method of searching for a
true counter-example for models which exhibit it.

Definition 8 (Locality). A model has locality if for every false formula, there exists a
counter-example in which most inputs have constant value.

It was observed in the experiments described below that all counter-examples gen-
erated for false formulas exhibited locality. Intuitively, this makes sense for railway
models, because the properties which prevent trains from crashing or derailing must be
local properties: dependent on only the behavior of "close" tracks or signas. In other
words, to push it to the extreme: the fact that two trains do not crash in Amsterdam
should not be dependent on the state of asignal in Istanbul. Thus, if a counter-example
exists, there should also exist a counter-example in which signals on "far" tracks are
quiet.

We have seen previoudly that if a system is robust, no fixed point calculations are
needed to decide on the validity of an AGAX formula. Further, if we are willing to
accept a counter-example which is bogus, we can a so generate a counter-example with
less symbolic steps than needed for a true counter-example. Now we will show how to
make use of locality to generate a true counter-example for a robust system when the
symbolic steps cause state space explosion.

The method heuristically searches for theinputswhich are not needed in the counter-
example. It then sets these to 0 and uses pre-model checking reductions [BBEL 96] to
reduce the size of the model. The method is as follows:

Set half of the inputs to O, check the formula. Probably the result finds that the
formulais true. This is inconclusive, so free up some of the inputs and rerun. If the

106 Cindy Eisner

run does not terminate quickly (i.e., starts a fixed point calculation), then the formula
is false even with the inputs chosen set to 0. Choose some more inputsto set to 0 from
the half not previously chosen, and so on, until the model is small enough to complete
a true counter-example generation.

6 Experimental Results

The experimental results presented bel ow support the observations made above regard-
ing model checking robust models, and demonstrate the effectiveness of the proposed
heuristic for counter-exampl e generation of robust models which exhibit locality.

The railway stationswere verified in four modes:

=

. the properties are checked for all states of the system

. the properties are checked only for the reachable states of the system

3. the properties are checked for all states of the system with the aid of some simple
invariantswhich are separately checked

4. the properties are checked only for the reachable states of the system with the aid

of some simple invariants which are separately checked

N

Thefirst mode assumes that the systems are robust, while the second conforms more
closely to the way the VLC code is used in practice. The third and fourth modes were
used as away to deal with the size problems of the station at Heerhugowaard [Fok99].

6.1 Station Hoorn-Kersenboogerd

Four invariants used by mode 3 were checked in mode 1 with a run time of 9 seconds
and memory usage of 33 MB?. Thus, the invariants themselves were found to be robust.

Forty-saven formulas were checked for station Hoorn-Kersenboogerd, including all
the formulas described in [Fok95], as well as some additional formulas [Gro98]. The
formulas included known true and known fal se formul as which were checked in modes
1, 2 and 3 as described above using the model checker RuleBase [BBEL96]. Results are
shown per rulein Table 1 below, where aruleis a group of formulas.

Notice that there is little if any difference in run time between modes 1 and 2 for
rules containing only trueformulas. Thisisbecause the additional fixed point calculation
needed by mode 2 istrivia for formulas which are true in mode 1. The additional fixed
point calculation can be significant in the case of a false formula. This is especially
evident inrulesspoorland pagell. Finaly, inall cases, the use of invariantssignificantly
speeded the model checking.

The model is robust with respect to all formulas with the exception of 4 formulas of
rule pagell. All results agreed with the expected results of [Gro98, Fok95], with one
exception. RuleBase found one formula of rule page7 to be false which was found to
be true by [Fok95]. After some additional investigation, thisformula was confirmed as
false by the current version of the tool used inthe original work [Gro99]. Thisformulais
now under investigation by Holland Rail Consult. This leads to an important conclusion

2 All statistics shown arefor an IBM RS/6000 workstation model 140.

Using Symbolic Model Checking to Verify Railway Stations

Table 1. Run time and memory usagefor Station Hoorn-Kersenboogerd

Rule |Vars| mode 1 mode 2 mode 3
run time/memory |false|run time|memory|fal se|run time| memory|false
spoorl (209 (64 s 3BMB |[x [766s [B1MB [x |5s 36 MB [x
spoor2 (209 |1s 31 MB 1s 31MB 1s 32 MB
spoor3 (209 [1s 31 MB 1s 31MB 1s 32 MB
spoor4 (209 |1s 31 MB 1s 31MB 1s 32 MB
page6 (209 |28 s 29 MB 37s 30 MB 1s 32 MB
page7 (215 |468s [BOMB |x [574s [19BMB[x [152s {BOMB
page8 (215 |114s |42 MB 112s |47MB 28s 43MB
page9 (215 |121s [43MB 88 s 45 MB 28s 44 MB
pagelOf215 |115s |43 MB 70 s 51 MB 29s 46 MB
pagell|215 |423s |43MB |x 42316s 216 MB 37s 36 MB
pagel2|215 |74 s 33 MB 33s 31 MB 22s 34 MB
pagel3|215 |75s 33 MB 33s 31 MB 21s 34 MB
pagel4|209 |28 s 29 MB 37s 31 MB 1s 32 MB

107

of this experiment: for safety critical systems, it is necessary to apply two independent
methods of formal verification.
The longest true counter-example was of length 126 cycles.

6.2 Station Heerhugowaard

Forty-fiveinvariantswere checked in mode 1 with arun time of 1-2 minutes per invariant.
Thus, the invariants for station Heerhugowaard were found to be robust.

Four formulas from [Gro98] were checked for this station. The formulas were
checked in modes 1, 2, 3 and 4 as described above using the model checker RuleBase
[BBEL96]. Results are shown per rule in Table 2 below, where a rule is a group of

formulas.
Table 2. Run time and memory usagefor Station Heerhugowaard

Rule|Vars mode 1 mode 2 mode 3 mode 4

run run run run

time |memory|falseltime |memory|false|time |memory|false/time | memory|false
hh2 |594 (522 s{162 MB |x space out 778 S[166 MB [x space out
hh3 |594 (337 s|157 MB 280 s(144 MB 263 s(149 MB P63s151 MB
hh4 |594 (416 s|247 MB 287 s|149 MB 268 s[149 MB R77s[149MB
hh5 588 spaceout space out spaceout space out

For this station, as for station Hoorn-Kersenboogerd of the previous section, it
is apparent that for rules containing only true formulas (hh3 and hh4), there is little
differencein run times between modes 1 and 2, because the fixed point calculations are

108 Cindy Eisner

trivial for true formulas in a robust model. In station Heerhugowaard the difficulty of
the fixed point calculationsfor false formulas is evident. Neither of the rules containing
false formulas could complete when a fixed point calculation was needed.

The heuristic method described in Section 5.4 was used to create true counter-
examples for rules hh2 and hh5 (note that bogus counter-examples were created easily
for them, and should be enough to debug a robust model in the usual case). Results are
shown in Table 3 below.

Table 3. Runtime and memory usage for heuristic generation of counter-example

Rule|Vars (original)| Vars (after heur.)| heur. iterationg run timg memory|
hh2 |594 189 7 2370s |39MB
hh5 588 165 10 51s 55MB

For these rules, results agreed with those described in [Gro98].
The length of the longest true counter-example was 124 cycles.

7 Conclusionsand futuredirections

We have seen that symbolic model checking of AGAX formulas can avoid fixed point
calculations by making use of the robustnessof amodel. Thisincludestrueformulasand
bogus counter-examples for false formulas. In addition, we have seen how locality can
be used to heuristically reduce models, thus enabling true counter-example generation
even for very large (almost 600 state variables) models.

The use of robustnessisnot limited to model checking, however. Itisalso applicable
to the use of Stalmarck’s method, and can be used to limit the unfolding of the mode! to
the depth of the formula. Indeed, for the work described in [GKV94] and [Fok95], this
is exactly what was done [Fok99]. The following cal cul ation shows that it was done out
of necessity: The station Heerhugowaard has 4789 triples per cycle. If robustness had
not been used, 4789 * 124 = 593836 triples would have been needed to generate the
counter-exampl e of length 124. Thisis above the size of the largest formulareported by
[SS98], which was 350000.

Although [BCCZ98] report good resultsfor some hardware model stypically difficult
for BDD-based methods, for instance multipliers, the above calculations cast doubt
on the applicability of StAimarck’s method for verification of typical control intensive
hardware. Thisisbecause control intensive hardware does not usually exhibit robustness,
and a quick calculation indicates that well in excess of 350000 tripleswould be needed
to create the counter-examples we see in our hardware. The intuition that StAlmarck’s
method performs best for robust models is strengthened by the authors of [BCCZ98]
themselves, who, in a new paper [BCRZ99] propose a methodology based on first
weeding out the easy cases: those formulas for which the system is robust.

These results are not conclusive, of course. Future work involves experiments in
applying StAlmarck’s method to large hardware models. Finally, we have seen that for
safety critical systems, (at least!) two methods of formal verification should be used.

Using Symbolic Model Checking to Verify Railway Stations 109

Acknowledgements

Thanks are due to Jan Friso Groote for supplying the railway models used in this
paper, and to Holland RailConsult for agreeing to such. Thank you to Wan Fokkink
for supplying the invariants which enabled the verification of station Heerhugowaard.
The help of both Jan Friso Groote and Wan Fokkink in investigating the discrepancy of
section 6.1 was greatly appreciated. Thank you to Sharon Keidar for implementation of
optimizationsto RuleBase which solved the size problems for these models. Thank you
to Shoham Ben-David for careful review and important comments.

References

[BBEL96] I.Beer, S. Ben-David, C. Eisner, A. Landver, "RuleBase: an Industry-Oriented Formal
Verification Tool", in Proc. 33" Design Automation Conference 1996, pp. 655-660.

[BCCZ98] A.Biere, A. Cimatti, E. Clarke, Y. Zhu, "Symbolic Model Checking without BDDs",
in TACAS' 99, to appear.

[BCRZ99] A. Biere, E. Clarke, R. Raimi, Y. Zhu, "Verifying Safety Properties of a PowerPC
Microprocessor Using Symbolic Model Checking without BDDs", submitted, CAV ' 99.

[CE81] E.M. Clarke and E.A. Emerson, "Design and synthesis of synchronization skeletons
using Branching Time Temporal Logic", in Proc. Workshop on Logics of Programs,
Lecture Notesin Computer Science, Vol. 131 (Springer, Berlin, 1981) pp. 52-71.

[CE81b] E.M. Clarke and E.A. Emerson, "Characterizing Properties of Parallel Programs as
Fixed-point", in Seventh International Colloquium on Automata, Languages, and Pro-
gramming, Volume 85 of LNCS, 1981.

[CG+95] E. Clarke, O. Grumberg, K. McMillan, X. Zhao, "Efficient Generation of Counterex-
amples and Witnessesin Symbolic Model Checking", Design Automation Conference
1995, pp. 427-432.

[Fok95] W.J. Fokkink, "Safety criteriafor Hoorn-Kersenboogerd Railway Station™, Logic Group
Preprint Series 135, Utrecht University 1995.

[Fok99] W.J. Fokkink, personal communication to C. Eisner.

[GKV94] J.F. Groote, JW.C. Koorn and S.F.M. van Vlijmen: "The Safety Guaranteeing System
at Station Hoorn-Kersenboogerd." Technical Report 121, Logic Group Preprint Series,
Utrecht Univ., 1994.

[Gro98] J.F. Groote, personal communicationto C. Eisner.

[Gro99] J.F. Groote, personal communicationto C. Eisner.

[McM93] K.L.McMillan, "Symbolic Model Checking", Kluwer Academic Publishers, 1993.

[SS98] M. Sheeran and G. Stalmarck, "A Tutorial on StAlmarck’s Proof Procedure for Propo-
sitional Logic", in Second International Conference on Formal Methodsin Computer-
Aided Design, FMCAD ' 98, Volume 1522 of LNCS, 1998, pp. 82-99.

	1 Introduction
	2 Preliminaries
	3 Railway interlocking software in the language VLC
	4 The application of symbolic model checking to VLC code
	4.1 Current vs. latched state variables
	4.2 Time delay statements
	4.3 Translation of propositional formulas to CTL
	4.4 Motivation for the remainder of this paper

	5 Robustness and locality in symbolic model checking
	5.1 Robustness
	5.2 Model checking AGAX formulas in robust models
	5.3 Generating counter-examples
	5.4 Locality

	6 Experimental Results
	6.1 Station Hoorn-Kersenboogerd
	6.2 Station Heerhugowaard

	7 Conclusions and future directions
	References

